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This text is a report of a talk “bounds for the dimensions of p-adic multiple L-
value spaces” in the symposium “Algebraic Number Theory and Related Topics” (6-
10/Dec/2004 at RIMS).

For natural numbers kq,...,k;_1 > 1, kg > 2, the following infinite sum
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absolutely converges, and is called the multiple zeta value (MZV). Here, Liy,  1,(2) :=
> 2" is the multiple polylogarithm function. The study of MZV’s is
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started flrom1 Euler. After Zagier made the study of MZV’s revive in the modern times,
MZV’s are studied actively by many mathematicians now.

For natural number ky,...,k; > 1 and N-th roots of unity (3,...,(; satisfying
(ka,Ca) # (1,1), the multiple L-value (MLV) is defined by the following absolutely
converging infinite sum:
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Here, Lik, . kyci,ca(2) = Dopicocn, 5% is the twisted multiple
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polylogarithm function.
Now, we want to consider a p-adic analogue of MZV’s and MLV’s. The infinite sum
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does not converges in the p-adic topology. On the other hand, the multiple polyloga-

rithm function Lig, _x,(z) has the iterated integral representation:

.....

g, kg1(2) i kg > 1,

= %lel ..... kg1 (Z) if kd = 1, and d > 1,

L if ky=1,and d = 1.

Considering a p-adic analogue of this iterated integral representation, Furusho de-

fined the p-adic multiple polylogarithm functions Liy, ; (2) by using Coleman’s
p-adic iterated integral theory ([C]) (Here, a is a branching parameter. We do not
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explain it in this article), defined the p-adic multiple zeta values (p-adic MZV’s)

to be the limit values of the p-adic multiple polylogarithm functions (cf. [Ful]):
Cp(kla teey kd) = C l?l}IZILl /Likl ,,,,, kd<z) € Qpa

and studied their properties and relations (cf. [Ful][Fu2]). Here, C, is the p-adic

completion of the algebraic closure of Q,0 We do not explain the meaning of lim’ in
this article.

Example 1.1. (Coleman) For n > 1, we have
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Here, L, is the p-adic L-function of Kubota-Leopoldt, and w is the Teichmuiiller char-
acter. In particular, (,(2n) = 0 for n > 1. We get the p-adic L-function of Kubota-
Leopoldt by p-adically interpolating values at negative integer. Note that this proof
of (,(2n) = 0 is somewhat indirect, since the above formula is a comparison between
the p-adic polylogarithms and the p-adic L-function at positive integer. (Furusho
also shows (,(2n) = 0 from 2-,3-cycle relations. This comes from the fact that “the
angles of the triangle in the 3-cycle relation are 0”7 in the p-adic world. We also say
“r% is 0 in the p-adic world” from the fact (,(2n) = 0.)

On the other hand, the values (,(2n+1) are difficult. For n > 1, we have the follow-
ing equivalences: (,(2n+1) # 0 < L,(2n+1,w™") # 0 < H*(Z[1/p],Q,/Z,(—n)) =0
(higher Leopoldt conjecture). This holds in the case where p is a regular prime or the
case where p — 1 devides n. However, it is not known whether this holds or not in
general. 0

Analogously, we can define twisted p-adic multiple polylogarithms Lif, . . (2)
and p-adic multiple L-values
Lp(kla oo kg Gy <d) = lim ’Liil ..... kaiCiyens gd(z) S Qp(NN)
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for pt N (cf. [Y]). For w > 0, we define Z?[N] C Q, to be the following:
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(the Q-vector space generated by L,(ki,...,ka;C1,...,Ca)’s), and Z{[N] := Q. Put
ZP[N] := @, ZP[N] (formal direct sum), ZP := ZP[1], and Z? := ZP[1]. We call ZP
(resp. ZP[N]) the space of p-adic multiple zeta values of weight w (resp. the
space of p-adic multiple L-values of weight w).

It is known that there are many relations between p-adic MZV’s and p-adic MLV’s
as the usual MZV’s and MLV’s (cf. [Ful][Fu2][Y]). For the relations of p-adic MZV’s
and p-adic MLV’s, we have some conjectures, which are analogous to the complex case.

Conjecture 1.2. (Furusho) All linear relations between p-adic MZV’s are derived
from 2-,3-,5-cycle relations.

We do not explain 2-,3-,5-cycle relations in this article.
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Conjecture 1.3. (isobar conjecture, Furusho) All linear relations between p-adic MZV’s
are linear combinations of relations between p-adic MZV’s of the same weights. In par-
ticular, the formal direct sum Z% := @,,2Z% has the natural embedding into Q,.

For the p-adic MLV’s, we also conjecture that all linear relations between p-adic
MZV’s are linear combinations of relations between p-adic MZV’s of the same weights
([Y]).

The main result of the talk at RIMS (6/Dec/2004) concerns the dimensions of the
space of p-adic MLV’s. First, we review the complex case. Zagier conjectures the
dimensions of the space of MZV’s as follows:

Conjecture 1.4. (dimension conjecture, Zagier) We define a sequence {D,}, to be
Dy=1, Dy =0,Dy =1, Dyy3 = Dpy1+ D, (n>0). (The generating function is
Yoo o Dt =1/(1 —t* —%).) Then, we have dimg Z,, = D,, for w > 0. Here, using
MZV’s and MLV'’s, we define Z,,, Z,[N] by the same way of ZF, ZP[N].

Theorem 1.5. (Goncharov, Terasoma, Deligne-Goncharov [G1][T][DG]) For w > 0,
we have dimg Z,, < D,,.

This theorem says that there are enormous relations between MZV’s. The opposite
inequality seems to be a trancedental number theoric problem, and that we cannot
prove it by the present algebraic geometical methods. For MLV’s, we have the follow-
ing.

Theorem 1.6. (Deligne-Goncharov[DG]) For N = 2 (resp. N > 2), we define a
sequence {D,[N|}, by a generating function > -, D,[2]t" = 1/(1 — ¢t — t*) (resp.
Yo o Du[NJt" =1/(1 — (@ + )t + (v —1)t?)). Here, o is the Euler function, and
v is the number of prime numbers dividing N. Then, we have dimg Z,[N] < D, [N]
forw>0and N > 1.

Remark . For N > 4, it is known that the equality does not hold in general (Goncharov[G2]).
The gap is related to the space of cusp forms for I'y (V) of weight 2 when N is a prime
number (loc. cit.).

Now, we return to the p-adic case. The following is the p-adic analogoue of Zagier’s
conjecture.

Conjecture 1.7. (dimension conjecture, Furusho-Y.) We define a sequence {d,}, to
bedy=1,dy =0,dy =0, dpys = dpr1 +d, (n >0). (The generating function is
Yoo o dnt™ = (1 =) /(1 —t* —*).) Then, we have dimg ZP, = d,, for w > 0.

The main result is the following:

Theorem 1.8. (Y.[Y]) For N = 2 (resp. N > 2), we define a sequence {d,[N]},
by a generating function > - d,[2]t" = (1 — t2)/(1 — t — t?) (resp. Y oo dn[N]t" =
(1—-t)/(1 - (@ + v)t + (v — 1)t*)). Here, ¢ is the Euler function, and v is the
number of prime numbers dividing N. Then, we have dimg Z2[N] < d,,[N] for w >0
and N > 1.

This theorem also says that there are enormous relations between p-adic MLV’s.
The opposite inequality seems to be a p-adic trancedental number theoric problem,

and that we cannot prove it by the present algebraic geometical methods.
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Remark . It is not known that dimg Z2[N] does not depend on p. It seems to be a
difficult problem (cf. the higher Leopoldt conjecture in Example 1.1).

Remark . For N > 4, it is known that the equality does not hold in general by the
same reason. The gap is related to the space of cusp forms for I'y (IV) of weight 2 when
N is a prime number.

These sequences have K-theoric meanings, and we prove the upper bounds by re-
lating the K-theory. For example, we have

1 1 1 1 1

1—t2—t3:1—t21—1i2 TP 1I- (PPt )

The term 1/(1—t2) corresponds to 72 in the weight 2, and ¢34+ +¢7+- - corresponds
to

0 forn:evenorn=1,
1 for n: odd and n # 1.

In the p-adic case, the generating function (1 —¢?)/(1 —t? —t3) loses the factor 1/(1 —
t?). Tt corresponds to the fact that “m? = 0 in the p-adic world”. The difference
between the complex case and p-adic case of the generating functions is 1/(1 —t), not
1/(1 —¢?) for N > 2. Tt corresponds to the fact that in the complex case, we have
—log(1—¢) +log(1 — (') = —log(—() = (rational number) - 7 in the weight 1, and
that it vanishes in the p-adic case, since “mr = 0 in the p-adic world”.

The ingredients of the main theorem is Deligne-Goncharov’s category of mixed Tate
motives over Zuy, {ﬁ}ﬂ ~] ([DG]), Deligne-Goncharov’s motivic pro-unipotent fun-

rank Ky, 1(Z) = {

damental groupoids of Uy := P! — {0, 00} Uy ([DG]), and Tannakian interpretations
([Fu2]) using Besser’s Frobenius invariant path ([B]).

We briefly explain the proof of the main theorem. We construct an element ¢, deeply
related to the p-adic MLV’s in the Q,(pn)-valued point of a pro-unipotent group U,
deeply related to the K-theory. (Roughly speaking, ¢, is an element representing “the
difference between de Rham and rigid”.) By ¢, € U,(Q,(1tn)), o, satisfies the defining
equations of U,. (The author does not know the concrete defining equations). The
scheme U, is “small enough” by the relation to K-theory. Thus, we have enormous
relations between p-adic MLV’s from the fact that ¢, satisfies the defining equations.
From this, we get the upper bounds. This proof is the p-adic analogue of Deligne-
Goncharov’s proof in the complex case. They construct an element a® deeply related
to MLV’s in the C-valued point of a pro-unipotent group U, (the same one in the above)
deeply related to the K-theory. (Roughly speaking, a¥ is an element representing “ the
diference between de Rham and Betti”.) They prove the upper bounds of the space
of MLV’s from this a2 € U, (C).

For this element a?, we have the following conjecture:

Conjecture 1.9. (Grothendieck, [DG]) The element a2 € U,(C) is Q-Zariski dense.

In the case where N = 1, this conjecture (4«) induces Zagier’s dimension conjecture
and the isobar conjecture (cf. isobar conjecture 1.3 in the p-adic case) that all linear
relations between MZV’s are linear combinations of relations between MZV’s of the
same weights. In the p-adic case, we have the following conjecture:

Conjecture 1.10. (Y., [Y]) The element ¢, € U,(Q(pun)) is Q-Zariski dense.
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In the case where N = 1, this conjectrue (4+«) induces the dimension conjecture 1.7
in the p-adic case and the isobar conjecture 1.3 in the p-adic case.
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