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This text is a report of a talk “bounds for the dimensions of p-adic multiple L-
value spaces” in the symposium “Algebraic Number Theory and Related Topics” (6-
10/Dec/2004 at RIMS).

For natural numbers k1, . . . , kd−1 ≥ 1, kd ≥ 2, the following infinite sum

ζ(k1, . . . , kd) :=
∑

n1<...<nd

1

nk1
1 · · ·nkd

d

(= lim
C3z→1

Lik1,...,kd
(z)) ∈ R

absolutely converges, and is called the multiple zeta value (MZV). Here, Lik1,...,kd
(z) :=∑

n1<...<nd

znd

n
k1
1 ···nkd

d

is the multiple polylogarithm function. The study of MZV’s is

started from Euler. After Zagier made the study of MZV’s revive in the modern times,
MZV’s are studied actively by many mathematicians now.

For natural number k1, . . . , kd ≥ 1 and N -th roots of unity ζ1, . . . , ζd satisfying
(kd, ζd) 6= (1, 1), the multiple L-value (MLV) is defined by the following absolutely
converging infinite sum:

L(k1, . . . , kd; ζ1, . . . , ζd) :=
∑

n1<...<nd

ζ−n1
1 ζn1−n2

2 . . . ζ
nd−1−nd

d

nk1
1 · · ·nkd

d

(= lim
C3z→1

Lik1,...,kd;ζ1,...,ζd
(z)) ∈ C.

Here, Lik1,...,kd;ζ1,...,ζd
(z) :=

∑
n1<...<nd

ζ
−n1
1 ζ

n1−n2
2 ...ζ

nd−1−nd
d znd

n
k1
1 ···nkd

d

is the twisted multiple

polylogarithm function.
Now, we want to consider a p-adic analogue of MZV’s and MLV’s. The infinite sum

∑
n1<...<nd

1

nk1
1 · · ·nkd

d

does not converges in the p-adic topology. On the other hand, the multiple polyloga-
rithm function Lik1,...,kd

(z) has the iterated integral representation:

dLik1,...,kd
(z)

dz
=





1
z
Lik1,...,kd−1(z) if kd > 1,
1

1−z
Lik1,...,kd−1

(z) if kd = 1, and d > 1,
1

1−z
if kd = 1, and d = 1.

Considering a p-adic analogue of this iterated integral representation, Furusho de-
fined the p-adic multiple polylogarithm functions Liak1,...,kd

(z) by using Coleman’s
p-adic iterated integral theory ([C]) (Here, a is a branching parameter. We do not
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explain it in this article), defined the p-adic multiple zeta values (p-adic MZV’s)
to be the limit values of the p-adic multiple polylogarithm functions (cf. [Fu1]):

ζp(k1, . . . , kd) := lim
Cp3z→1

′Lik1,...,kd
(z) ∈ Qp,

and studied their properties and relations (cf. [Fu1][Fu2]). Here, Cp is the p-adic
completion of the algebraic closure of Qp．We do not explain the meaning of lim′ in
this article.

Example 1.1. (Coleman) For n > 1, we have

ζp(n) =
pn

pn − 1
Lp(n, ω1−n).

Here, Lp is the p-adic L-function of Kubota-Leopoldt, and ω is the Teichmuüller char-
acter. In particular, ζp(2n) = 0 for n ≥ 1. We get the p-adic L-function of Kubota-
Leopoldt by p-adically interpolating values at negative integer. Note that this proof
of ζp(2n) = 0 is somewhat indirect, since the above formula is a comparison between
the p-adic polylogarithms and the p-adic L-function at positive integer. (Furusho
also shows ζp(2n) = 0 from 2-,3-cycle relations. This comes from the fact that “the
angles of the triangle in the 3-cycle relation are 0” in the p-adic world. We also say
“π2 is 0 in the p-adic world” from the fact ζp(2n) = 0.)

On the other hand, the values ζp(2n+1) are difficult. For n ≥ 1, we have the follow-
ing equivalences: ζp(2n+1) 6= 0 ⇔ Lp(2n+1, ω−2n) 6= 0 ⇔ H2(Z[1/p],Qp/Zp(−n)) = 0
(higher Leopoldt conjecture). This holds in the case where p is a regular prime or the
case where p − 1 devides n. However, it is not known whether this holds or not in
general. ¤

Analogously, we can define twisted p-adic multiple polylogarithms Liak1,...,kd;ζ1,...,ζd
(z)

and p-adic multiple L-values

Lp(k1, . . . , kd; ζ1, . . . , ζd) := lim
Cp3z→1

′Liak1,...,kd;ζ1,...,ζd
(z) ∈ Qp(µN)

for p - N (cf. [Y]). For w > 0, we define Zp
w[N ] ⊂ Qp to be the following:

Zp
w[N ] :=

〈
Lp(k1, . . . , kd; ζ1, . . . , ζd)

∣∣∣∣∣
d ≥ 1, ki ≥ 1, ζi ∈ µN for i = 1, . . . , d,
k1 + · · ·+ kd = w, (kd, ζd) 6= (1, 1)

〉

Q

,

(the Q-vector space generated by Lp(k1, . . . , kd; ζ1, . . . , ζd)’s), and Zp
0 [N ] := Q. Put

Zp
• [N ] := ⊕wZp

w[N ] (formal direct sum), Zp
w := Zp

w[1], and Zp
• := Zp

• [1]. We call Zp
w

(resp. Zp
w[N ]) the space of p-adic multiple zeta values of weight w (resp. the

space of p-adic multiple L-values of weight w).
It is known that there are many relations between p-adic MZV’s and p-adic MLV’s

as the usual MZV’s and MLV’s (cf. [Fu1][Fu2][Y]). For the relations of p-adic MZV’s
and p-adic MLV’s, we have some conjectures, which are analogous to the complex case.

Conjecture 1.2. (Furusho) All linear relations between p-adic MZV’s are derived
from 2-,3-,5-cycle relations.

We do not explain 2-,3-,5-cycle relations in this article.
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Conjecture 1.3. (isobar conjecture, Furusho) All linear relations between p-adic MZV’s
are linear combinations of relations between p-adic MZV’s of the same weights. In par-
ticular, the formal direct sum Zp

• := ⊕wZp
w has the natural embedding into Qp.

For the p-adic MLV’s, we also conjecture that all linear relations between p-adic
MZV’s are linear combinations of relations between p-adic MZV’s of the same weights
([Y]).

The main result of the talk at RIMS (6/Dec/2004) concerns the dimensions of the
space of p-adic MLV’s. First, we review the complex case. Zagier conjectures the
dimensions of the space of MZV’s as follows:

Conjecture 1.4. (dimension conjecture, Zagier) We define a sequence {Dn}n to be
D0 = 1, D1 = 0, D2 = 1, Dn+3 = Dn+1 + Dn (n ≥ 0). (The generating function is∑∞

n=0 Dntn = 1/(1− t2 − t3).) Then, we have dimQ Zw = Dw for w ≥ 0. Here, using
MZV’s and MLV’s, we define Zw, Zw[N ] by the same way of Zp

w, Zp
w[N ].

Theorem 1.5. (Goncharov, Terasoma, Deligne-Goncharov [G1][T][DG]) For w ≥ 0,
we have dimQ Zw ≤ Dw.

This theorem says that there are enormous relations between MZV’s. The opposite
inequality seems to be a trancedental number theoric problem, and that we cannot
prove it by the present algebraic geometical methods. For MLV’s, we have the follow-
ing.

Theorem 1.6. (Deligne-Goncharov[DG]) For N = 2 (resp. N > 2), we define a
sequence {Dn[N ]}n by a generating function

∑∞
n=0 Dn[2]tn = 1/(1 − t − t2) (resp.∑∞

n=0 Dn[N ]tn = 1/(1− (ϕ(N)
2

+ ν)t + (ν − 1)t2)). Here, ϕ is the Euler function, and
ν is the number of prime numbers dividing N . Then, we have dimQ Zw[N ] ≤ Dw[N ]
for w ≥ 0 and N ≥ 1.

Remark . For N > 4, it is known that the equality does not hold in general (Goncharov[G2]).
The gap is related to the space of cusp forms for Γ1(N) of weight 2 when N is a prime
number (loc. cit.).

Now, we return to the p-adic case. The following is the p-adic analogoue of Zagier’s
conjecture.

Conjecture 1.7. (dimension conjecture, Furusho-Y.) We define a sequence {dn}n to
be d0 = 1, d1 = 0, d2 = 0, dn+3 = dn+1 + dn (n ≥ 0). (The generating function is∑∞

n=0 dnt
n = (1− t2)/(1− t2 − t3).) Then, we have dimQ Zp

w = dw for w ≥ 0.

The main result is the following:

Theorem 1.8. (Y.[Y]) For N = 2 (resp. N > 2), we define a sequence {dn[N ]}n

by a generating function
∑∞

n=0 dn[2]tn = (1 − t2)/(1 − t − t2) (resp.
∑∞

n=0 dn[N ]tn =

(1 − t)/(1 − (ϕ(N)
2

+ ν)t + (ν − 1)t2)). Here, ϕ is the Euler function, and ν is the
number of prime numbers dividing N . Then, we have dimQ Zp

w[N ] ≤ dw[N ] for w ≥ 0
and N ≥ 1.

This theorem also says that there are enormous relations between p-adic MLV’s.
The opposite inequality seems to be a p-adic trancedental number theoric problem,
and that we cannot prove it by the present algebraic geometical methods.
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Remark . It is not known that dimQ Zp
w[N ] does not depend on p. It seems to be a

difficult problem (cf. the higher Leopoldt conjecture in Example 1.1).

Remark . For N > 4, it is known that the equality does not hold in general by the
same reason. The gap is related to the space of cusp forms for Γ1(N) of weight 2 when
N is a prime number.

These sequences have K-theoric meanings, and we prove the upper bounds by re-
lating the K-theory. For example, we have

1

1− t2 − t3
=

1

1− t2
1

1− t3

1−t2

=
1

1− t2
1

1− (t3 + t5 + t7 + · · · ) .

The term 1/(1−t2) corresponds to π2 in the weight 2, and t3 +t5 +t7 + · · · corresponds
to

rankK2n−1(Z) =

{
0 for n: even or n = 1,

1 for n: odd and n 6= 1.

In the p-adic case, the generating function (1− t2)/(1− t2− t3) loses the factor 1/(1−
t2). It corresponds to the fact that “π2 = 0 in the p-adic world”. The difference
between the complex case and p-adic case of the generating functions is 1/(1− t), not
1/(1 − t2) for N > 2. It corresponds to the fact that in the complex case, we have
− log(1− ζ) + log(1− ζ−1) = − log(−ζ) = (rational number) · π in the weight 1, and
that it vanishes in the p-adic case, since “π = 0 in the p-adic world”.

The ingredients of the main theorem is Deligne-Goncharov’s category of mixed Tate
motives over Z[µN , { 1

1−ζw
}w|N ] ([DG]), Deligne-Goncharov’s motivic pro-unipotent fun-

damental groupoids of UN := P1−{0,∞}∪µN ([DG]), and Tannakian interpretations
([Fu2]) using Besser’s Frobenius invariant path ([B]).

We briefly explain the proof of the main theorem. We construct an element ϕp deeply
related to the p-adic MLV’s in the Qp(µN)-valued point of a pro-unipotent group Uω

deeply related to the K-theory. (Roughly speaking, ϕp is an element representing “the
difference between de Rham and rigid”.) By ϕp ∈ Uω(Qp(µN)), ϕp satisfies the defining
equations of Uω. (The author does not know the concrete defining equations). The
scheme Uω is “small enough” by the relation to K-theory. Thus, we have enormous
relations between p-adic MLV’s from the fact that ϕp satisfies the defining equations.
From this, we get the upper bounds. This proof is the p-adic analogue of Deligne-
Goncharov’s proof in the complex case. They construct an element a0

σ deeply related
to MLV’s in the C-valued point of a pro-unipotent group Uω (the same one in the above)
deeply related to the K-theory. (Roughly speaking, a0

σ is an element representing “ the
diference between de Rham and Betti”.) They prove the upper bounds of the space
of MLV’s from this a0

σ ∈ Uω(C).
For this element a0

σ, we have the following conjecture:

Conjecture 1.9. (Grothendieck, [DG]) The element a0
σ ∈ Uω(C) is Q-Zariski dense.

In the case where N = 1, this conjecture (+α) induces Zagier’s dimension conjecture
and the isobar conjecture (cf. isobar conjecture 1.3 in the p-adic case) that all linear
relations between MZV’s are linear combinations of relations between MZV’s of the
same weights. In the p-adic case, we have the following conjecture:

Conjecture 1.10. (Y., [Y]) The element ϕp ∈ Uω(Q(µN)) is Q-Zariski dense.
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In the case where N = 1, this conjectrue (+α) induces the dimension conjecture 1.7
in the p-adic case and the isobar conjecture 1.3 in the p-adic case.
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