Talks ¹:

(1) “Review of Taylor-Wiles system.”
We will give a review of the method of Taylor-Wiles system in [TW], and [D1]. We also explain how the method of Taylor-Wiles system developed until now.

(2) “Galois representations associated to Hilbert modular forms via congruence after Taylor.”
We explain the construction of Galois representations associated to Hilbert modular forms in the case of $2 \mid [F : \mathbb{Q}]$ via congruences after Taylor [T1].

(3) “Global-local compatibility after Carayol.”
We explain the global-local compatibility of Langlands correspondence for Hilbert modular forms in $\ell \neq p$ after Carayol [Ca1].

(4) “Modularity lifting for potentially Barsotti-Tate deformations after Kisin I.”
We explain axiomatically Kisin’s technique of $R^{\text{red}} = T$ in [K1]. We study global deformation rings over local ones, and a moduli of finite flat group schemes to get informations about local deformation rings in [K1]. We can use this technique in the non-minimal cases too.

(5) “Base change argument of Skinner-Wiles.”
We explain Skinner-Wiles level lowering technique allowing solvable field extensions in Kisin’s paper [K1].

(6) “Integral p-adic Hodge theory after Breuil and Kisin.”
We prepare the tools of integral p-adic Hodge theory used in [K1]. We can consider them as variants of Berger’s theory.

(7) “Modularity lifting for potentially Barsotti-Tate deformations after Kisin II.”
The sequel to the previous talk.

(8) “Modularity lifting for crystalline deformations of intermediate weights after Kisin.”
We show Kisin’s modularity lifting theorem for crystalline deformations of intermediate weights [K3]. We use results of Berger-Li-Zhu [BLZ] and Berger-Breuil [BB1] about mod p reduction of crystalline representations of intermediate weights.

(9) “p-adic local Langlands correspondence and mod p reduction of crystalline representations after Berger, Breuil, and Colmez.”
We explain results of Berger-Li-Zhu and Berger-Breuil about mod p reduction of crystalline representations of intermediate weights [BLZ], [BB1]. We use p-adic local Langlands ([C1], [C2], [BB2]) in the latter case.

(10) “Modularity lifting of residually reducible case after Skinner-Wiles.”
We explain Skinner-Wiles’ modularity lifting theorem for residually reducible representations [SW1].

¹written by Go Yamashita (gokun@kurims.kyoto-u.ac.jp)
(11) “Potential modularity after Taylor.”
We explain Taylor’s potential modularity [T2], [T3]. This is a variant of Wiles’ (3,5)-trick replaced by Hilbert-Blumenthal abelian varieties.

(12) “Taylor-Wiles system for unitary groups after Clozel-Harris-Taylor I.”
We explain Clozel-Harris-Taylor’s Taylor-Wiles system for unitary groups [CHT], and Taylor’s improvement for non-minimal case by using Kisin’s arguments [T4].

(13) “Taylor-Wiles system for unitary groups after Clozel-Harris-Taylor II.”
The sequel to the previous talk.

(14) “Proof of Sato-Tate conjecture after Taylor et al.”
We show Sato-Tate conjecture after Taylor et al. under mild conditions. We use a variant of (3,5)-trick replaced by a family of Calabi-Yau varieties [HSBT].

(15) “First step of the induction of the proof of Serre’s conjecture after Tate, Serre, and Schoof.”
We show the first step of the proof of Serre’s conjecture, that is, \(p = 2 \) [Ta2], \(p = 3 \) [Se2], and \(p = 5 \) [Sc]. We use Odlyzko’s discriminant bound, and Fontaine’s discriminant bound.

(16) “Proof of Serre’s conjecture of level one case after Khare.”
We explain Khare-Wintenberger’s construction of compatible systems by using Taylor’s potential modularity [T2], [T3] and Böckle’s technique of lower bound of the dimension of global deformation rings [Bo]. We show Serre’s conjecture of level one case after Khare [Kh1].

(17) “Proof of Serre’s conjecture after Khare-Wintenberger.”
We prove Serre’s conjecture after Khare-Wintenberger [KW2], [KW3].

(18) “Breuil-Mézard conjecture and modularity lifting for potentially semistable deformations after Kisin.”
We explain Breuil-Mézard conjecture, and Kisin’s approach of modularity lifting theorem for potentially semistable deformations via Breuil-Mézard conjecture [K6].

References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

[Se1]: Serre’s conjecture. [Ta1]: Sato-Tate conjecture. [FM]: Fontaine-Mazur conjecture.

[W1]: Fermat’s last theorem. [TW]: Taylor-Wiles system. [DDT]: Survey of the proof of Fermat’s last theorem. [S1], [S2]: Books about Fermat’s last theorem. [D1]: Axiomization and improvement of Taylor-Wiles system. The freeness of Hecke modules became the output from the input. [D2]: Shimura-Taniyama conjecture for elliptic curves, which are semistable at 3 and 5. [CDT]: Shimura-Taniyama conjecture for elliptic curves, whose conductor is not divisible by 27. [BCDT]: Shimura-Taniyama conjecture in full generality. [F]: \(R = T\) in totally real case.

[W2]: Construction of Galois representations associated to Hilbert modular forms in the \(2 \mid [F : \mathbb{Q}]\) and nearly ordinary case (including parallel weight 1) by using Hida theory. [T1]: Construction of Galois representations associated to Hilbert modular forms in the \(2 \mid [F : \mathbb{Q}]\) case by the congruences. [H]: \(\text{GL}_2\) Hida theory for totally real case.

[Ca1]: Global-local compatibility for \(\ell \neq p\) for totally real case. [S3]: Global-local compatibility for \(\ell = p\) for \(\mathbb{Q}\). [S4]: Global-local compatibility for \(\ell = p\) for totally real case.

4

[SW1]: Modularity lifting in the residually reducible case. Taylor-Wiles arguments in the Hida theoretic situations. [SW2]: Modularity lifting for the nearly ordinary deformations in the residually irreducible case by the method of [SW1]. Minor remark: we do not need to assume that $\mathcal{P}|_{\text{Gal}(\mathbb{F}/\mathbb{F}(\zeta_p))}$ is irreducible. [SW3]: Level lowering technique allowing solvable field extensions.

[K1]: Further improvement of $R = T$ for potentially Barsotti-Tate representations studying global deformation rings over local ones. We study a moduli of finite flat group schemes to get informations of local deformation rings. We can also use this technique in non-minimal case. [PR]: Used in [K1] to get informations of a moduli of finite flat group schemes. [G]: Connectedness of the moduli of finite flat models considered in [K1] in the case where the residue field is not \mathbb{F}_p and the residual representation is trivial. [I]: Connectedness of the moduli of finite flat models considered in [K1] in the case where the residue field is not \mathbb{F}_p and the residual representation is not trivial. [B1]: Used in [K1] to study a moduli of finite flat group schemes in terms of linear algebra. [K2]: Generalization of [B1], which is a variant of Berger’s theory too. [K3]: Modularity lifting for crystalline representations of intermediate weights by the method of [K1]. [BLZ]: Explicit construction of a family of Wach modules. The determination of the mod p reduction of crystalline representations of intermediate weights is used in [K3], and [KW1]. [BB1]: By using p-adic local Langlands (\cite{C1}, \cite{C2}, and \cite{BB2}), we determine the mod p reduction of crystalline representations of intermediate weights, which are not treated in [BLZ]. This is used in [K3], [K4]: Construction of potentially semistable deformation rings. [K5]: $p = 2$ version of [K1]. Used in [KW2] and [KW3]. [K6]: Proof of many cases of Breuil-Mézard conjecture by using p-adic local Langlands (\cite{C1}, \cite{C2}, and \cite{BB2}), and deduce a modularity lifting theorem in a high generality from this. [K7]: Survey of [K1], [T2], [T3], and [KW1].

[CHT] Clozel, L., Harris, M., Taylor, R. Automorphy for some \(\ell \)-adic lifts of automorphic mod \(\ell \) Galois representations.

[T4] Taylor, R. Automorphy for some \(\ell \)-adic lifts of automorphic mod \(\ell \) Galois representations II. preprint.

[T2]: Potential modularity in the ordinary case. Variant of (3,5)-trick replaced by Hilbert-Blumenthal abelian variety. [T3]: Potential modularity in the crystalline of lower weights case. [BR]: Motive of Hilbert modular forms. Used in [T2] and [T3]. [HT]: local Langlands for GL\(_n\) by the “vanishing cycle side” in the sense of Carayol’s program. [CHT]: Taylor-Wiles system for unitary groups. Proof of Sato-Tate conjecture assuming a generalization of Ihara’s lemma. [T4]: By using Kisin’s modified Taylor-Wiles arguments [K1], improvements are made so that we do not need level raising arguments and the generalization of Ihara’s lemma. [HSBT]: Proof of Sato-Tate conjecture under mild conditions. Variant of (3,5)-trick replaced by a family of Calabi-Yau varieties.

[Sc] Schoof, R. Abelian varieties over \(\mathbb{Q} \) with bad reduction in one prime only. Compositio Math. 141 (2005), 847–868.

[KW1]: Construction of compatible system of minimally ramified lifts by using Taylor’s potential modularity ([T2] and [T3]) and Böckle’s technique. Starting point of [Kh1], [KW2], and [KW3]. [Kh1]: Proof of Serre’s conjecture for level one case. Construct more general compatible systems than [KW1]. [KW2]: Proof of Serre’s conjecture Part 1. [KW3]: Proof of Serre’s conjecture Part 2. [Kh2]: Survey of [Kh1]. [Kh3]: Serre’s conjecture implies Artin’s conjecture for two dimensional odd representations. [Ca2]: Carayol’s lemma used in [KW1], and [KW2]. [Di1]: Existence of compatible system. [Di2]: Another proof of Serre’s conjecture of level one case, not using the distribution of Fermat primes. [Bo]: The technique of the lower bound of the dimension of global deformation rings by using local deformation rings used in [KW1], and [Kh1]. [Sa]: Non-vanishing of certain local deformation rings and some calculations of strongly divisible modules are used in [Kh1], [KW2], and [KW3]. [Sc]: Non-existence of certain abelian varieties by using Fontaine’s technique and Odlyzko’s bound. Used in [KW1] to show Serre’s conjecture for \(p = 5 \). [Ta2]: Proof of Serre’s conjecture for \(p = 2 \). Minkowski’s bound is used. [Se2]: Proof of Serre’s conjecture for \(p = 3 \). Odlyzko’s bound is used.

[BM]: Breuil-Mézard conjecture, which says Hilbert-Samuel multiplicity of universal deformation rings is explicitly described by the terms of automorphic side. [B2]: Conjecture about mod \(p \) reduction of crystalline representations of intermediate weights, which is partially proved in [BLZ] and [BB1]. This conjecture comes from the insight of “mod \(p \) reduction” of \(p \)-adic local Langlands. Used in [BB1], and [K6]. [C1]: \(p \)-adic local Langlands. Construction of a bijection between triangular irreducible two dimensional representations of \(\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \) between “unitary principal series” of \(\text{GL}_2(\mathbb{Q}_p) \). Used in [BB1], and [K6]. [C2]: \(p \)-adic local Langlands. By using \((\varphi, \Gamma)\)-modules, we construct a correspondence between two dimensional irreducible semistable representations of \(\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \) between unitary representations of \(\text{GL}_2(\mathbb{Q}_p) \). Used in [BB1], and [K6]. [BB2]: \(p \)-adic local Langlands. We associate Banach representations of \(\text{GL}_2(\mathbb{Q}_p) \) to two dimensional potentially crystalline representations of \(\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \). Used in [BB1], and [K6].

[C1]: Colmez, P. Série principale unitaire pour \(\text{GL}_2(\mathbb{Q}_p) \) et représentations triangulines de dimension 2. preprint.

[C2]: Colmez, P. Une correspondance de Langlands locale \(p \)-adique pour les représentations semi-stable de dimension 2. preprint.