Weak adjoint functor theorems

Stephen Lack

Macquarie University

Kyoto, 23 December 2019 joint work with John Bourke and Lukáš Vokřínek

ur-AFT

category ${\cal B}$ with all limits

 $U \colon \mathcal{B} \to \mathcal{A}$ preserves them

 ${\it U}$ has left adjoint

ur-AFT

category $\mathcal B$ with all limits $U\colon \mathcal B o \mathcal A$ preserves them

U has left adjoint

General AFT

category \mathcal{B} with small limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them

Solution Set Condition

U has left adjoint

General AFT (Freyd)

category ${\mathcal B}$ with small limits $U\colon {\mathcal B} o {\mathcal A}$ preserves them SSC

U has left adjoint

Weak AFT (Kainen)

category ${\mathcal B}$ with small products $U\colon {\mathcal B} o {\mathcal A}$ preserves them SSC

U has weak left adjoint

Enriched AFT (Kelly)

 \mathcal{V} -category \mathcal{B} with small limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them

U has left adjoint

SSC

General AFT (Freyd)

category \mathcal{B} with small limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them

SSC

U has left adjoint

Enriched AFT (Kelly)

 \mathcal{V} -category \mathcal{B} with small limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them

U has left adjoint

SSC

Weak AFT (Kainen)

category \mathcal{B} with small products $U \colon \mathcal{B} \to \mathcal{A}$ preserves them

SSC

U has weak left adjoint

$$A \xrightarrow{\eta} UFA \qquad FA$$

$$\downarrow Uf' \qquad \downarrow \exists f'$$

$$UB \qquad B$$

General AFT (Freyd)

category $\mathcal B$ with small limits $U\colon \mathcal B o \mathcal A$ preserves them

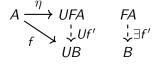
U has left adjoint

SSC

Weak AFT (Kainen)

category ${\mathcal B}$ with small products $U\colon {\mathcal B} o {\mathcal A}$ preserves them SSC

U has weak left adjoint



Enriched AFT (Kelly)

 $\begin{tabular}{ll} \mathcal{V}-category \mathcal{B} with small limits \\ $\mathit{U}\colon \mathcal{B}\to\mathcal{A}$ preserves them \\ SSC \end{tabular}$

U has left adjoint

Very (!) General AFT

 \mathcal{V} -category \mathcal{B} with \square limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them SSC U has \square left adjoint

General AFT (Freyd)

category ${\mathcal B}$ with small limits $U\colon {\mathcal B} o {\mathcal A}$ preserves them

U has left adjoint

SSC

Weak AFT (Kainen)

category ${\mathcal B}$ with small products $U\colon {\mathcal B} o {\mathcal A}$ preserves them SSC

U has weak left adjoint

$$A \xrightarrow{\eta} UFA \qquad FA$$

$$\downarrow Uf' \qquad \downarrow \exists f'$$

$$UB \qquad B$$

Enriched AFT (Kelly)

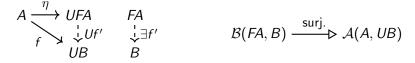
 $\begin{array}{l} {\mathcal V}\text{-category }{\mathcal B} \text{ with small limits} \\ {\mathcal U}\colon {\mathcal B} \to {\mathcal A} \text{ preserves them} \\ {\mathsf SSC} \end{array}$

Very (!) General AFT

U has left adjoint

 \mathcal{V} -category \mathcal{B} with \square limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them SSC U has \square left adjoint

Enriched weakness



- lacktriangle enriched categories have homs $\mathcal{C}(\mathcal{C},\mathcal{D})$ lying in \mathcal{V}
- (Lack-Rosicky) "Enriched Weakness" uses class $\mathcal E$ of morphisms in $\mathcal V$ to play the role of surjections
- $ightharpoonup \mathcal{V} = \mathbf{Set}$, $\mathcal{E} = \{\text{surjections}\}$ gives unenriched weakness
- $ightharpoonup \mathcal{E} = \{ ext{isomorphisms} \} \text{ gives "non-weak weakness"}$

Enriched weakness

$$A \xrightarrow{\eta} UFA \qquad FA$$

$$\downarrow Uf' \qquad \downarrow \exists f'$$

$$UB \qquad B$$

$$\mathcal{B}(FA, B) \xrightarrow{\mathcal{E}\text{-map}} \mathcal{A}(A, UB)$$

- lacktriangle enriched categories have homs $\mathcal{C}(C,D)$ lying in $\mathcal V$
- ▶ (Lack-Rosicky) "Enriched Weakness" uses class \mathcal{E} of morphisms in \mathcal{V} to play the role of surjections
- $ightharpoonup \mathcal{V} = \mathbf{Set}, \ \mathcal{E} = \{ \text{surjections} \} \ \text{gives unenriched weakness}$
- $ightharpoonup \mathcal{E} = \{ ext{isomorphisms} \} \text{ gives "non-weak weakness"}$

Very (!) General AFT

 \mathcal{V} -category \mathcal{B} with \square limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them SSC U has \mathcal{E} -weak left adjoint

Examples

$$\mathcal{B}(FA, B) \xrightarrow{\mathcal{E}} \mathcal{A}(A, UB)$$

${\mathcal V}$	${\cal E}$	${\mathcal E}$ -weak left adjoint
Set	isos	left adjoint
Set	surjections	weak left adjoint
${\mathcal V}$	isos	(enriched) left adjoint
Cat	equivalences	left biadjoint

Examples

$$\mathcal{B}(FA, B) \xrightarrow{\mathcal{E}} \mathcal{A}(A, UB)$$

\mathcal{V}	${\cal E}$	${\mathcal E}$ -weak left adjoint
Set	isos	left adjoint
Set	surjections	weak left adjoint
\mathcal{V}	isos	(enriched) left adjoint
Cat	equivalences	left biadjoint
Cat	retract equivalences	(\dots) left biadjoint

Mr Retract Equivalence

Examples

$$\mathcal{B}(FA, B) \xrightarrow{\mathcal{E}} \mathcal{A}(A, UB)$$

${\mathcal V}$	${\cal E}$	${\mathcal E}$ -weak left adjoint
Set	isos	left adjoint
Set	surjections	weak left adjoint
\mathcal{V}	isos	(enriched) left adjoint
Cat	equivalences	left biadjoint
Cat	retract equivalences	() left biadjoint

Examples

$$\mathcal{B}(FA, B) \xrightarrow{\mathcal{E}} \mathcal{A}(A, UB)$$

${\mathcal V}$	${\cal E}$	${\mathcal E}$ -weak left adjoint
Set	isos	left adjoint
Set	surjections	weak left adjoint
${\mathcal V}$	isos	(enriched) left adjoint
Cat	equivalences	left biadjoint
Cat	retract equivalences	() left biadjoint
sSet	shrinkable morphisms	. ,

Definition

A morphism $p: X \to Y$ of simplicial sets is *shrinkable* (dual strong deformation retract) if it is contractible in \mathbf{sSet}/Y :

- it has a section s
- with a homotopy $s \circ p \sim 1_X$
- ▶ such that induced homotopy $p \circ s \circ p \sim p$ is trivial.

Let ${\mathcal V}$ be a monoidal model category with cofibrant unit I . . .

Let \mathcal{V} be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences \mathcal{W} , trivial fibrations \mathcal{P} .

Let V be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences W, trivial fibrations \mathcal{P} .

An *interval* in $\mathcal V$ is a factorization

$$I + I \xrightarrow{i} J \xrightarrow{w} I$$

- ▶ A morphism $A \to B$ in a \mathcal{V} -category \mathcal{C} is a morphism $I \to \mathcal{C}(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to \mathcal{C}(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is shrinkable if there exist s with $p \circ s = 1$, and homotopy $s \circ p \sim 1$ with $p \circ s \circ p \sim p$ trivial.

Let V be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences W, trivial fibrations \mathcal{P} .

An interval in $\mathcal V$ is a factorization

$$I+I \xrightarrow{i} J \xrightarrow{w} I$$

$$I \xrightarrow{f} \mathcal{C}(A, B)$$

- ▶ A morphism $A \to B$ in a V-category C is a morphism $I \to C(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to \mathcal{C}(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is shrinkable if there exist s with $p \circ s = 1$, and homotopy $s \circ p \sim 1$ with $p \circ s \circ p \sim p$ trivial.

Let $\mathcal V$ be a monoidal model category with cofibrant unit I . . . cofibrations $\mathcal I$, weak equivalences $\mathcal W$, trivial fibrations $\mathcal P$.

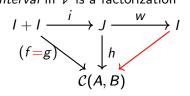
An interval in $\mathcal V$ is a factorization

$$\begin{array}{ccc}
I + I & \xrightarrow{i} & J & \xrightarrow{w} & I \\
(f & g) & & \downarrow & h \\
C(A, B) & & & & \\
\end{array}$$

- ▶ A morphism $A \to B$ in a V-category C is a morphism $I \to C(A, B)$.
- ▶ A homotopy between morphisms $A \rightarrow B$ is a morphism $J \rightarrow C(A, B)$ (for some interval)
- ► A homotopy is trivial if it factorizes through w
- A morphism p is shrinkable if there exist s with $p \circ s = 1$, and homotopy $s \circ p \sim 1$ with $p \circ s \circ p \sim p$ trivial.

Let $\mathcal V$ be a monoidal model category with cofibrant unit I . . . cofibrations $\mathcal I$, weak equivalences $\mathcal W$, trivial fibrations $\mathcal P$.

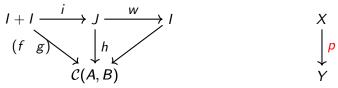
An interval in \mathcal{V} is a factorization



- ▶ A morphism $A \to B$ in a V-category C is a morphism $I \to C(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to \mathcal{C}(A, B)$ (for some interval)
- \triangleright A homotopy is trivial if it factorizes through w
- A morphism p is shrinkable if there exist s with $p \circ s = 1$, and homotopy $s \circ p \sim 1$ with $p \circ s \circ p \sim p$ trivial.

Let $\mathcal V$ be a monoidal model category with cofibrant unit I ... cofibrations $\mathcal I$, weak equivalences $\mathcal W$, trivial fibrations $\mathcal P$.

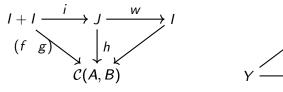
An interval in \mathcal{V} is a factorization



- ▶ A morphism $A \to B$ in a V-category C is a morphism $I \to C(A, B)$.
- ▶ A homotopy between morphisms $A \rightarrow B$ is a morphism $J \rightarrow C(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is shrinkable if there exist s with $p \circ s = 1$, and homotopy $s \circ p \sim 1$ with $p \circ s \circ p \sim p$ trivial.

Let $\mathcal V$ be a monoidal model category with cofibrant unit I . . . cofibrations $\mathcal I$, weak equivalences $\mathcal W$, trivial fibrations $\mathcal P$.

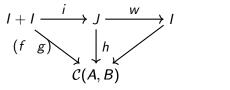
An interval in \mathcal{V} is a factorization

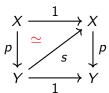


- ▶ A morphism $A \to B$ in a V-category C is a morphism $I \to C(A, B)$.
- ▶ A homotopy between morphisms $A \rightarrow B$ is a morphism $J \rightarrow C(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is shrinkable if there exist s with $p \circ s = 1$, and homotopy $s \circ p \sim 1$ with $p \circ s \circ p \sim p$ trivial.

Let $\mathcal V$ be a monoidal model category with cofibrant unit I . . . cofibrations $\mathcal I$, weak equivalences $\mathcal W$, trivial fibrations $\mathcal P$.

An interval in \mathcal{V} is a factorization





- ▶ A morphism $A \to B$ in a V-category C is a morphism $I \to C(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to \mathcal{C}(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is shrinkable if there exist s with $p \circ s = 1$, and homotopy $s \circ p \sim 1$ with $p \circ s \circ p \sim p$ trivial.

Examples (of \mathcal{V})

${\mathcal V}$	${\mathcal I}$	${\mathcal W}$	shrinkable morphisms
Set	all	isos	isos
\mathcal{V}	all	isos	isos
Set	mono	all	surj
Cat	inj obj	equiv	retract equivalences
sSet	mono	wk hty equiv	(Kan) shrinkable
sSet	mono	wk cat equiv	(Joyal) shrinkable
2-Cat		biequivalences	surj, full biequivalences

Examples (of V)

\mathcal{V}	${\cal I}$	${\mathcal W}$	shrinkable morphisms
Set	all	isos	isos
\mathcal{V}	all	isos	isos
Set	mono	all	surj
Cat	inj obj	equiv	retract equivalences
sSet	mono	wk hty equiv	(Kan) shrinkable
sSet	mono	wk cat equiv	(Joyal) shrinkable
2-Cat		biequivalences	surj, full biequivalences

In general, for $f: X \to Y$ in \mathcal{V} :

- trivial fibration ⇒ shrinkable (if X, Y cofibrant)
- ► shrinkable ⇒ weak equiv (if X fibrant or cofibrant)

Examples (of \mathcal{V})

${\mathcal V}$	${\mathcal I}$	${\mathcal W}$	shrinkable morphisms
Set	all	isos	isos
\mathcal{V}	all	isos	isos
Set	mono	all	surj
Cat	inj obj	equiv	retract equivalences
sSet	mono	wk hty equiv	(Kan) shrinkable
sSet	mono	wk cat equiv	(Joyal) shrinkable
2-Cat		biequivalences	surj, full biequivalences

In general, for $f: X \to Y$ in \mathcal{V} :

- ▶ trivial fibration \Rightarrow shrinkable (if X, Y cofibrant)
- ► shrinkable ⇒ weak equiv (if X fibrant or cofibrant)

Very (!) General AFT

 \mathcal{V} -category \mathcal{B} with \square limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them SSC

U has \mathcal{E} -weak left adjoint for $\mathcal{E} = \{\text{shrinkables}\}$

Limit of a functor $S: \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \mathsf{lim}\, S) \cong [\mathcal{D}, \mathsf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of $\mathcal V$ -functor $\mathcal S\colon \mathcal D\to \mathcal B$ weighted by $\mathcal G\colon \mathcal D\to \mathcal V$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of V-functor $S: \mathcal{D} \to \mathcal{B}$ weighted by $G: \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \underset{G}{\lim} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $\mathcal{S} \colon \mathcal{D} \to \mathcal{B}$ weighted by $\mathcal{G} \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B, \mathbf{A}^X) \cong \mathcal{V}(X, \mathcal{B}(B, A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $\mathcal{S} \colon \mathcal{D} \to \mathcal{B}$ weighted by $\mathcal{G} \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

Limit of a functor $S: \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of V-functor $S \colon \mathcal{D} \to \mathcal{B}$ weighted by $G \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

Limit of a functor $S: \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $\mathcal{S} \colon \mathcal{D} \to \mathcal{B}$ weighted by $\mathcal{G} \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

$$\begin{array}{ccc}
H & HD \\
\downarrow p & \downarrow pD \in \mathcal{P} \\
C \longrightarrow K & KD
\end{array}$$

Limit of a functor $S: \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $\mathcal{S} \colon \mathcal{D} \to \mathcal{B}$ weighted by $\mathcal{G} \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

$$\begin{array}{ccc}
& H & HD \\
& \downarrow \nearrow & \downarrow pD \in \mathcal{P} \\
G & \longrightarrow & K & KD
\end{array}$$

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of $\mathcal V$ -functor $\mathcal S\colon \mathcal D\to \mathcal B$ weighted by $\mathcal G\colon \mathcal D\to \mathcal V$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

$$\begin{array}{ccc}
 & H & HD \\
 & \downarrow \nearrow & \downarrow pD \in \mathcal{P} \\
 & \hookrightarrow & K & KD
\end{array}$$

The VGAFT

Let ${\mathcal V}$ be a monoidal model category with cofibrant unit, and ${\mathcal E}$ the shrinkable morphisms.

V(ery) G(eneral) AFT

 ${\mathcal V}$ -category ${\mathcal B}$ with all powers and enough cofibrant limits

 $U \colon \mathcal{B} \to \mathcal{A}$ preserves them

SSC

U has an \mathcal{E} -weak left adjoint

The VGAFT

Let ${\mathcal V}$ be a monoidal model category with cofibrant unit, and ${\mathcal E}$ the shrinkable morphisms.

V(ery) G(eneral) AFT

 ${\mathcal V}\text{-category }{\mathcal B}$ with all powers and enough cofibrant limits

 $\mathit{U} \colon \mathcal{B} \to \mathcal{A}$ preserves them

SSC

U has an ${\mathcal E}$ -weak left adjoint

N(ot) Q(uite) S(o) G(eneral) AFT

 ${\mathcal V}$ -category ${\mathcal B}$ with all powers and enough cofibrant limits

 $U \colon \mathcal{B} \to \mathcal{A}$ preserves them

 \mathcal{B}_0 and \mathcal{A}_0 are accessible, U_0 accessible functor (unenriched)

U has an \mathcal{E} -weak left adjoint

Applications (to 2-categories)

This involves the case $V = \mathbf{Cat}$.

A 2-category will have enough cofibrant limits if it has PIE limits: that is, if it has

- products
- inserters
- equifiers.

Mr PIE

Applications (to 2-categories)

This involves the case $V = \mathbf{Cat}$.

A 2-category will have enough cofibrant limits if it has PIE limits: that is, if it has

- products
- inserters
- equifiers.

Applications (to 2-categories)

This involves the case $V = \mathbf{Cat}$.

A 2-category will have enough cofibrant limits if it has PIE limits: that is, if it has

- products
- inserters
- equifiers.

Theorem

Let $\mathcal B$ be a 2-category with PIE limits, and let $U \colon \mathcal B \to \mathcal A$ preserve them. If U satisfies SSC, then it has a left biadjoint.

Theorem

Any accessible 2-category with PIE limits has bicolimits.

An ∞-cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has weak colimits.

A cosmological functor is an enriched functor between ∞ -cosmoi which preserves this structure.

Corollary

An ∞ -cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has weak colimits.

A cosmological functor is an enriched functor between $\infty\text{-cosmoi}$ which preserves this structure.

Corollary

An ∞ -cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has weak colimits.

A cosmological functor is an enriched functor between ∞ -cosmoi which preserves this structure.

Corollary

An ∞ -cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has weak colimits.

A cosmological functor is an enriched functor between $\infty\text{-cosmoi}$ which preserves this structure.

Corollary

An ∞ -cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has weak colimits.

A cosmological functor is an enriched functor between ∞ -cosmoi which preserves this structure.

Corollary