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Abstract. We consider formal provabil-
ity with structural induction and related
proof principles in the λ-calculus presented
with first-order abstract syntax over one-
sorted variable names. As well as sum-
marising and elaborating on earlier, for-
mally verified proofs (in Isabelle/HOL)
of the relative renaming-freeness of β-
residual theory and β-confluence, we also
present proofs of η-confluence, βη-confluence,
the strong weakly-finite β-development (aka
residual-completion) property, residual β-
confluence, η-over-β-postponement, and no-
tably β-standardisation. In the latter case, the
known proofs fail in instructive ways. Interest-
ingly, our uniform proof methodology, which
has relevance beyond the λ-calculus, prop-
erly contains pen-and-paper proof practices in
a precise sense. The proof methodology also
makes precise what is the full algebraic proof
burden of the considered results, which we,
moreover, appear to be the first to resolve.

1 Introduction

The use of structural induction and related proof prin-
ciples for simple syntax (i.e., first-order abstract syntax
over one-sorted variable names) is a long-standing and
widely-used practice in the programming-language the-
ory community. Unfortunately, at a first, closer inspec-
tion it seems that the practice is not formally justifi-
able because of a need to avoid undue variable capture
when performing substitution, thus breaking the syntac-
tic equality underlying structural induction, etc.. Even
more worrying is the fact that, in spite of substantial
efforts in the mechanised theorem-proving community,
no formal proof developments (prior to what we report
on here) have been able to overcome the problems that
are encountered with substitution and go on to success-
fully employ the proof principles in question. Indeed,
and starting with de Bruijn [6], it has become an active
research area to define, formalise, and automate alter-
native syntactic frameworks that, on the one hand, pre-
serve as much of the inherent naturality of simple syntax
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as possible. At the same time, they are customised to
provide suitable induction and recursion principles for
any considered language [6–10, 12, 17, 21]. However, by
changing the underlying syntactic framework, the alge-
braic meaning of, e.g., a diamond property also changes,
which means that, e.g., confluence as proved and as de-
fined no longer coincide, cf. Lemma 18 and [25].

In the recognition that the above is both unfortu-
nate as far as the formal status of the existing informal
literature is concerned and unsatisfactory from a math-
ematical perspective, we pursue the naive approach in
this article (while incorporating the relevant aspects of
[24, 25]). In particular, we show that it is, indeed, pos-
sible to base formal proofs on first-order abstract syn-
tax over one-sorted variable names and hope to con-
vince the reader that, while the technical gap between
pen-and-paper and formal proofs is rather large, the
conceptual gap is somewhat smaller. Furthermore, we
hope that the comprehensive range of applications of
the proof methodology that we present here will estab-
lish its wider relevance.

1.1 Syntax of the λ-Calculus

The λ-calculus is intended to capture the concept of
a function. It does so, first of all, by providing syntax
that can be used to express function application and
definition:

e ::= x | e1e2 | λx.e

The above, informal syntax says that a λ-term, e,
is defined inductively as either a variable name, as an
application of one term to another, or as a λ-, or func-
tional, abstraction of a variable name over a term. The
variable names, x, are typically taken to be, or range
over, words over the Latin alphabet. In Section 2, we
will review the exact requirements to variable names in
an abstract sense. Being based on a simple, inductive
definition, λ-terms also come equipped with a range of
primitive proof principles [1, 3].

Syntactic Equality As a λ-term, e, is finite and con-
sists of variable names, the obvious variable-name equal-
ity, =VN , which exists at least in the case of words over
the Latin alphabet, canonically extends to all λ-terms:

x =VN y

x =Λvar y

e1 =Λvar e
′
1 e2 =Λvar e

′
2

e1e2 =Λvar e
′
1e

′
2

x =VN y e =Λvar e
′

λx.e =Λvar λy.e
′

Structural Induction In order to prove properties
about the set of λ-terms, we can proceed by means of
structural induction, mimicking the inductive definition
of the terms:

∀x.P (x) ∀e1, e2.P (e1) ∧ P (e2) ⇒ P (e1e2) ∀x, e.P (e) ⇒ P (λx.e)

∀e.P (e)



y[x := e]Cu =

{

e if x = y

y otherwise

(e1e2)[x := e]Cu = e1[x := e]Cue2[x := e]Cu

(λy.e0)[x := e]Cu =







λy.e0 if x = y

λy.e0[x := e]Cu if x 6= y ∧ (y 6∈ FV(e) ∨ x 6∈ FV(e0))
λz.e0[y := z]Cu[x := e]Cu o/w; first z 6∈ {x} ∪ FV(e) ∪ FV(e0)

Fig. 1. Curry-style capture-avoiding substitution

x[x := e]Cu = e

x 6= y

y[x := e]Cu = y

e1[x := e]Cu = e
′
1 e2[x := e]Cu = e

′
2

(e1e2)[x := e]Cu = e
′
1e

′
2

(λx.e0)[x := e]Cu = λx.e0

x 6= y (y 6∈ FV(e) ∨ x 6∈ FV(e′0)) e0[x := e]Cu = e
′
0

(λy.e0)[x := e]Cu = λy.e
′
0

x 6= y y ∈ FV(e) x ∈ FV(e0) z = Fresh((e0e)x) e0[y := z]Cu = e
′
0 e

′
0[x := e]Cu = e

′′
0

(λy.e0)[x := e]Cu = λz.e
′′
0

Fig. 2. Curry-style substitution (re-)defined inductively

Structural Case-Splitting As each syntax construc-
tor of the λ-calculus is unique, we see that it is possible
to case-split on terms — with Ei in some suitable meta-
language:

case e of x ⇒ E1(x)
| e1e2 ⇒ E2(e1, e2)
| λx.e0 ⇒ E3(x, e0)

Structural Recursion Based on case-splitting and
well-foundedness of terms, we can even define functions
on λ-terms by means of structural recursion, i.e., by
making recursive calls only on the sub-terms of a given
constructor:

f(x) = E1(x)

f(e1e2) = E2(f(e1), f(e2))

f(λx.e) = E3(x, f(e))

The above implies that f is well-defined: it is com-
putable by virtue of well-foundedness of terms and to-
tal because the definition case-splits exhaustively on λ-
terms. As an example application, we define the function
that computes the free variables in a term, i.e., the vari-
able names that do not occur inside a λ-abstraction of
themselves.

Definition 1

FV(y) = {y}

FV(e1e2) = FV(e1) ∪ FV(e2)

FV(λy.e) = FV(e) \ {y}

Proposition 2 FV(−) is a total, computable function.

1.2 Reduction and Substitution

In order to have λ-abstractions act as functions and not
to have too many, e.g., identity functions, amongst other
things, we are typically interested in the following rela-
tions that can be applied anywhere in a term — their
precise form is due to Curry [4].

1. (λx.e)e′ 99KβCu e[x := e′]Cu

2. λy.e[x := y]Cu 99KαCu λx.e, if y 6∈ FV(e)

Our interest in 2., above is the equivalence relation it
induces. We denote it by ==α, cf. Appendix B, and we
will eventually factor it out, as is standard.

Variable Capture In his seminal formalist presenta-
tion of the λ-calculus [4], Curry defines the above substi-
tution operator, −[− := −]Cu, essentially as in Figure 1.
The last clause is the interesting one. It renames the con-
sidered y into the first z that has not been used already.1

Consider, for example, the substitution of x for z in the
two terms λx.z and λy.z. Both terms-as-functions dis-
card their argument. If we simply replace the z in the
terms with x, the latter would still discard its argument
but the former would become the identity function and
this discrepancy would lead to inconsistencies.

Well-Definedness Of formalist relevance, we remark
that Curry-style substitution is not well-defined by con-
struction as the definition does not employ structural

1 While the notion “the first z” is trivially well-defined in
the present case, the issue is a bit more subtle in a wider
context, as we shall see in Section 2.



recursion. The offender is the last clause that applies
−[x := e] to a term, e0[y := z], which is not a subterm of
λy.e0 in general. It can be observed that while e0[y := z]
is not a sub-term of λy.e0, it will have the same size
as e0 and we can thus establish the well-formedness of
−[− := −]Cu by external means. Alternatively, we can
introduce a more advanced, parallel substitution oper-
ator [22]. However, as we eventually will distance our-
selves from the use of renaming in substitution, we will
do neither but instead refer to Section 2.3 for an alter-
native derivation of Curry-style substitution.

Variable-Name Indeterminacy Having initially
committed ourselves to using renaming in substitution,
a range of problems are brought down on us. Hindley
[11] observed, for example, that it becomes impossible
to predict the variable name used for a given abstrac-
tion after reducing, thus putting, e.g., confluence out of
reach:

(λy.λx.xy)y λx.xy
(λx.(λy.λx.xy)x)y

(λx.λz.zx)y λz.zy

βCu

βCu

βCu

βCu

In the lower branch, the innermost x-abstraction must
be renamed to a z-abstraction, while the upper branch
never encounters the variable-name clash. Hindley pro-
ceeded to define a β-relation on α-equivalence classes
that overcomes the above indeterminacy by factoring it
out:

bec =def {e′ | e ==α e
′}

be1c →βHi be2c =def ∃e
′
1 ∈ be1c, e

′
2 ∈ be2c.e

′
1 99KβCu e

′
2

No relevant proof principles are introduced by this
and the approach can not be used in a formal setting as
it stands.

Broken Induction Steps Instead of factoring out
α-equivalence altogether, one could attempt to reason
up to post-fixed name unification. Unfortunately, this
would lead to a range of unusual situations as far as sub-
sequent uses of abstract rewriting is concerned. An ex-
ample is the following attempted adaptation of the well-
known equivalence between confluence and the Church-
Rosser property. Please refer to Appendix A for a precise
definition of our diagram notation.

Non-Lemma 3

•

• •

◦ ◦
α

⇒ • •

◦ ◦
α

Proof (FAILS) By reflexive, transitive, symmetric in-
duction in =.

Base, Reflexive, Symmetric Cases: Simple.

Abstract Reasoning

Administrative Proof Layer

Commutativity Lemma

Substitutivity Lemma

Substitution Lemma Variable Monotonicity

Substitution Sanity

Fig. 3. The proof-layer hierarchy for primitive equational
reasoning about the λ-calculus as simple syntax

Transitive Case: Breaks down.

M1 M2 M3

I.H. I.H.

N1 N2 Assm. N3 N4

N5 N6

α α

α
z z

Broken α-Equality in Sub-Terms Having failed in
our attempts to control limited use of α-equivalence,
one might think that the syntactic version of Hindley’s
approach, cf. Section 1.2, could work: that it is possible
to state all properties about terms up to ==α rather than
the primitive =Λvar .

Lemma 4 (Simplified Substitution modulo α)

e1 ==α e2 ∧ x 6= yi ∧ y1 6= y2

⇓
e1[x1 := y1]Cu[x2 := y2]Cu ==α e2[x2 := y2]Cu[x1 := y1]Cu

Proof (FAILS) By structural induction in e1.

Most Cases: Trivial.
Last Abstraction Case (simplified): Breaks down.

(λy1.e)[x1 := y1]Cu[x2 := y2]

= λz.e′[x1 := y1]Cu[x2 := y2]Cu

==
z
α λz.e′[x2 := y2]Cu[x1 := y1]Cu

= (λz.e′)[x2 := y2]Cu[x1 := y1]Cu

The problem above is that e and e′ are not actually α-
equivalent, even if λy1.e and λz.e′ are, and the ==α-step
can thus not be substantiated by the induction hypoth-
esis. Consider, e.g., e as y1 and e′ as z. The above result
is certainly correct but, unfortunately, not provable with
the tools we have at our disposal at the moment.



1.3 This article

The results we are dealing with are mostly well-known
and have been addressed in several contexts. Indeed, a
number of truly beautiful and concise informal proofs
exist; see, in particular, Takahashi [23], whom we owe a
great debt. This article, therefore, spends little energy
on those parts of the proofs and focuses instead on what
it takes to formalise them. There are two key issues: (i)
the syntactic properties that can actually be established
up to =Λvar (as opposed to ==α, which we have seen to
be highly problematic) and (ii) how to generalise these
to the algebraic properties we are seeking. The full type-
set proofs (roughly 100 pages for the proofs alone) are
available from our homepage.

In general, our proofs follow the structure that we
present in Figure 3. It is based on nested inductions. The
full-coloured arrows mean “is the key lemma for”, while
the others mean “is used to substantiate side-conditions
on lemma applications”. The first issue above, (i), is
expressed in the addition of the “Variable Monotinicity”
proof layer in Figure 3. The second issue, (ii), is entirely
accounted for in the “Administrative Proof Layer” in
Figure 3.

The proofs underpinning Sections 3 and 4.1 have been
verified in full in Isabelle/HOL (at least in the case of
one of the alternatives they present) [24, 25]. By the
nature of Figure 3, this means that substantial parts of
the other proofs essentially have been verified as well.

Apart from the various technical sections in the body
of this paper, the appendix section contains an expla-
nation of our diagram notation (Appendix A) and our
other notation (Appendix B) as well as some well-known
rewriting results that we use (Appendix C).

2 The λvar-Calculus

Having seen that the standard presentations of the λ-
calculus lead to formalist problems, we will now give an
alternative presentation that overcomes them. The dif-
ferent presentations differ only in how they lend them-
selves to provability. Their equational properties are
equivalent.

2.1 Formal Syntax

We use e’s to range over the inductively built-up set of
λ-terms. The variable names, VN , are generic but must
meet certain minimal requirements.

Definition 5 Λvar ::= VN | ΛvarΛvar | λVN .Λvar

Assertion 6 VN is a single-sorted set of objects, aka
variable names.

Assertion 7 VN -equality, =VN , is decidable.

BV(y) = ∅
BV(e1e2) = BV(e1) ∪ BV(e2)
BV(λy.e) = {y} ∪ BV(e)

Captx(y) = ∅
Captx(e1e2) = Captx(e1) ∪ Captx(e2)

Captx(λy.e) =

{

{y} ∪ Captx(e) if x ∈ FV(λy.e)
∅ otherwise

Fig. 4. Bound and capturing variable names

Assertion 8 There exists a total, computable func-
tion, Fresh(−) : Λvar −→ VN , such that:2

Fresh(e) 6∈ FV(e) ∪ BV(e)

The last assertion trivially implies that VN is infinite.3

We shall use x’s, y’s, and z’s as meta-variables of VN
and, by a slight abuse of notation, also as actual vari-
able names in terms. We will suppress the VN suffix on
variable-name equality and merely write, e.g., x = y.

2.2 Orthonormal Reduction

The key technicality to prevent implicit renaming is our
use of a predicate, Captx(e1) ∩ FV(e2) = ∅, cf. Figure 4,
which guarantees that no capture takes place in the sub-
stitution: e1[x := e2]. It coincides with the notion of not
free for.

Definition 9 (The λvar-Calculus) The terms of the
λvar-calculus are Λvar, cf. Definition 5. The (indexed)

α-, β-, and η-reduction relations of λvar:
−

99Kiα, 99Kβ,
and 99Kη are given inductively in Figure 5. The plain
α-relation is:

e 99Kα e′ ⇔def ∃y.e
y

99Kiα e′

Unlike the situation with Curry-style substitution, we
see that our notion of substitution is defined by struc-
tural recursion and, hence, is well-defined by construc-
tion.

Proposition 10 −[x := e] is a total, computable func-
tion.
2 For the definition of BV(−), see Figure 4.
3 In the setting of Nominal Logic [19], the assertion also val-

idates the axiom of choice, which is known to be provably
inconsistent with the Fraenkel-Mostowski set theory that
underpins Nominal Logic. Nominal Logic instead guar-
antees the existence of some fresh variable name, which
by design can be any variable name except for a finite
number. More work needs to be done to clarify the cor-
respondence between simple syntax and syntax based on
Nominal Logic.



y[x := e] =

{

e if x = y

y otherwise
(e1e2)[x := e] = e1[x := e]e2[x := e]

(λy.e0)[x := e] =

{

λy.e0[x := e] if x 6= y ∧ y 6∈ FV(e)
λy.e0 otherwise

y 6∈ Captx(e) ∪ FV(e)
(α)

λx.e
y

99Kiα λy.e[x := y]

e
y

99Kiα e
′

λx.e
y

99Kiα λx.e
′

e1

y
99Kiα e

′
1

e1e2

y
99Kiα e

′
1e2

e2

y
99Kiα e

′
2

e1e2

y
99Kiα e1e

′
2

Captx(e1) ∩ FV(e2) = ∅
(β)

(λx.e1)e2 99Kβ e1[x := e2]

e 99Kβ e
′

λx.e 99Kβ λx.e
′

e1 99Kβ e
′
1

e1e2 99Kβ e
′
1e2

e2 99Kβ e
′
2

e1e2 99Kβ e1e
′
2

x 6∈ FV(e) = ∅
(η)

λx.ex 99Kη e

e 99Kη e
′

λx.e 99Kη λx.e
′

e1 99Kη e
′
1

e1e2 99Kη e
′
1e2

e2 99Kη e
′
2

e1e2 99Kη e1e
′
2

Fig. 5. Renaming-free substitution, −[− := −], defined recursively, and α-, β-, η-reduction defined inductively over Λvar

The β- and η-relations we have presented above do
not incur any renaming that could have been performed
in a stand-alone fashion by the α-relation, thus making
them orthogonal. The normality part of our informal
orthonormality principle is established by the following
property, symmetry of 99Kα, which implies that the α-
relation itself is renaming-free.

Lemma 11 • •
α

α

2.3 Curry’s λ-Calculus Decomposed

In order to assure ourselves that the λvar-calculus is
indeed the right calculus and partly to test the use-
fulness of the associated primitive proof principles, we
now show how to derive Curry’s presentation from ours.
First, we show that as far as our use of substitution is
concerned, −[− := −] coincides with −[− := −]Cu.

Proposition 12

Captx(ea) ∩ FV(e) = ∅
⇓
ea[x := e] = ea[x := e]Cu

Proof A straightforward structural induction in ea. �

What might not be obvious is that Curry-style sub-
stitution can be shown to decompose into the λvar-
calculus. In contrast to the structurally flawed Figure 1,
Figure 2 introduces a primitively-defined, 4-ary relation
that is Curry-style substitution, albeit with no claim of
well-definedness.

Lemma 13

ea[x := e]Cu = e′a
⇓
∃!eb.ea 99KKα eb ∧ eb[x := e] = e′a

Proof By rule induction in Curry-style substitution-
as-a-relation, cf. Figure 2. Uniqueness of eb is guaran-
teed by the functionality of Fresh(−). �

We stress that the above property is not provable
by structural induction in ea and that it ensures that
Curry-style substitution is, indeed, well-defined and
functional.

Lemma 14 For any x and e, −[x := e]Cu = − is a
total, computable function of the first, open argument
onto the second, open argument.

Lemma 13 also establishes the decomposition of
Curry’s calculus as a whole into the λvar-calculus.

Lemma 15 99Kα ⊆ (99KαCu)−1 ⊆ 99KKα

Lemma 16 99Kβ ⊆ 99KβCu ⊆ 99KKα; 99Kβ

2.4 The Real λ-Calculus

As suggested previously, the actual calculus we are in-
terested in is the α-collapse of λvar. Algebraically speak-
ing, this means that we want to consider the following
structure, cf. Hindley’s presentation, Section 1.2.

Definition 17 (The Real λ-Calculus)

– Λ =def Λvar/==α



UB(x) = True

UB(e1e2) = UB(e1) ∧ UB(e2) ∧ (BV(e1) ∩ BV(e2) = ∅)

UB(λx.e) = UB(e) ∧ x 6∈ BV(e)

Fig. 6. The uniquely bound Λvar-predicate

–
b−c :def Λvar −→ Λ

e 7→ {e′ | e ==α e′}

– be1c −→β be2c ⇔def e1 ==α; 99Kβ ; ==α e2

– be1c −→η be2c ⇔
def e1 ==α; 99Kη; ==α e2

It can be shown (without too much trouble) that
Curry’s, Hindley’s, and our relations all are pointwise
identical, cf. [25]. For now, we merely present the part
of that result that pertains to the current set-up.

Lemma 18 For X ∈ {β, η, βη} (any X, in fact), we
have:

bec −→−→X be′c ⇔ e 99KKαX e′

Proof By definition of the real relations and reflexive,
transitive closure, we immediately see that

bec −→−→X be′c ⇔ e (==α; 99KX; ==α)? e′ ∨ e ==α e′

The result thus follows directly from Lemma 11. �

3 Residual Theory

This section shows that residual theory, i.e., the ex-
clusive contraction of pre-existing, or marked, redexes,
provides a nice setting for quantifying the “computing
power” of the renaming-free β-relation. We use ti’s as
meta-variables over the marked terms and we allow our-
selves to use Λvar-concepts for the marked terms with
only implicit coercions; in particular, we assume there
is an α@-relation that can rename all (not just marked)
abstractions.

Definition 19 (The Marked λvar-Calculus)

Λ
var
@ ::= x | Λ

var
@ Λ

var
@ | λVN .Λ

var
@ | (λVN .Λ

var
@ ) @ Λ

var
@

99Kβ@ is like 99Kβ except only marked re-
dexes, (λx.t1) @ t2, may be contracted (provided
Captx(t1) ∩ FV(t2) = ∅). We further define a residual-
completion relation, 99Kβ@ , by induction over terms
that attempts to contract all (marked) redexes in one
step, starting from within.4

4 The relation corresponds closely to the parallel β-relation
of Figure 7.

To address any inherent requirements for renaming
in the λ-calculus, we introduce a formal notion called
Barendregt Conventional Form (BCF),5 which, as it
turns out, provides a rational reconstruction of the usual
(informal) Barendregt Variable Convention [2], cf. [25].
BCFs are terms where all variable names are different.

Definition 20 Cf. Figures 4 and 6:

BCF(e) = UB(e) ∧ (BV(e) ∩ FV(e) = ∅)

As a first approximation to renaming-freeness, we
note that it is a straightforward proof that BCFs resid-
ually completes, i.e., that all marked redexes in a BCF
can be contracted from within without causing variable
clashes.

Lemma 21 • ◦(BCF)
β@

We also show that the residual-completion relation is
functional on the full β-residual theory of a term, i.e.,
that residual completion always catches up with itself.

Lemma 22

• •

•

β@

β@
β@

∧
• •

•

β@

β@
β@

Proof The right-most conjunct follows from the
left-most by a simple reflexive, transitive induction
in which the latter constitutes the base case. The
left-most conjunct follows by a rule induction in
99Kβ@ for which it is paramount that redexes are en-
abled if Captx(−) ∩ FV(−) = ∅ rather than only if
BV(−) ∩ FV(−) = ∅. Other than that, the proof is
mostly straightforward, albeit big. �

The above property asserts that when residual com-
pletion exists, the considered divergence can be resolved
as shown. The property allows us to prove that β-
residual theory is renaming-free up to BCF-initiality,
i.e., that no redexes are blocked by their side-condition.

Theorem 23 • • ◦(BCF)
β@ β@

Proof Consider a BCF and a 99KKβ@-reduction of it.
By Lemma 21, the considered BCF also residually com-
pletes and, by Lemma 22, the thus-created divergence
can be resolved by a trailing residual completion. �

A subtle point of interest is that the above proof, in
fact, shows that the β-residual theory of any term that
residually-completes, i.e., is renaming-free if contracted
from within, is renaming-free in general.

5 The term was suggested to us by Randy Pollack.



x 99qKβ x

e 99qKβ e
′

λx.e 99qKβ λx.e
′

e1 99qKβ e
′
1 e2 99qKβ e

′
2

e1e2 99qKβ e
′
1e

′
2

e1 99qKβ e
′
1 e2 99qKβ e

′
2 FV(e′2) ∩ Captx(e′1) = ∅

(β q)
(λx.e1)e2 99qKβ e

′
1[x := e

′
2]

Fig. 7. The parallel β-relation for λvar

4 Confluence

The previous section establishes a rather large fragment
of the λvar-calculus as susceptible to primitive equa-
tional reasoning. This section summarises and elabo-
rates on our formally verified efforts to bring this to
bearing on β-confluence [25]. We also present proofs that
apply the methodology to prove η- and βη-confluence.

4.1 β-Confluence

The 99Kβ-relation does not enjoy the diamond prop-
erty because a redex that is contracted in one direction
of a divergence can be duplicated (and erased) in the
other direction by the substitution operator. As shown
by Tait and Martin-Löf, the potential divergence “blow-
up” does not materialise because it can be controlled by
parallel reduction. Please refer to Figure 7 for the λvar-
version of this relation.

Lemma 24
• •

• ◦

(BCF)

β

||

β
||

β

||

β
||

Proof Rather than prove this property by an exhaus-
tive case-splitting, thus resulting in a minimally resolv-
ing end-term, Takahashi observed that the considered
diamond can be diagonalised by the relation that con-
tracts all redexes in one step, i.e., by a maximally re-
solving end-term [23]. As we saw in Section 3 this is
within reach of the structural proof principles of λvar. �

The Full Proof Burden A real version of the parallel
β-relation on syntax can be defined along the lines of
Definition 17 (which, further to Lemma 21, turns out to
be the real real parallel β-relation).

Definition 25 be1c q−→β be2c ⇔
def e1 ==α; 99qKβ ; ==α e2

In order to prove the diamond property for q−→β , we
need some measure of commutativity between α- and
β-reduction.

Fresh-Naming As the general α-/β-commutativity re-
sult is not provable, we introduce the following restricted
α-relation, which only fresh-names.

Definition 26

e 99Kα0
e′ ⇔def ∃z.e

z
99Kiα e′ ∧ z 6∈ FV(e) ∪ BV(e)

The fresh-naming α-relation can straightforwardly be
proven to commute with the parallel (actually, any)
β-relation with the proviso that the resolving α-steps
are not necessarily fresh-naming (because of β-incurred
term duplication).

Lemma 27
• •

• ◦

β
||

α0 α

β
||

Similarly, the fresh-naming α-relation can be shown
to resolve α-equivalence to a BCF (although the formal
proof of this is surprisingly involved, cf. [25]).

Lemma 28

• •

◦
(BCF )

α
α0 α0

Applying Administration With these results in
place, we can lift Lemma 24 to the real λ-calculus.

Lemma 29 �( q−→β) ∧ �(99KKα; 99qKβ)

Proof As for the left-most conjunct, see Figure 8 for
the step by step resolution of the definitionally-given
syntactic divergence. We trust the steps are self-evident
and that it can be seen that a slight adaptation of the
figure also proves the right-most conjunct. �

We are now in a position to establish β-confluence.

Theorem 30

Confl(−→β) ∧ Confl(99Kαβ)

∧ Confl(99KαCuβCu)

∧ Confl(−→βHi)

Proof The two top-most conjuncts are equivalent by
Lemma 18. They can also be proved independently by
applying the Diamond Tiling Lemma of Appendix C
to the corresponding conjunct in Lemma 29. The third
conjunct follows by Lemmas 15 and 16. The final con-
junct follows in an analogous manner. �
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4.2 η-Confluence

Unlike the β-relation, η-reduction is natively renaming-
free:

Lemma 31 (α/η Commutativity)

• •

• ◦

η

α α

η

Lemma 32 (η Commutativity)

• •

• ◦

η

η η

η

∧

• •

• ◦

η

η η

η
Proof The left-most conjunct is straightforwardly
provable by structural means. The proof of the right-
most property follows from the left-most as displayed in

Figure 9. The top part of the figure is a proof by the
general method; the lower part is an optimised version
that takes advantage of η commuting with α, not just
with α0. �

Theorem 33 Confl(99Kη) ∧ Confl(−→η) ∧ Confl(99Kαη)

Proof The two left-most conjuncts can be established
from the corresponding conjuncts in Lemma 32 by the
Hindley-Rosen Lemma of Appendix C. The right-most
conjunct can be established either by the Commuting
Confluence Lemma of Appendix C applied to the left-
most conjunct and generalisations of Lemmas 11 and 31
or, alternatively, it can be observed that the two right-
most conjuncts are equivalent by Lemma 18. �

4.3 βη-Confluence

Since the η-relation is natively renaming-free and the β-
relation relies on the α-relation, we must show that η-
commutes with combined αβ-reduction in order to ap-
ply the Commuting Confluence Lemma of Appendix C.

Lemma 34

• •

• ◦

η

β αβ

η
∧

• •

• ◦

η

αβ αβ

η
∧

• •

• ◦

η

αβ αβ

η

Proof The proof of the left-most conjunct is straight-
forward. The α-step in the resolution on the right is
needed for the obvious divergence on λx.(λy.e)x, with
x 6= y. The middle conjunct combines the left-most con-
junct and Lemma 31. The right-most conjunct follows
from the middle by the Hindley-Rosen Lemma of Ap-
pendix C. �
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Fig. 10. The administrative proof layer for βη-confl

Lemma 35

• •

• ◦

η

β β

η

∧

• •

• ◦

η

β β

η
Proof The left-most conjunct follows from the left-
most conjunct of Lemma 34 as shown in Figure 10.
The top part of the figure is by the general method;
the lower part is an optimisation based on (full) αη-
commutativity, Lemma 31. The right-most conjunct fol-
lows by the Hindley-Rosen Lemma of Appendix C. �

Theorem 36 Confl(−→βη) ∧ Confl(99Kαβη)

Proof We first observe that the two conjuncts are
equivalent by Lemma 18. They can also be proved in-
dependently by the Commuting Confluence Lemma of
Appendix C applied to Theorems 30 and 33 as well as
Lemma 35 and Lemma 34, respectively. �

5 Residual β-Confluence

We say that the reflexive, transitive closure of a residual
relation is the associated development relation, a step of
which is said to be complete if the target term does not
contain a mark, unMarked(−). With this terminology in
place, we define a weakened version of the strong finite
development property.6

6 The strong finite development property also requires that
the residual relation is strongly normalising. It is typically
used to prove (residual) confluence.
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Fig. 11. The administrative proof layer for β-RCP

Definition 37 Let −→@ be the residual relation of
−→. We say that −→ enjoys the strong weakly-finite
development property, SWFDP(−→), if

1. t −→−→@ t′ ⇒ ∃t′′.t′ −→−→@ t′′ ∧ unMarked(t′′)
— developments can be completed

2. t −→−→@ ti ∧ unMarked(ti) ∧ i ∈ {1, 2} ⇒ t1 = t2
— completions are unique

To motivate the name of the property, we see that,
indeed:

Proposition 38 SWFDP(−→) ⇒ WN(−→@)7

Proof By Definition 37, 1. and reflexivity of −→−→@. �

Surprisingly, perhaps, we have that already the SWFDP
implies residual confluence.

Lemma 39 SWFDP(−→) ⇒ Confl(−→@)

Proof Consider the following divergence:

M

M1 M2

@ @

7 The predicate WN(−) stands for Weak Normalisation and
means that all terms reduce to a normal form.



By Definition 37, 1., there exist N1, N2, such that
unMarked(N1), unMarked(N2) and:

M

M1 M2

N1 N2

@ @

@ @

By transitivity of −→−→@ and Definition 37, 2., we see
that, in fact, N1 = N2 and we are done. �

With direct reference to Section 3, we define the
following property, which is fairly easily proven to be
equivalent to the SWFDP.

Definition 40 A relation, −→, enjoys the residual-
completion property, RCP(−→), if there exists a
residual-completion relation, −→@, such that:

1. −→@ ⊆−→−→@

— residual-completion is a development

2. • ◦(NF@)
@— residual-completion totally completes

3.
• •

•

@

@

@

— residual-completion is residually co-final

Lemma 41 RCP(−→) ⇔ SWFDP(−→)

Our interest in the RCP is its constructive nature, in
particular when the residual-completion relation is de-
fined as a computable function the way we did in Sec-
tion 3.

Lemma 42 RCP(−→β) ∧ SWFDP(−→β)

Proof We prove the left-most conjunct. Clause 1. fol-
lows from the easily established fact that 99Kβ@⊆99KKβ@ .
Clause 2 follows from Lemmas 21 and 28. Finally,
Clause 3 is proved as shown in Figure 11. �

Theorem 43 Confl(−→β@) ∧ Confl(99Kα@β@)

We see that SN(−→β@) (i.e., the difference between
the SWFDP and the strong finite development prop-
erty) is not needed for concluding confluence from a
residual analysis of the β-relation, something which
is in stark contrast to established opinion [2, p.283].
Strong finite development essentially implies confluence
through Newman’s Lemma, thus relying crucially on the
(non-equational) SN-property for the residual relation.
We think it a nice “purification” of the equational im-
port of residual theory that an externally justified termi-
nation property is not needed for concluding confluence.

x 6∈ FV(e) e 99qKη e
′

(η q)
λx.ex 99qKη e

′

e 99qKη e
′

λx.e 99qKη λx.e
′

e1 99qKη e
′
1 e2 99qKη e

′
2

e1e2 99qKη e
′
1e

′
2

x 99qKη x

Fig. 12. The parallel η-relation for λvar
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6 η-over-β-Postponement

As well as condensing Tait and Martin-Löf’s use of par-
allel β-reduction for proving β-confluence, Takahashi
[23] also shows how to adapt the parallel-reduction
technology to other typical situations in the equational
theory of the λ-calculus. One such situation is for prov-
ing η-over-β-postponement, cf. Figure 12. The proof
presented by Takahashi [23] essentially goes through
up to BCF-initiality as it stands, albeit not completely.
Rather than focusing on the low-level technical details,
this section merely shows the Administrative and Ab-
stract proof layers of our formalisation of Takahashi’s
proof.

The notion of commutativity that we have considered
so far is orthogonal in nature to that employed in the η-
over-β-Postponement Theorem. Whereas the former can
be described as divergence commutativity, this section
focuses on composition commutativity.

Lemma 44
• ◦

• •

(BCF)

η

||

β
||

β
||

η

||



Proof The parallel η-relation is used to allow for the
duplication of a η-redex by the β-contraction when the
latter is performed first. The parallel β-relation, on the
other hand, is used. e.g., for the following situation:

(λx.(λy.e1)x)e2 99Kη (λy.e1)e2 99Kβ e1[y := e2]

This reduction sequence commutes into a leading par-
allel β-step with a trailing η-step, which is in this case
is reflexive:

(λx.(λy.e1)x)e2 99qKβ e1[y := x][x := e2]

BCF-initiality is used to enable the double (n-fold, in
general) substitution in the commuted reduction se-
quence. �

Lemma 45
• ◦

• •
η

||

β
||

β
||

η

||

Proof Please refer to Figure 13 for the details of the
proof. A novel aspect of the proof is the existence of an
α0-step from M5 to N2. By construction, we know that
the two terms are α-equivalent. A simple lemma shows
that N2 is a BCF because η-reduction preserves BCFs.
The final result that is needed, i.e., that α0-reduction
can reach any BCF that is α-equivalent to the start
term, can also be proved by structural means but it is
not as straightforward as could be imagined. This is due
to the need for the target BCF to be any BCF. �

With the one necessary technical lemma in place, we
present the postponement theorem.

Theorem 46

• •

◦

βη

β
η

Proof By reflexive, transitive induction in −→−→βη.
The only interesting case is the transitive case, which
follows in a manner akin to the Hindley-Rosen Lemma
of Appendix C using Lemma 45. �

7 β-Standardisation

Standardisation is also a composition-commutativity
result like postponement. It is a very powerful result
that, informally speaking, says that any reduction se-
quence can be performed left-to-right. Standardisation
implies results such as the left-most reduction lemma,
etc., [2], and guarantees the existence of evaluation-
order independent semantics [20].

This section addresses three different approaches to
proving standardisation due to Mitschke [18], Plotkin

Captx(e1) ∩ FV(e2) = ∅
(βwh)

(λx.e1)e2 99Kβwh e1[x := e2]

e1 99Kβwh e
′
1

(@wh)
e1e2 99Kβwh e

′
1e2

Fig. 14. Weak-head β-reduction
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Fig. 15. Inner and parallel inner β-reduction

[20], and David [5], respectively. The three approaches
are fairy closely related, with Plotkin’s proof bridging
the other two, so to speak. Mitschke’s and Plotkin’s
proofs both use semi-standardisation while David’s and
Plotkin’s both can be described as absorption standardi-
sation. In spite (actually because) of this, only Plotkin’s
approach is formally provable by the proof principles
we are considering. We shall examine the failures of the
other two proofs closely.

7.1 Semi-Standardisation with Hereditary
Recursion

In this section, we shall pursue a slight adaptation of
Takahashi’s adaptation [23] of Mitschke’s proof [18]. In-
stead of head and a corresponding notion of inner reduc-
tion, we base the proof on weak-head reduction. This
does not affect the formal status of the proof technique
but does allow us to reuse the results of this section
when pursuing Plotkin’s approach. The main proof bur-
den is to show that (weak-)head redexes can contracted
before any inner redexes, so-called semi-standardisation.

Definition 47 Weak-head β-reduction, 99Kβwh , is de-
fined in Figure 14. The corresponding (strong) inner,
99KβI , and parallel inner, 99qKβI , β-relations are defined
in Figure 15.
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Lemma 48

◦

• •(BCF) ||
β

βwh

|| βI

∧

◦

• •||
β

βwh

|| βI

Proof Please refer to Figure 16 for the proof of the
right-most conjunct based on the left-most conjunct,
wich, in turn, is proved by rule induction in 99qKβ . �

The use of BCF-initiality in the left-most conjunct
above guarantees that weak-head redexes can be con-
tracted without waiting for the contraction of an inner
redex to eliminate a variable clash.

Lemma 49

• •

•

(BCF) ||
β

||
βI βwh ∧

• •

•

||
β

||
βI βwh

Proof Please refer to Figure 17 for the proof of the
right-most conjunct based on the left-most. We first
note that the figure invokes the obvious adaptation of
Lemma 27 to 99qKβI . Although the proof as a whole is
similar to that of η-over-β-postponement, cf. Lemma 45,
we do not have that 99qKβI preserves BCFs, as is the case
with 99qKη. Instead, we can introduce a weakened notion
of BCF, wBCF, that allows identical binders to occur
in adjacent positions (but not nested and not coincid-
ing with any free variables) and show that 99qKβI sends
BCFs to wBCFs. In the same manner that α0-reduction
and the BCF-predicate correspond to each other, we can

introduce an α1-relation that corresponds to the wBCF-
predicate. The α1-relation is less well-behaved than the
α0-relation but we can, at least, show that it commutes
with 99Kβ (and thus 99Kβwh), up to α-resolution. The
left-most conjunct of the lemma, follows by rule induc-
tion in 99qKβI . �

Lemma 50 (Semi-Standardisation)

◦

• •
β

βwh

βI

Proof From Lemmas 48 and 49, cf. the obvious reflex-
ive, transitive generalisation of Lemma 53 in the tran-
sitive case. �

At this point, the idea is to recursive over the ◦ in
Lemma 50 and show that the sub-terms in which the
outgoing −→−→βI-step are ordinary β-steps, themselves
can be semi-standardised and so on. Unfortunately, the
◦ is quantified over α-equivalence classes, for which no
recursion is possible and we are stuck.

7.2 Hereditary Weak-Head Standardisation

Plotkin [20] defines standardisation as the least
contextually-closed relation on terms that enjoys left-
absorptivity over weak-head reduction. The following
presentation of the proof methodology owes a great debt
to McKinna and Pollack [17]. The difference between
their and our presentation is that we focus on prov-
ability with structural induction, etc., while they work
with an alternative syntactic framework that is derived
from first-order abstract syntax with two-sorted vari-
able names. The proof requirements in their setting and
in ours are substantially different as a result.

A First (Failing) Approach A first approach, which im-
mediately fails, is to define Plotkin’s relation directly on
terms.

e 99KKβwh e′ e′ �99pP e′′

e �99pP e′′ x �99pP x

e1 �99pP e′1 e2 �99pP e′2

e1e2 �99pP e′1e
′
2

e �99pP e′

λx.e �99pP λx.e′

As standardisation pertains to all β-reductions (i.e.,
−→−→β , not just 99KKβ), the naive approach needs the
full λ-calculus to be renaming-free, which it is not. The
problem manifests itself in the required administrative
proof layer for the standardisation property and its ex-
act nature is of independent interest. The point is that,
even if it is possible to prove the following key property
(which, in fact, seems to be the case8), we cannot prove

8 Coincidentally, it is interesting to note that the proof of
the property can only be conducted by rule induction in
�99pP and not in 99Kβ .
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Fig. 18. Failed administrative proof layer for left-
absorptivity of progression standardisation

full standardisation but at most standardisation of the
renaming-free fragment of the λvar-calculus.

• • •(BCF)
β P

P

Please refer to Figure 18 for the only two sensible
approaches to the administrative proof layer for the fol-
lowing property, which is derived from the one above.

Non-Lemma 51

• • •
β P

P

The left-most diagram in the figure attempts to align
itself with Figure 13, which fails because �99pP only
commutes with 99Kα0

. The right-most diagram adheres
to this and fails because of the inserted 99KKα0

, which
we cannot incorporate into the syntactic version of the
property. It is even straightforward to come up with a
counter-example.

(λs.ss)(λx.λy.xy) 99Kβ (λx.λy.xy)(λx.λy.xy)

We can turn the end-term into an α-equivalent BCF, as
it happens, which standardises:

(λx1.λy1.x1y1)(λx2.λy2.x2y2) �99pP λy1.λy2.y1y2

As the end-term of this step uses the two y copies nested
within each other, we see that the original start term
does not standardise to it.

λy.e1 λy
′
.e

′
1 λy

′
.e

′
2 λx.e2 λx.e3

λx.e0 λx.e
′
0

α
||
βI α wh

||
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α

Fig. 19. The administrative proof layer for the (λ�pwh
)-case

of Lemma 54

Combining Term Structure and α-Collapsed Reduction
In order to avoid these problems, we adapt the above
definition slightly.

Definition 52

bec −→−→βwh be′c e
′ �99pwh e

′′

(whpre)
e �99pwh e

′′
(V�pwh

)
x �99pwh x

e1 �99pwh e
′
1 e2 �99pwh e

′
2

(@�pwh
)

e1e2 �99pwh e
′
1e

′
2

e �99pwh e
′

(λ�pwh
)

λx.e �99pwh λx.e
′

The definition mixes the advantages of being able to
define relations inductively over terms with the use of
reduction in the real λ-calculus to avoid issues of renam-
ing. Note, however, that, further to the failed proof of
Lemma 4, it is by no means obvious whether this mix-
ture will lend itself to primitive structural reasoning.
The proof-technical issue surfaces in the (V�pwh

)-case of
the proof of Lemma 54.

Lemma 53
• ◦

• •
βI

||

βwh

βwh

βI

||

Proof The property can be derived from Lemmas 48
and 49 based on a suitable adaptation of the Hindley-
Rosen Lemma, cf. Appendix C. �

The key technical lemma in the present standardisa-
tion proof development is the following absorption prop-
erty.

Lemma 54

be1c q−→βI be2c ∧ e2 �99pwh e3 ⇒ e1 �99pwh e3

Proof The proof is by rule induction in �99pwh and
uses Lemma 53 before applying the I.H. and the defini-
tional left-absorptivity over weak-head reduction when
needed. As far as administration is concerned, the only
interesting case is for abstraction.

Case (λ�pwh
): We are considering the following situa-

tion (although this takes some effort to substanti-
ate).

λy.e1 ==α λy′.e′1 99qKβI λy′.e′2 ==α λx.e2 �99pwh λx.e3



By Definition 47 and the case, we have
e′1 99qKβ e′2 and e2 �99pwh e3. If y′ = x, we
can prove e′2 ==α e2, which means that we
are considering be′1c q−→β be′2c �99pwh e3, so
to speak. From Lemma 48, we thus have:
be′1c −→−→βwh be′′1c q−→βI be′2c �99pwh e3. An ap-
plication of the I.H. and an invocation of the
(whpre)-rule will then give us that e′1 �99pwh e3 and
we have λx.e′1 �99pwh λx.e3 by the (λ�pwh

)-rule. A
final (reflexive) application of the (whpre)-rule thus
finishes the case: λy.e1 �99pwh λx.e3. Unfortunately,
we can not guarantee y′ = x. Instead, Figure 19
shows how to overcome this using our general
administrative proof-layer technology, cf. Figure 3.
Based on the upper line, we first rewrite λy′.e′1 to
(the BCF) λx.e0 (although it takes some effort to
substantiate that this is possible). The commuting
square involving λx.e′0 can then be constructed
by the obvious adaptation of Lemma 27 and the
diagram can finally be closed based on Lemma 11.
To show that λy.e1 �99pwh-standardises to λx.e3,
first apply the reasoning above to show that λx.e0

does and, then, use the (whpre)-rule reflexively to
show the result we are after.

Other Cases: Fairly straightforward. �

Theorem 55 be1c −→−→β be2c ⇒ e1 �99pwh e2

Proof By reflexive, left-transitive induction in −→−→β .
The reflexive case is a straightforward structural in-
duction. The left-transitive case follows by an I.H.-
application followed by a case-split on the considered
−→β-step into −→βwh and −→βI (seeing that we can
show that the union of the latter two is the former). In
case of −→βwh , we are done by definition of �99pwh. In
case of −→βI , we are done by Lemma 54. �

7.3 (Failing) Progression Standardisation

An alternative proof development for standardisation
was proposed by David [5] and pursued, more or less
independently, in [13–15]. The idea is to define a stan-
dardisation relation directly by induction over terms (al-
though this is only done implicitly in [5]): �99pprg, and
to show that this relation right-absorbs the ordinary β-
relation. In that sense, the proof development is the dual
approach to what we considered in the previous section.
Informally, the key technical point is to contract terms
as follows, cf. [13, 15]:9

(..(e[x := e0]e1)..)ek �99pprg e′

(..((λx.e)e0)e1..)ek �99pprg e′

9 In order for the relation to make sense in the current set-
ting, it is necessary to supply it with a finite axiomatisa-
tion, which can be done.

This ensures that contraction progresses from left-to-
right while at the same time allowing newly created re-
dexes to be contracted. Other rules allow redexes not to
be contracted as the relation otherwise would be left-
most reduction.

Right-Absorptivity As mentioned, the key technical
lemma is purported to show right-absorptivity of
�99pprg over 99Kβ , which appears to be straightforward,
at least in the case of the above contraction rule [5, 13–
15].

Non-Lemma 56

• • •(BCF)
prg β

prg

Unfortunately, not even the BCF-initial version of the
property is true. The following is a counter-example.

(λs.ss)(λx.(λy.xy)z) �99pprg (λy.(λx.xz)y)z 99Kβ (λy.yz)z

The problem in the counter-example is the last step of
the standardisation, which amounts to the contraction
of the redex involving the inner y-abstraction below.

(λy.(λx.(λy.xy)z)y)z

As it happens, this is the point where the considered
99Kβ-step (i.e., the contraction of the redex involving the
x-abstraction) must be inserted but that is not possible
because of a clash with the inner y-abstraction.

Left-Absorptivity In sharp contrast with the above (and
surprisingly, at first), it turns out that it is possible to
prove left-absorptivity, as also seen at the beginning of
Section 7.2.

• • •(BCF)
β prg

prg

The difference between right- and left-absorptivity is
that the universal quantification over �99pprg covers far
fewer steps in the latter case than in the former. As we
saw, this manifests itself when trying to prove standard-
isation for the real λ-calculus.

Non-Lemma 57

• • •
β prg

prg

The counter-example at the beginning of Section 7.2
applies.



8 Conclusion

Standard, informal practice in the programming lan-
guage theory community when using structural induc-
tion and related proof principles is to assume that vari-
ables clashes are not an issue (aka Barendregt’s Variable
Convention). We have shown this to be formally correct
for a range of standard properties, possibly up to BCF-
initiality, cf. Lemmas 21, 22, 24, 32, 34, 44, 48, 49, and
54. For the most part, we have been able to show that
the undertaken proof burden resolution is formally in-
complete in the sense that the formal proof burden can
be met by the addition of a fairly simple administra-
tive proof layer, cf. Figures 8, 9, 10, 11, 13, 16, and 17.
The administrative proof layers mostly rely on the same
additional lemmas, thus preventing a blow-up of proof
obligations. We studied standardisation in some detail
and found that only one out of three proof techniques
appears to be amenable to the use of structural induc-
tion, etc..

A Commutative Diagrams

We use commutative diagrams in three different ways,
which are distinguished in the way they write vertices.

A.1 Vertices as Terms

When written with terms as vertices, commutative dia-
grams simply describe reduction scenarios.

A.2 Vertices as M ’s, N ’s

We shall see next that commutative diagrams are used
to express rewriting predicates such as:

“For all terms, such that, . . . , there exist terms,
such that, . . . .”

In order to prove these results, we start by writing M ’s
for the universally quantified terms and gradually in-
troduce N ’s from supporting lemmas to eventually sub-
stantiate the existence claims. Please note that we use
z to signify “claimed” existences that are impossible.

A.3 Vertices as •’s, ◦’s

Formally, a commutative diagram of this nature is a set
of vertices and a set of directed edges between pairs
of vertices. Informally, the colour of a vertex (• vs ◦)
denotes quantification modes over terms, universal and
existential, respectively. A vertex may be guarded by
a predicate. Edges are written as the relational sym-
bol they pertain to and are either full-coloured (black)
or half-coloured (gray). Informally, the colour indicates
assumed and concluded relations, respectively. An edge

connected to a ◦ must be half-coloured. A diagram must
be type-correct on domains. A property is read off of a
diagram thus:

1. write universal quantifications for all •’s
2. assume the full-coloured relations and the validation

of any guard for a •
3. conclude the guarded existence of all ◦s and their

relations

The following diagram and property are thus equivalent.

• •

• ◦

(P )

(Q)

e1 → e2 ∧ e1 → e3 ∧ P (e1)
⇓
∃e4 . e2 → e4 ∧ e3 → e4 ∧ Q(e4)

B Notation and Terminology

We say that a term reduces to another if the two are
related by a reduction relation and we denote the rela-
tionship by an infix arrow between the two terms. The
“direction” of the reduction should be thought of as be-
ing from-left-to-right. The sub-term of the left-hand side
that a reduction step “acts upon” is called the redex of
the reduction and it is said to be contracted.

– The converse of a relation, →, is written (→)−1.
– Composition is:

a →1;→2 c ⇔def ∃b . a →1 b ∧ b →2 c

– Given two reduction relations →1 and →2, we have:
→1,2 =def →1 ∪ →2. If no confusion is possible,
we omit the comma.

– The reflexive closure of a relation is:10

e1 → e2

e1 −◦ e2 e −◦ e

– The reflexive, transitive closure is:

e1 → e2

e1 →→ e2 e →→ e

e1 →→ e2 e2 →→ e3

e1 →→ e3

We will also denote →→ by (→)?.
– The reflexive, transitive, and symmetric closure is:

e1 → e2

e1 = e2 e = e

e1 = e2 e2 = e3

e1 = e3

e1 = e2

e2 = e1

– The situation of a term reducing to two terms is
called a divergence.

10 This and the next two items are immediately associated
with primitive induction principles. Equality, however, is
only point-wise (or extensional), and no recursion princi-
ple is possible.



– Two diverging reductions, as defined above, are said
to be co-initial.

– Dually, two reductions that share their end-term are
said to be co-final.

– Co-initial reductions are resolvable if they compose
with co-final reductions.

– A relation has the diamond property, �, if any diver-
gence can be resolved.

– A relation, →, is confluent, Confl, if �(→→).

C Known Abstract Results

Diamond Tiling Lemma

(∃→2.→1 ⊆ →2 ⊆ →→1 ∧ �(→2)) ⇒ �(→→1)

Hindley-Rosen Lemma

• •

• ◦

1

2 2

1

⇒

• •

• ◦

1

2 2

1
Commuting Confluence Lemma

• •

• ◦

1

2 2

1

∧ Confl(→1) ∧ Confl(→2) ⇒ Confl(→1,2)
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