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The structure theorem of Joyal, Street and Verity says that every traced monoidal category C

arises as a monoidal full subcategory of the tortile monoidal category Int C. In this paper we

focus on a simple observation that a traced monoidal category C is closed if and only if the

canonical inclusion from C into Int C has a right adjoint. Thus, every traced monoidal closed

category arises as a monoidal co-reflexive full subcategory of a tortile monoidal category.

From this, we derive a series of facts for traced models of linear logic, and some for models

of fixed-point computation. To make the paper more self-contained, we also include various

background results for traced monoidal categories.

1. Introduction

In Joyal et al. (1996), Joyal, Street and Verity introduced the notion of traced monoidal

categories. They showed that every traced monoidal category C fully faithfully embeds in

a tortile monoidal category Int C, and that this Int-construction gives a left biadjoint of

the forgetful 2-functor from the 2-category of tortile monoidal categories to that of traced

monoidal categories. This remarkable result attracted much attention from theoretical

computer scientists, particularly in connection with linear logic (Girard 1987) and the

Geometry of Interaction (Girard 1989; Abramsky and Jagadeesan 1994; Abramsky 1996;

Haghverdi 2000; Abramsky et al. 2002; Haghverdi and Scott 2006), where the special

case of traced symmetric monoidal categories and compact closed categories (Kelly and

Laplaza 1980) is of interest.

In this paper we shall see that the monoidal closed structure can be tied with

the Int-construction in an unexpected manner. Namely, we show the following result

(Theorem 4.1).

Theorem. A traced monoidal category C is closed if and only if the embedding from C

into Int C has a right adjoint.

Despite its simplicity, to the best of our knowledge, this fact has not previously been

pointed out in the literature. Perhaps this is partly because the Int-construction works too

nicely: tortile monoidal categories are closed, therefore every traced monoidal category

embeds into a closed one just via the Int-construction. So it seems that for this reason

it was not felt that traced monoidal closed categories were themselves interesting (an

exception being Coccia et al. (2002), where traced monoidal closed categories with extra

structure are used for modelling higher-order cyclic shared structures). However, the tortile

structure (or compact closed structure in the symmetric case) just describes a very special
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kind of closedness, and not every traced monoidal closed category is tortile. Our result says

that the relation between tortile structure and general closed structure is still in harmony:

every traced monoidal closed category arises as a monoidal co-reflexive full subcategory

of a tortile monoidal category. The embedding from C to Int C may not preserve the

closed structure (see Remark 4.2 for a counterexample), but the closed structure on C is

determined by the closed structure of Int C and the co-reflection.

The author noticed this result in July 2005, after learning from Paul-André Melliès about

the traced monoidal closed category of negative Conway games (Melliès 2004). It took the

author a few months to realise that it had several applications to models of linear logic

and to models of fixed-point computation. After that, Shin-ya Katsumata and Susumu

Nishimura discovered a concrete example of this in the study of program transformations

(Katsumata and Nishimura 2006), and then Katsumata gave a striking application in the

theory of attribute grammars (Katsumata 2008). These discoveries prompted the author

to write down the result so that it is hopefully accessible to theoretical computer scientists

with less background in category theory.

To this end, instead of just stating and proving the main result (which would only need a

few pages – see Section 4), we shall include in Sections 2 and 3 all the required definitions

and results (but without proofs) on monoidal categories and monoidal functors, traced

monoidal categories, tortile monoidal categories and Int-construction, making the paper

largely self-contained. Section 5 is devoted to applications in models of linear logic and

fixed-point computation; for the latter the author’s old work on recursion created from

cyclic sharing (Hasegawa 1997; Hasegawa 1999) is recast as linear fixed-point operators in

traced models of intuitionistic linear logic. In addition, we shall make use of the graphical

presentation for monoidal categories and monoidal functors (Joyal and Street 1991;

Cockett and Seely 1999; Melliès 2006), which goes back to Penrose’s diagrams for

calculating with tensors (Penrose and Rindler 1984). This graphical approach is intuitively

helpful and technically convenient, and now finding applications in computer science, see,

for example, Melliès (2006) and Selinger (2007). Appendices A and B contain graphical

proofs of a few background results on traced monoidal categories, and Appendix C gives

a graphical derivation of the linear fixed-point equation.

While most work in computer science focuses on the symmetric case (traced symmetric

monoidal categories and compact closed categories), in this paper, whenever possible,

we consider general traced balanced (braided) monoidal categories and tortile monoidal

categories, following the original development by Joyal, Street and Verity; most of our

results are valid for this generality – we also expect that non-symmetric situations

will become useful in future developments in computer science, possibly in the area of

topological quantum computation (Freedman et al. 2002).

2. Preliminaries

2.1. Monoidal categories

A monoidal category (Mac Lane 1971) (or tensor category (Joyal and Street 1993)) C =

(C,⊗, I, a, l, r) consists of a category C, a functor ⊗ : C × C → C, an object I ∈ C and
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natural isomorphisms aA,B,C : (A⊗B)⊗C ∼→ A⊗(B⊗C), lA : I⊗A ∼→ A and rA : A⊗I ∼→ A

such that the following two diagrams commute for all A,B, C and D:

((A⊗ B)⊗ C)⊗ D (A⊗ B)⊗ (C ⊗ D)

(A⊗ (B ⊗ C))⊗ D A⊗ ((B ⊗ C)⊗ D) A⊗ (B ⊗ (C ⊗ D))

�a

�

a⊗D

�

a

�
a

�
A⊗a

(A⊗ I)⊗ B A⊗ (I ⊗ B)

A⊗ B

�a

����r⊗B
���� A⊗l

Mac Lane’s coherence theorem (Mac Lane 1971; Joyal and Street 1993) states that all

diagrams built from a, l and r commute. It follows that, in principle, most results stated

for the strict monoidal categories (where a, l, r are the identity arrows and (A ⊗ B) ⊗ C

is identified with A ⊗ (B ⊗ C), and similarly for tensor unit) can be reformulated and

proved without strictness. For ease of presentation, in many places in this paper we

will not put brackets on tensor products when rigour is guaranteed by the coherence

theorem.

A braiding is a natural isomorphism cA,B : A ⊗ B
∼→ B ⊗ A such that both c and c−1

satisfy the following ‘bilinearity’ diagrams (the case for c−1 is omitted):

(A⊗ B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗ A

(B ⊗ A)⊗ C B ⊗ (A⊗ C) B ⊗ (C ⊗ A)
�

c⊗C

�a �c

�
a

�
a

�
B⊗c

A symmetry is a braiding such that cA,B = c−1
B,A. A braided/symmetric monoidal category is

a monoidal category equipped with a braiding/symmetry.

A twist or a balance for a braided monoidal category is a natural isomorphism θA :

A
∼→ A such that θI = idI and θA⊗B = cB,A ◦ (θB ⊗ θA) ◦ cA,B hold. A balanced monoidal

category is a braided monoidal category with a twist. Note that a symmetric monoidal

category is a balanced monoidal category with θA = idA for every A.

2.2. Monoidal functors and natural transformations

For monoidal categories C = (C,⊗, I, a, l, r) and C′ = (C′,⊗′, I ′, a′, l′, r′), a monoidal functor

from C to C′ is a tuple (F,m,mI ) where F is a functor from C to C′, m is a natural

transformation from F(−) ⊗′ F(=) to F(−⊗ =) and mI : I ′ → FI is an arrow in C′,
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satisfying the following coherence conditions:

(FA⊗′ FB)⊗′ FC F(A⊗ B)⊗′ FC F((A⊗ B)⊗ C)

FA⊗′ (FB ⊗′ FC) FA⊗′ F(B ⊗ C) F(A⊗ (B ⊗ C))
�

a′

�m⊗′FC �m

�

Fa

�
FA⊗′m

�
m

I ′ ⊗′ FA FA

FI ⊗′ FA F(I ⊗ A)
�

mI⊗FA

�l′

�
m

�
Fl

FA⊗′ I ′ FA

FA⊗′ FI F(A⊗ I)
�

FA⊗mI

�r′

�
m

�
Fr

It is called strong if mA,B and mI are all isomorphisms.

A balanced monoidal functor from a balanced C to another C′ is a monoidal functor

(F,m,mI ) that additionally satisfies the condition

FA⊗′ FB FB ⊗′ FA

F(A⊗ B) F(B ⊗ A)

�c′

�

m

�

m

�
Fc

and F(θA) = θFA.

For monoidal functors (F,m,mI ), (G, n, nI ) with the same source and target monoidal

categories, a monoidal natural transformation from (F,m,mI ) to (G, n, nI ) is a natural

transformation ϕ : F → G such that the following diagrams commute:

FA⊗′ FB F(A⊗ B)

GA⊗′ GB G(A⊗ B)
�

ϕ⊗′ϕ

�m

�

ϕ

�
n

I ′

FI GI

	
	

mI �

��
nI

�
ϕ

A (balanced/symmetric)monoidal adjunction between (balanced/symmetric) monoidal cat-

egories is an adjunction in which both of the functors are (balanced/symmetric) monoidal

and the unit and counit are monoidal natural transformations.

2.3. Geometry of monoidal categories

In this paper we make use of the graphical language for monoidal categories, known as

string diagrams or Penrose diagrams, that was developed by Joyal and Street (Joyal and

Street 1991). A morphism f : A1 ⊗ A2 ⊗ . . . ⊗ Am → B1 ⊗ B2 ⊗ . . . ⊗ Bn in a monoidal
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category can be drawn as (from left to right)

f

Am

A2

.

.

.

A1

�Bn

�B2

.

.

.

�B1

Morphisms can be composed, either sequentially,

X f �Y Y g �Z 	→ X f Y g �Z

f : X → Y , g : Y → Z g ◦ f : X → Z

or in parallel,

A f �B

C g �D

	→
A f �B

C g �D

f : A→ B, g : C → D f ⊗ g : A⊗ C → B ⊗ D

Braids are expressed by crossing:

c = �
�

��

and

c−1 = �
�

��

Twists are drawn as

θ = �

and

θ−1 = �

Joyal and Street (1991) showed that the interpretation of such a diagram is invariant

under continuous deformation, thus one may safely use graphical reasoning to establish

equalities on morphisms in monoidal categories. In particular, this notation allows

intuitive interpretations of the coherent conditions for braiding and twist. For example,

the bilinearity axiom for a braiding can be naturally expressed as follows:

�
�

�
��

�� ���

��� ��
�
�
�

=
�� �

�� �
�
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Also, the axiom θA⊗B = cB,A ◦ (θB ⊗ θA) ◦ cA,B for a twist can be expressed as follows:� �� �
�
� = �� ��

�
�

Remark 2.1. Links in these pictures should be regarded as ‘ribbons’ or ‘framed tangles’,

as stressed in Joyal and Street (1991; 1993) and Shum (1994). Our notation for twists

is intended to be a reasonable alternative to the ribbon twisting notation used in the

literature.

Monoidal functors and monoidal natural transformations also allow concise graphical

presentations, as demonstrated by Cockett and Seely (Cockett and Seely 1999) and Melliès

(Melliès 2006). Consider a monoidal functor F = (F,m,mI ) : C→ D. Given f : A⊗B → C

in C, we may draw a picture with a ‘box’ (which is drawn here with shading, and should

not be confused with the square around f)

f �
FA

FB

A

B
C FC

which represents FA⊗ FB
mA,B→ F(A⊗ B)

Ff
→ FC . The shaded area is in C, while the white

area is in D. Similarly, given a : I → A, the picture

a �A FA

represents I
mI→ FI

Fa→ FA. The three coherence conditions of monoidal functors ensure

that this notation works well for general f : A1⊗ . . .⊗An → B, where the grouping of Ai’s

does not matter. In addition, if F is strong monoidal, we can do the same for tensors in

the codomain. It is a pleasant exercise to write down the coherence conditions for braids

and monoidal natural transformations using this box notation. For instance, one of the

diagrams for monoidal natural transformations can be expressed as follows:

f
FA

FB

A

B
C FC GCϕ � =

ϕ

ϕ
f �

FA

FB

GA

GB

A

B
C GC

See Cockett and Seely (1999) and Melliès (2006) for further details and examples.

3. Traced monoidal categories

3.1. Traced monoidal categories

We will present a slightly simplified definition of traced monoidal categories, where trace

is defined in an object-wise manner. Such a theory of object-wise trace has been developed

by Blute, Cockett and Seely for linearly distributive categories (Blute et al. 2000); Milner

also gave a similar axiomatisation for his reflexive action calculi (Milner 1994).
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A traced monoidal category (Joyal et al. 1996) is a balanced monoidal category C

equipped with a family of functions, called the trace operator,

TrXA,B : C(A⊗X,B ⊗X) −→ C(A,B) ,

subject to the following four coherence axioms, where a trace is graphically presented as

a box with feedback:

fA

X

�B
�X

f : A⊗X → B ⊗X

	→

�� �	�

fA �B

TrXA,B(f) : A→ B

Tightening (Naturality)

TrXA′ ,B′((k ⊗ idX) ◦ f ◦ (h⊗ idX)) = k ◦ TrXA,B(f) ◦ h

�� �	�

h
f

k � =

�� �	�

h
f

k �

Yanking

TrXX,X(cX,X) ◦ θ−1
X = idX = TrXX,X(c−1

X,X) ◦ θX

�� �	�

�� � = � =

�� �	�

�� �

Superposing

TrXC⊗A,C⊗B(idC ⊗ f) = idC ⊗ TrXA,B(f)

�� �	�

f �
�

=

�� �	�

f �
�
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Exchange

TrXA,B(TrYA⊗X,B⊗X(f)) = TrYA,B(TrXA⊗Y ,B⊗Y ((idB ⊗ cY ,X) ◦ f ◦ (idA ⊗ c−1
Y ,X)))

�� �	�


�

�


�

f
� =

�� �	�


�

�


�

�� f
��

�

Readers familiar with the paper by Joyal, Street and Verity (Joyal et al. 1996) should

find no difficulty in seeing that these are all derivable from the original axiomatisation.

Conversely, the original axioms are derivable from our axioms; we shall give a slightly

non-trivial derivation of Sliding and Vanishing for tensor in Appendix A. The remaining

Vanishing for unit is in fact redundant in the original axiomatisation (as demonstrated in

Appendix A), so our axioms are equivalent to the original axioms in ibid.

3.2. Tortile monoidal categories

A tortile monoidal category (Shum 1994) (which (Yetter 2001) is also called a ribbon

category) is a balanced monoidal category with an object A∗ for each object A, unit

ηA : I → A⊗ A∗ and counit εA : A∗ ⊗ A→ I such that each of

A
l−1
A→ I ⊗ A

ηA⊗idA→ (A⊗ A∗)⊗ A
aA,A∗ ,A→ A⊗ (A∗ ⊗ A)

idA⊗εA→ A⊗ I
rA→ A

A∗
r−1
A∗→ A∗ ⊗ I

idA∗⊗ηA→ A∗ ⊗ (A⊗ A∗)
a−1
A∗ ,A,A∗→ (A∗ ⊗ A)⊗ A∗

εA⊗idA→ I ⊗ A∗
lA∗→ A∗

is the identity and, moreover, θ∗A = θA∗ holds, where, for f : A→ B, we have f∗ : B∗ → A∗

is given by (omitting l, r and a)

B∗
idB∗⊗ηA→ B∗ ⊗ A⊗ A∗

idB∗⊗f⊗idA∗→ B∗ ⊗ B ⊗ A∗
εB⊗idA∗→ A∗.

It follows that (−)∗ extends to a contravariant equivalence, A∗∗ � A, and the functor

(−) ⊗ A is left adjoint to (−) ⊗ A∗ with unit idX ⊗ ηA : X → X ⊗ A ⊗ A∗ and counit

idX ⊗ εA : X ⊗ A∗ ⊗ A → X. Note that tortile symmetric monoidal categories (in which

braiding is a symmetry and twist is the identity) are the familiar compact closed categories

(Kelly and Laplaza 1980). The unit and counit in tortile monoidal categories can be drawn

as

��� and

�	� , respectively. With these, the three axioms are expressed as follows:

��
�	
�

= �
�

�� �	= �
��

�
�	= �

The importance of tortile monoidal categories in knot theory comes from the following

result.
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Theorem 3.1 (Shum 1994). The tortile monoidal category freely generated by a single

object is equivalent to the category of framed tangles.

Therefore, tortile monoidal categories give rise to invariants (or models) for tangles, in

just the same sense as cartesian closed categories give rise to models of the simply typed

lambda calculus (Lambek and Scott 1986).

Any tortile monoidal category has a unique trace (called the canonical trace (Joyal

et al. 1996)), hence it is also a traced monoidal category. (The uniqueness of trace in

tortile monoidal categories seems to be folklore; in Appendix B we shall give a direct

graphical proof, based on an unpublished manuscript by the author (Hasegawa 2000).)

The canonical trace is given by combining η, ε, c and θ:

TrXA,Bf = (idB ⊗ (εX ◦ (idX∗ ⊗ θX) ◦ cX,X∗ )) ◦ (f ⊗ idX∗ ) ◦ (idA ⊗ ηX)�� �	�

f �
=

��� �	�
f

��

�

It follows that a monoidal full subcategory of a tortile monoidal category is traced.

3.3. The Int-construction

In fact, every traced monoidal category arises in this way: given a traced monoidal

category C, we can construct a tortile monoidal category Int C in which C fully faith-

fully embeds, via the Int-construction of Joyal, Street and Verity. In computer science,

Int-construction can be considered as an abstract version of Girard’s ‘Geometry of

Interaction’ (Girard 1989). Abramsky introduced the GoI construction for his domain-

theoretic and categorical interpretations of the Geometry of Interaction (Abramsky and

Jagadeesan 1994; Abramsky 1996), which turned out to be equivalent to the symmetric

case of the Int-construction. This view and its relation to Girard’s work were further

investigated by Abramsky, Haghverdi and Scott (Haghverdi 2000; Abramsky et al. 2002;

Haghverdi and Scott 2006).

Below we recall the ingredients of the Int-construction. Objects of Int C are pairs of

objects of C. An arrow from (A+, A−) to (B+, B−) in IntC is an arrow from A+ ⊗ B− to

B+ ⊗ A− in C. The identity on (A+, A−) is idA+ ⊗ θ−1
A− ∈ C(A+ ⊗ A−, A+ ⊗ A−).

�
�

The composition of f ∈ Int C((A+, A−), (B+, B−)) = C(A+ ⊗ B−, B+ ⊗ A−) and g ∈
Int C((B+, B−), (C+, C−)) = C(B+ ⊗ C−, C+ ⊗ B−) is given by�� �	�

B−

��
f

��
g

��C−

A+ B+

�A−

�
C+
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Next we look at the monoidal structure. On objects, we define tensor and unit by

(A+, A−)⊗ (B+, B−) = (A+ ⊗ B+, B− ⊗A−) and I = (I, I). On arrows, for f1 : (A+
1 , A

−
1 )→

(B+
1 , B

−
1 ) and f2 : (A+

2 , A
−
2 )→ (B+

2 , B
−
2 ), we define f1 ⊗ f2 by

��

��
f1

��

��

�

f2

�

�
�

Braids and twists in Int C are not quite obvious:

c =
��

��

�

��
�

���
�

θ = �� ���
�

It is an interesting exercise to write down c−1 and θ−1 explicitly.

Finally, we describe the duality, which is not as hard: (A+, A−)∗ = (A−, A+). The

unit η(A+ ,A−) : I → (A+, A−) ⊗ (A+, A−)∗ is given by idA+ ⊗ θ−1
A− . The counit ε(A+ ,A−) :

(A+, A−)∗⊗(A+, A−)→ I is idA−⊗θA+ . We can extend (−)∗ to be a contravariant equivalence

on Int C: on arrows f : (A+, A−)→ (B+, B−), we define f∗ : (B+, B−)∗ → (A+, A−)∗ as

�� f �� �
�

Theorem 3.2 (Joyal et al. 1996). These data determine a tortile monoidal structure on

Int C. Moreover, the functor N : C→ Int C sending A to (A, I) strongly preserves the traced

monoidal structure, and is full faithful.

Explicitly, the canonical trace on Int C can be given as follows. (It is not entirely obvious

for the non-symmetric case.) For f : (A+, A−)⊗ (X+, X−)→ (B+, B−)⊗ (X+, X−), its trace

Tr(X +,X−)f : (A+, A−)→ (B+, B−) is

�

�


��� �	�

��
��

f

�

��
�� �

It easily follows that N preserves trace up to canonical isomorphisms.

In fact, Int-construction is universal, as shown in Joyal et al. (1996): it gives a left

biadjoint to the forgetful 2-functor from the 2-category of tortile monoidal categories to

that of traced monoidal categories.
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3.4. Trace-fixpoint correspondence

The following correspondence between traces and fixed-point operators on categories

with finite products, which was noticed by Martin Hyland and the author independently†,

shows that the traces and fixed-point operators commonly used in computer science are

very closely related.

Let C be a category with finite products. A parameterised fixed-point operator on C is

a family of functions

(−)† : C(A×X,X)→ C(A,X)

that is natural in A and satisfies the fixed-point equation f† = f ◦ 〈idA, f†〉 : A→ X for any

f : A× X → X. It is called (Simpson and Plotkin 2000) a Conway fixed-point operator if

it satisfies the dinaturality

(f ◦ 〈πA,X, g〉)† = f ◦ 〈idA, (g ◦ 〈πA,Y , f〉)†〉 : A→ X

for f : A× Y → X and g : A×X → Y , and the diagonal property

(f ◦ (idA × ΔX))† = (f†)† : A→ X

for f : A×X×X → X, where ΔX : X → X×X is the diagonal map. (It is easy to see that

dinaturality implies the fixed-point equation, so there is a redundancy in the definition.)

For readers familiar with equational theories with a fixed-point operator, it might

be useful to interpret this setting as a many-sorted equational theory enriched with a

fixed-point operator expressed by a μ-binding operator

Γ, x : X �M : X

Γ � μxX.M : X

for which the axioms above can be stated as follows (Simpson and Plotkin 2000):

Γ, y : Y , x : X �M : X Γ � N : Y

Γ � (μxX.M)[y := N] = μxX.(M[y := N]) : X
naturality

Γ, x : X �M : X

Γ � μxX.M = M[x := μxX.M] : X
fixed-point equation

Γ, y : Y �M : X Γ, x : X � N : Y

Γ � μxX.M[y := N] = M[y := μyY .N[x := M]] : X
dinaturality

Γ, x1 : X, x2 : X �M : X

Γ � μxX1 .μx
X
2 .M = μxX.M[x1 := x, x2 := x] : X

diagonal property

Another equivalent axiomatisation of Conway fixed-point operators is by the Bekić

property, which says that the fixed point of f : A×X × Y → X × Y is equal to

〈(f1 ◦ 〈id, f†2〉)
†, f†2 ◦ 〈id, (f1 ◦ 〈id, f†2〉)

†〉〉 : A→ X × Y ,

† We should note that mathematically equivalent observations had been made by several authors before the

notion of traced monoidal categories was introduced, in particular by Bloom and Ésik (Bloom and Ésik 1993)

and Ştefǎnescu (Ştefǎnescu 2000).
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where f1 = π ◦ f : A × X × Y → X and f2 = π′ ◦ f : A × X × Y → Y . In terms of

μ-binding, the Bekić property states

Γ, x : X, y : Y �M : X Γ, x : X, y : Y � Y : N

Γ � μ(xX, yY ).(M,N) = (μxX.M[y := μyY .N],

μyY .N[x := μxX.M[y := μyY .N]]) : X × Y

The Bekić property enables one to replace a simultaneous recursion by nested single ones,

and is widely used in computer science. Many concrete fixed-point operators in computer

science satisfy dinaturality and diagonal property, or, equivalently, the Bekić property,

are thus Conway fixed-point operators. For example, the least fixed-point operators on

various categories of domains are Conway operators.

Theorem 3.3 (Hyland, Hasegawa (Hasegawa 1997; 1999)). For any category with finite

products, to give a Conway operator is to give a trace, where finite products are taken as

the monoidal structure.

Here we shall just recall the constructions of this bijective correspondence:

f : A×X → X

f† = TrXA,X(ΔX ◦ f) : A→ X

g : A×X → B ×X

TrXA,B(g) = πB,X ◦ (g ◦ (idA × π′B,X))† : A→ B

A detailed proof can be found in Hasegawa (1999). The construction of Conway operator

from a trace can be drawn as follows:

f � ⇒ f �

�� ���

=
�

���
��

f

f

�
�

�
�

�

�

Thus, many categories in denotational semantics are traced. In particular, many categories

of domains are traced, with trace determined by the least fixed-point operator. Moreover,

Simpson (Simpson 1993) has shown that, under a mild condition, the least fixed-point

operator is characterised as the unique dinatural fixed-point operator. Therefore, in many

such domain-theoretic examples, a trace exists uniquely and is determined by the least

fixed-point operator.

4. Traced monoidal closed categories

So far we have not thought much about closed structure, or higher-types. Recall that a

monoidal category C is closed if −⊗ A : C→ C has a right adjoint A � − for every A:

C(X ⊗ A, Y ) � C(X,A � Y ) .

We will denote (the Y -component of) the counit of this adjunction by evA,Y : (A �
Y )⊗A −→ Y , and for f : X⊗A −→ Y , we let Λ(f) : X −→ A � Y be the unique arrow

satisfying evA,Y ◦ (Λ(f)⊗ idA) = f.
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In particular, a tortile monoidal category is closed, with A � B = B ⊗ A∗. The

counit evA,Y : Y ⊗ A∗ ⊗ A → Y is given by idY ⊗ εA. For f : X ⊗ A −→ Y , we have

Λ(f) : X −→ Y ⊗ A∗ as X
idX⊗ηA−→ X ⊗ A⊗ A∗

f⊗idA∗−→ Y ⊗ A∗.

�	�
�

evA,Y

Y

A∗

A ��
f �

Λ(f)

X
Y

A∗ ��
�	�

f �

evA,Y ◦ (Λ(f)⊗ idA)

X

A

Y
= f �

f

X
Y

A

Remark 4.1. A monoidal category is said to be biclosed if, not only every −⊗A has a right

adjoint A � −, but also every A⊗− has a right adjoint − �

A. In general, a monoidal

closed category may not be biclosed. Also, in a monoidal biclosed category, A � Y and

Y

�

A may not be isomorphic. However, a braided monoidal category is biclosed if it is

closed, because X ⊗ A is naturally isomorphic to A⊗ X via the braiding, and A � Y is

isomorphic to Y

�

A. Therefore, when talking about traced monoidal closed categories,

tortile monoidal categories, symmetric monoidal closed categories and so on, closedness

automatically means biclosedness.

In the context of linear logic (Girard 1987), being symmetric monoidal closed means

that we can interpret the intuitionistic multiplicative fragment (tensor ⊗, unit 1, and linear

implication �) in C. In the rest of this paper we will see that for a traced monoidal

category, closedness has yet another reading in terms of the Int-construction, which in

turn is also related to the modality ! and linear decomposition A→ B = !A � B in linear

logic.

4.1. Monoidal closed categories and co-reflection

It is known that a monoidal co-reflective full subcategory of a monoidal closed category

is also closed (although the closed structure may not be preserved by the inclusion):

Lemma 4.1 (folklore†). Let C
F−→⊥←−
U

D be a monoidal adjunction. If F is full faithful and D

is closed, then C is also closed, with A �C B = U(FA �D FB).

Proof.

C(C ⊗ A,B) � D(F(C ⊗ A),FB) F is full faithful

� D(FC ⊗ FA,FB) F is strong monoidal

� D(FC,FA � FB) D is closed

� C(C,U(FA � FB)) F � U .

Here we appeal to the fact that an adjunction F � U is a monoidal adjunction if and only

if F is strong monoidal (Kelly 1974).

† Martin Hyland (private communication) attributes this result to Brian Day.
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4.2. Main observation

Below we present a variation for traced monoidal categories. It characterises closedness

in terms of an adjunction associated with the Int-construction.

Theorem 4.1 (main observation). Let C be a traced monoidal category, and N : C→ Int C

be the canonical inclusion from C into Int C (that is, N(A) = (A, I)). Then C is closed if

and only if N has a right adjoint.

Corollary 4.1. Every traced monoidal closed category is equivalent to a monoidal co-

reflexive full subcategory of a tortile monoidal category.

Proof of Theorem 4.1. The ‘if ’ direction follows from the previous folklore lemma, as

N is full faithful and strong symmetric monoidal. Note that, by the lemma,

A �C B � U(NA �Int C NB) = U((A, I)∗ ⊗ (B, I)) � U(B,A)

where U is right adjoint to N.

This suggests how we proceed to show the ‘only if’ direction. That is, if C is closed, define

U(A+, A−) = A− � A+. For f : (A+, A−)→ (B+, B−), let U(f) : (A− � A+)→ (B− � B+)

be

Λ(TrA
−

(A−�A+)⊗B− ,B+(f ◦ (evA− ,A+ ⊗ idB− ) ◦ (idA−�A+ ⊗ cB− ,A−)))

or, more internally, a map sending k : A− → A+ to TrA
−

B− ,B+(f◦(k⊗B−)◦cB− ,A− ) : B− → B+

– see the picture �� �	�

�� k
f

B− A− A+ B+

�

In other words, U(f) describes ‘composition with f in Int C’ in terms of C.�� �	�
A−

�� ��
f

��B−

I

k

A+

�I

�
B+

From this, it is immediate to see that U is indeed a functor.

Finally, it is easy to see the adjointness:

Int C(N(A), (B+, B−)) = Int C((A, I), (B+, B−))

= C(A⊗ B−, B+ ⊗ I)

� C(A, B− � B+)

= C(A, U(B+, B−)) .

The (A+, A−)-component of the counit of the adjunction is given by evA− ,A+ : (A− �
A+)⊗ A− → A+, while the unit is trivial.

Remark 4.2. While the canonical inclusion N : C → Int C preserves the traced

monoidal structure (as noted in Section 3.3), N may not preserve the closed
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structure: N(A � B) = (A � B, I) does not have to be isomorphic to N(B) ⊗ N(A)∗ �
(B,A). For example, if C is a traced cartesian closed category, N(A ⇒ 1) � (1, 1) while

N(1)⊗N(A)∗ � (1, A), thus N preserves the closed structure only when every object of C

is isomorphic to 1.

Note that the adjunction in the theorem above gives rise to an idempotent balanced

monoidal comonad NU on Int C that sends (A+, A−) to (A− � A+, I). Recall that for an

idempotent comonad K on a category C, its co-Kleisli category CK and co-Eilenberg–

Moore category CK are both equivalent to the co-reflexive full subcategory of C whose

objects are in the image of K . Thus we have the following corollary.

Corollary 4.2. For any traced monoidal closed category C, there is an idempotent balanced

monoidal comonad on Int C such that its co-Kleisli category is equivalent to C.

Thus all traced monoidal closed categories come from tortile monoidal categories with

an idempotent balanced monoidal comonad. The converse is not true, however: there is a

tortile monoidal category Y with an idempotent balanced monoidal comonad ! such that

Int (Y!) is not equivalent to Y – see Section 6.2.

Remark 4.3. It might be the case that Int-construction and co-Kleisli construction give

rise to a biadjunction between the 2-category of traced monoidal closed categories and

a suitable 2-category of tortile monoidal categories with idempotent balanced monoidal

comonad, but we do not know the answer yet.

5. Applications

5.1. Models of linear logic

We have already noted that symmetric monoidal closed categories are the models of mul-

tiplicative fragment of intuitionistic linear logic (IMLL). Here we shall quickly recall addi-

tional structures needed for modelling other elements of linear logic (Seely 1989; Barr 1991;

Benton 1995; Bierman 1995; Barber and Plotkin 1997; Hyland and Schalk 2003;

Melliès 2003).

A symmetric monoidal closed category with an object ⊥ such that the canonical map

from A to (A � ⊥) � ⊥ is invertible for all objects A is called a ∗-autonomous category

(Barr 1991). ∗-autonomous categories are the models of the multiplicative fragment of

classical linear logic (MLL), where ⊥ (called a dualising object) models falsity and

A � ⊥ the linear negation A⊥ of A. Compact closed categories (= tortile symmetric

monoidal categories) are special instances of ∗-autonomous categories, so they also are

models of MLL – although they are rather degenerate ones, in that interpretations of

A

&

B = (A⊥ ⊗ B⊥)⊥ and A⊗ B are isomorphic, and so are ⊥ and 1.

For interpreting additive conjunctions and disjunctions of linear logic, it is enough

simply to assume finite products and finite coproducts. However, they are not particularly
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important in this paper; we do not know any useful conditions to ensure the existence of

finite (bi)products† on Int C, so additives do not have a good place in our story yet.

A symmetric monoidal adjunction between a category with finite products and a

symmetric monoidal category gives rise to a comonad on the symmetric monoidal

category, which models the exponential ! of linear logic (Barber and Plotkin 1997;

Bierman 1995). Such a comonad is called a linear exponential comonad (Hyland and

Schalk 2003). Explicitly, a linear exponential comonad is a symmetric monoidal comonad !

on a symmetric monoidal category C such that the category of its coalgebras is a category

of commutative comonoids, which means:

— there are specified monoidal natural transformations eA :!A→ I and dA :!A→!A⊗!A

that form a commutative comonoid (!A, eA, dA) in C and also are coalgebra morphisms

from (!A, δA) to (I, mI ) and (!A⊗!A,m!A,!A ◦ (δA ⊗ δA)), respectively; and

— any coalgebra morphism from (!A, δA) to (!B, δB) is also a comonoid morphism from

(!A, eA, dA) to (!B, eB, dB).

In summary, a model of the multiplicative exponential fragment of intuitionistic linear

logic (IMELL) is a symmetric monoidal closed category with a linear exponential

comonad. A model of the multiplicative exponential fragment of classical linear logic

(MELL) is a ∗-autonomous category with a linear exponential comonad.

Returning to our study of traced categories, if C is a traced cartesian closed category,

our main theorem implies that C
N−→⊥←−
U

Int C is a symmetric monoidal adjunction, thus NU

is a linear exponential comonad on Int C.

Corollary 5.1. For any traced cartesian closed category C, there is an idempotent linear

exponential comonad on Int C such that its co-Kleisli category is equivalent to C.

Explicitly, this comonad sends (A+, A−) to (A− ⇒ A+, 1).

Taking this together with the trace-fixpoint correspondence, we have the following

corollary.

Corollary 5.2. Any cartesian closed category with a Conway fixed-point operator is

equivalent to one arising from a compact closed model of MELL via the co-Kleisli

construction.

Remark 5.1. Given a traced symmetric category with an idempotent linear exponential

comonad, its co-Kleisli category (equivalently, co-Eilenberg–Moore category) has finite

products and is traced (with cartesian product as monoidal product), and hence has a

Conway fixed-point operator – see Melliès (2006) for a proof. Our results above show

that the Int-construction provides many such examples.

† If a tortile monoidal category has finite products, they are biproducts (Houston 2008). Therefore, in a

degenerate model of linear logic in which multiplicative conjunction and disjunction are isomorphic (that is,

a compact closed category), additive conjunction and disjunction also are isomorphic.
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We can go further. Since monoidal adjunctions are closed under composition, Int-

construction actually sends a traced model for IMELL to a compact closed model for

MELL.

Corollary 5.3. Let C be a traced symmetric monoidal closed category with a linear

exponential comonad ! (that is, a model of IMELL). Then Int C is equipped with a linear

exponential comonad !′ given by !′(A+, A−) = N(!(U(A+, A−))) = (!(A− � A+), I).

��
�! C

�N


U
⊥ Int C

This gives an alternative possibility for interpreting exponentials in the Geometry of

Interaction – this is not quite the same as Girard’s (Girard 1989) or the treatment by

Abramsky, Haghverdi, Scott et al. (Abramsky and Jagadeesan 1994; Haghverdi 2000;

Abramsky et al. 2002; Haghverdi and Scott 2006).

5.2. Linear fixed-points: recursion from cyclic sharing revisited

The following result is shown in Hasegawa (1997; 1999).

Theorem 5.1. Given a symmetric monoidal adjunction C
F−→⊥←−
U

D between a category C

with finite products (taken as the monoidal structure) and a traced symmetric monoidal

category D, there exists a family of functions

(−)† : D(FA⊗X,X) −→ D(FA,X)

that is natural in A and dinatural in X.

Explicitly, f† is given by

εX ◦ TrFUX
FA,FUX(mF

UX,UX

−1 ◦ F(ΔUX ◦Uf ◦ mU
FA,X ◦ (ηA × idUX)) ◦ mF

A,UX)

where η and ε are the unit and counit of the adjunction (these should not be confused with

those for tortile monoidal categories). In particular, f† satisfies the fixed-point equation

f† = f ◦ (idFA ⊗ f†) ◦ mF−1 ◦ FΔA .

This result has been used to provide a semantics of recursion in lambda calculi with cyclic

sharing (Hasegawa 1997; Hasegawa 1999).

Using the box notation (Cockett and Seely 1999; Melliès 2006), this f† can be nicely

expressed as follows:

f
η ε

�
�

�
�

�

�
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In this picture, the inner and outer boxes correspond to functors U and F , respectively,

and the components in the gray zone belong to C while those in white to D. Happily, we

do not have to bother with the coherence morphisms mF and mU . In Appendix C we give

a graphical derivation of the fixed-point equation using the box notation, which replaces

the lengthy calculation in Hasegawa (1999).

Remark 5.2. In Hasegawa (1997; 1999), only Kleisli adjunctions of commutative monads

were considered, and this theorem was stated with an additional condition that F is an

identity-on-object, strict monoidal functor. However, this restriction is not essential, as we

demonstrate here.

If D is closed, the operator (−)† can be replaced by a family of arrows of

D(FU(X � X), X) � D(I, FU(X � X) � X) .

In terms of the linear lambda calculus corresponding to intuitionistic linear logic (Barber

and Plotkin 1997), this amounts to a linear fixed-point combinator YX :!(X � X) � X

such that

YX (!M) = M (YX (!M))

holds for any term M : X � X with no free linear variable. Note that this is different

from the usual fixed-point combinator with type !(!X � X) � X, which returns a fixed

point of a non-linear map of type !X � X. As demonstrated in Hasegawa (1997; 1999),

linear fixed-point operators can exist even in the settings where such a standard non-linear

fixed-point operator is not available†.

Proposition 5.1. Suppose that D is a traced symmetric monoidal closed category with a

linear exponential comonad !. Then there exists a family of arrows fixX :!(X � X) −→ X

such that, for any f :!A ⊗ X −→ X, we have f† = fixX◦!(Λ(f)) ◦ δA :!A → X (with

Λ(f) :!A −→ X � X the adjoint mate of f) is a fixed-point of f, that is, f† agrees with

!A
d→!A⊗!A

id!A⊗f†→ !A⊗X
f
→ X .

As we have seen, if C is a traced symmetric monoidal closed category with a linear

exponential comonad ! (traced model of IMELL), then Int C is a compact closed category

with a linear exponential comonad !′(A+, A−) = (!(A− � A+), I) (compact model of

MELL). Therefore, both C and Int C admit interpretations of such linear fixed-points.

The linear fixed-point on (X+, X−) in Int C is determined by the linear fixed-point on

X− � X+ in C. Spelling out the detail, to give a linear fixed-point

Y(X+ ,X−) : !′((X+, X−) � (X+, X−)) � (X+, X−)

† One may define Y’X :!(!X � X) � X from Y by (using the syntax of DILL (Barber and Plotkin 1997))

λg!(!X�X).let !f!X�X be g in let !zX be Y!X (λy!X.let !xX be y in !(f (!x))) in z ,

but this does not satisfy the non-linear fixed-point equation Y′ (!M) = M (!(Y′ (!M))). More concretely,

consider the compact closed category Rel of sets and relations, with the powerset comonad as the linear

exponential comonad – this has a linear fixed-point operator (Hasegawa 1997; 1999) but no non-linear one

(cf. Melliès (2006)).
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in Int C is to give a map of

(X−⊗ !((X+ ⊗X−) � (X+ ⊗X−))) � X∗

in C, which is described as

λ(yX
1⊗ !f((X+⊗X−)�(X+⊗X−))).YX−�X+ (!(Uf)) y .

Example 5.1. Let C be a traced cartesian closed category. Take a morphism f = 〈f+, f−〉 :
(X+, X−)→ (X+, X−) in Int C, thus f+ : X+ ×X− → X+ and f− : X+ ×X− → X− in C.

Using the simply typed lambda calculus with μ-fixpoint operator as an internal language

of C, Uf : X+X− → X+X−
can be described as

λkX
−→X+

.λyX
−
.f+(μxX

+

.k (f− (x, y)), y−) : (X− → X+)→ (X− → X+)

where μz.g(z) denotes the corresponding Conway fixed-point. The linear fixed-point

f† : (1, 1)→ (X+, X−) is determined by a morphism from X− to X+ in C, which is given

by the fixed-point of Uf, that is,

μkX
−→X+

.λyX
−
.f+(μxX

+

.k (f− (x, y)), y−) : X− → X+.

6. Related work and discussion

6.1. Program transformations and attribute grammars

Recently, Katsumata and Nishimura (Katsumata and Nishimura 2006) introduced a

program transformation technique called (semantic) higher-order removal. Roughly speak-

ing, their technique transforms a higher-order map g : (A− ⇒ A+) ⇒ (B− ⇒ B+)

(created in the process of dealing with fusions of functions with accumulating parameters,

which involves certain bi-directional information flow) to a less-expensive first-order map

f : A+×B− ⇒ B+×A− such that U(f) = g holds, where U is right adjoint to N. They give

a syntactic condition that ensures that g is in the image of U in their semantic models,

and presented a procedure for identifying f such that U(f) = g.

More recently, Katsumata (Katsumata 2008) has shown that a substantial part of the

theory of attribute grammars (Knuth 1968) can be carried out very cleanly in terms of

traced monoidal categories and Int-construction. Very roughly, an attribute grammar

assigns computation with bidirectional information flow to term trees of a context free

grammar, which can be interpreted in traced monoidal categories in just the same way as

for the Geometry of Interaction:

term tree attribute grammar interpretation via trace

x

f

g

y

�� 		
x

f

g

y


�

����� 		�		�


�

y
g

x

f

�� �	� �� �	�


�

�


�

�
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In Katsumata’s work, the adjunction N � U of Theorem 4.1 provides the equivalence

between attribute grammars and synthesised attribute grammars (attribute grammars

with just bottom-up information flow). This generalises the result on the equivalence

between such attribute grammars formulated in a domain-theoretic setting (Chirica and

Martin 1979).

6.2. Game semantics

An interesting (non)example is the category Y− of negative Conway games (Melliès 2004).

Y− is a symmetric monoidal full subcategory of the compact closed category Y of Conway

games (Joyal 1977). The inclusion from Y− to Y has a right adjoint. Thus (by the folklore

lemma) Y− is a traced symmetric monoidal closed category. Y− is one of very few interesting

traced symmetric monoidal closed categories that are neither cartesian closed nor compact

closed.

Int Y− is not equivalent to Y – thus it does not really fit in our result. But the difference

is subtle; more precisely, Int Y− is equivalent to a compact closed full subcategory of Y,

whose objects are the tensor products of positive and negative games. We expect that

a similar situation should be found in many categories of games, which would deserve

further study. A recent relevant example is the category of multi-bracketed games of

Melliès and Tabareau (Melliès and Tabareau 2007).

6.3. Concluding remarks

We have observed that closedness for a traced monoidal category is equivalent to

an adjointness associated with the Int-construction. This simple result has a number

of applications to models of linear logic and fixed-point computation. We hope that

these provide some good motivation for studying traced monoidal closed categories.

In particular, we expect that it is possible to develop the ‘Geometry of Higher-Order

Interaction’ along the line of this work.

We shall conclude this paper by suggesting some further research directions. First, to

obtain a more solid understanding of traced monoidal closed categories, it is desirable

to find a good concrete description of free traced monoidal closed categories. Intuitively,

it should be some sort of ‘higher-order tangles’ – in the same sense that a free traced

monoidal category can be given as a category of the usual (framed) tangles. Alternatively,

it might be useful to consider free tortile monoidal categories with idempotent balanced

monoidal comonads.

As a second suggestion, which is related to the previous one, but is less ambitious, it

should be useful to develop a syntax for traced monoidal closed categories. Perhaps this

can be done by extending existing term calculi or proof nets for linear logic.

Finally, useful ways of constructing traced monoidal closed categories should be studied.

We have yet to see if the constructions based on uniformity (Hasegawa 2004) can also be

used for the closed setting.
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Appendix A. Derivation of sliding and vanishing

Proposition A.1. Sliding TrXA,B((idB ⊗ h) ◦ f) = TrYA,B(f ◦ (idA ⊗ h)) is derivable.�� �	�

f �
h

=

�� �	�

f �
h

Proof. By Yanking, the left-hand side is equal to�
�

�
�

�

f �

�� �	�

�� h

Using Superposing and Tightening, we have�
�

�
�

�

f �

�� �	�

�� h

Then we apply Exchange:�
�

�
�

�

��
f �

�� �	�

�� h
��

Thanks to the naturality of braidings, this is equal to�
�

�
�

�

f �

�� �	�

��h

Applying Tightening and Superposing, we obtain�
�

�
�

�

f �

�� �	�

��h
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By Yanking, �� �	�

f �
h

This is equal to the right-hand side of the equation, by the naturality of twisting.

Proposition A.2. Vanishing for tensor TrXA,B(TrYA⊗X,B⊗X(f)) = TrX⊗YA,B (f) is derivable.

Proof. We first show a variant of sliding

TrXA,B(TrYA⊗X,B⊗X((idB ⊗ h) ◦ f)) = TrZA,B(f ◦ (idA ⊗ h))

for f : A⊗X ⊗ Y → B ⊗ Z and h : Z → X ⊗ Y

�� �	�
�
�

�
�

�

f
�

h

=

�
�

�
�

�

f
�

h

by the same technique as we used for deriving the sliding axiom above. From the left-hand

side of the equation, by yanking, superposing and tightening, we get

�� �	�
�
�

�
�

�



�

�



�

f
�

�� h

�� ��

to which we apply the exchange axiom twice:

�� �	�
�
�

�
�

�



�

�



�

��
��

f
�

�� h

��
��

�� ��
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By the naturality and bilinearity of braidings, and by tightening and superposing, we have

h ��
��

�� ���

��

�� ���

��
��

�� f




�

�



�

�

The rest of proof is now easy, by yanking and the naturality of twisting; here we should

recall the axiom θA⊗B = cB,A ◦ (θB ⊗ θA) ◦ cA,B of twists. The vanishing axiom for tensor

follows from this equation by letting Z be X ⊗ Y and h be idX⊗Y .

Remark A.1. Vanishing for unit TrIA,Bf = rB ◦ f ◦ r−1
A (f : A⊗ I → B ⊗ I) is redundant in

original axioms in (Joyal et al. 1996). For completeness, here is a direct demonstration:

r−1
A f rB �

=
r−1
A

��

�� �	�

f rB �
yanking

=
r−1
A

�� �	�

��
f rB �

superposing/tightening

=

�� �	�

r−1
A

��
f

��
rB �

c−1
I,I = idI⊗I

=
r−1
A

�� �	�
�

��

f

�
��

rB �
superposing/tightening

=
r−1
A

rA

�� �	�

f �
naturality of r

=

�� �	�

f �
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Appendix B. Uniqueness of trace on tortile monoidal categories

In Section 3.2 we recalled that every tortile monoidal category has a trace called the

canonical trace (Joyal et al. 1996). In fact there is no other way of giving a trace to a

tortile monoidal category.

Proposition B.1. Suppose that C is a tortile monoidal category. Then C has a unique trace.

That is, if Tr is a trace on C, it agrees with the canonical trace, that is,

TrXA,Bf = (idB ⊗ (εX ◦ (idX∗ ⊗ θX) ◦ cX,X∗ )) ◦ (f ⊗ idX∗ ) ◦ (1A ⊗ ηX) : A→ B

holds for f : A⊗X → B ⊗X.

Proof.

�� �	�

f � (1)
=

�� �	�

���
�	�

f
�

�
�

�

(2)
=

�� �	�

��� �	�
f

��
��

�

(3)
=

�� �	�

��� �	�
f

��
��

�

(4)
=

��� �	�
f

��

�

where (1) by an axiom of tortile categories, (2) by naturality and bilinearity of braidings,

(3) by tightening and superposing, and (4) by yanking.

Appendix C. Linear fixed-points graphically

We show that for f : FA⊗X → X,

f† = ε ◦ TrFUX(mF−1 ◦ F(Δ ◦Uf ◦ mU ◦ (η × id)) ◦ mF ) : FA→ X
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satisfies the (linear) fixed-point equation using the box notation for monoidal functors

(Cockett and Seely 1999; Melliès 2006):

f
η ε

�
�

�
�

�

�

First, duplicate Uf ◦ mU ◦ (η × id):

f

f
η

η
ε

�
�

�
�

�

�

Since F is strong monoidal, the grey box can be decomposed:

f

f
η

η
ε

�
�

�
�

�

�

And, furthermore,

f

f
η

η
ε

�
�

�
�

�

�
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Since ε is a monoidal natural transformation from FU to the identity functor, we have

f

f
ε

ε

η

η

�
�

�
�

�

�
���

By adjointness, ε ◦Uη = id:

f

f
ε

η

�
�

�
�

�

�
���

By the axioms of trace,

f

f
ε

η

�
�

�
�

�

�

Now we are done: f† = f ◦ (id⊗ f) ◦ m−1 ◦ FΔ,

f

f
ε

η

�
�

�
�

�

�
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