Planar Lambda Algebras and Semi-closed Operads

Masahito Hasegawa

December 2023

We show how our previous work on *extensional* $BI(_)^{\bullet}$ -algebras and internal operads [1] can be extended to (possibly non-extensional) planar lambda algebras which precisely capture the β -theory of the planar lambda calculus.

First, we identify the axioms on $\mathbf{BI}(_)^{\bullet}$ -terms for making the translations to & from the β -theory of the planar lambda calculus sound and complete. Planar lambda algebras are defined to be $\mathbf{BI}(_)^{\bullet}$ -algebras satisfying these axioms.

Then we give the construction of the internal operads for planar lambda algebras, which gives an *equivalence* between planar lambda algebras and semiclosed operads. Finally, we discuss the symmetric, braided and cartesian cases.

1 Preliminaries

Planar λ -calculus The *planar* λ -calculus is an untyped linear λ -calculus with no exchange, whose terms are given by the following rules.

 $\frac{1}{x \vdash x} \text{ variable } \quad \frac{\Gamma, x \vdash M}{\Gamma \vdash \lambda x.M} \text{ abstraction } \quad \frac{\Gamma \vdash M \quad \Gamma' \vdash N}{\Gamma, \Gamma' \vdash M N} \text{ application}$

It is easy to see that planar terms are closed under β - and η -conversion. Typical planar terms include $\mathbf{I} = \lambda f.f$, $\mathbf{B} = \lambda fxy.f(xy)$, and $M^{\bullet} = \lambda f.f M$ for planar closed term M.

BI(_)•-algebras A **BI**(_)•-algebra [4] is an applicative structure \mathcal{A} with elements **I**, **B** and a^{\bullet} for all $a \in \mathcal{A}$ satisfying **B**a b c = a (b c), **I**a = a, and $a^{\bullet} b = b a$.

The set of closed terms of the planar lambda calculus modulo the β -equality forms a **BI**(_)•-algebra Λ_0^{planar} with $\mathbf{I} = \lambda f.f, \mathbf{B} = \lambda fxy.f(xy)$, and $M^{\bullet} = \lambda f.f M$.

Semi-closed operads Recall that an (planar or non-symmetric) operad \mathcal{P} is a family of sets $(\mathcal{P}(n))_{n \in \mathbb{N}}$ equipped with an identity $id \in \mathcal{P}(1)$ and a composition map sending $f_i \in \mathcal{P}(k_i)$ $(1 \leq i \leq n)$ and $g \in \mathcal{P}(n)$ to the composite $g(f_1, \ldots, f_n) \in \mathcal{P}(k_1 + k_2 + \ldots + k_n)$ which are subject to the unit law and associativity:

$$f(id, \dots, id) = f = id(f)$$

$$h(g_1(f_{11}, \dots, f_{1j_1}), \dots, g_k(f_{k1}, \dots, f_{kj_k})) = (h(g_1, \dots, g_n))(f_{11}, \dots, f_{km_k}).$$

It is semi-closed when there is an element $\mathbf{app} \in \mathcal{P}(2)$ and maps $\lambda(-) : \mathcal{P}(n+1) \to \mathcal{P}(n)$ satisfying the β -rule $\mathbf{app}(\lambda(f), id) = f$ and the naturality $\lambda(g(f_1, \ldots, f_n, id)) = (\lambda(g))(f_1, \ldots, f_n).$

For semi-closed operads \mathcal{P} and \mathcal{Q} , a homomorphism $\varphi : \mathcal{P} \to \mathcal{Q}$ is a family of maps $\varphi_n : P(n) \to Q(n)$ (we often omit the subscript n) such that

- $\varphi_1(id) = id$,
- $\varphi_{k_1+\ldots+k_n}(g(f_1,\ldots,f_n))=\varphi_n(g)(\varphi_{k_1}(f_1)\ldots,\varphi_{k_n}(f_n)),$
- $\varphi_2(\mathbf{app}) = \mathbf{app}$, and
- $\varphi_n(\lambda(f)) = \lambda(\varphi_{n+1}(f)).$

The last condition can be replaced by its single instance $\varphi_1(\lambda(\mathbf{app})) = \lambda(\mathbf{app})$ (cf. [2]), because

$$\begin{split} \varphi_n(\lambda(f)) &= \varphi_n(\lambda(\operatorname{\mathbf{app}}(\lambda(f), id))) & (\beta\text{-rule}) \\ &= \varphi_n(\lambda(\operatorname{\mathbf{app}})(\lambda(f))) & (naturality of \lambda) \\ &= \varphi_1(\lambda(\operatorname{\mathbf{app}}))(\varphi_n(\lambda(f))) & (\varphi \text{ preserves composition}) \\ &= \lambda(\operatorname{\mathbf{app}})(\varphi_n(\lambda(f))) & (\varphi_1(\lambda(\operatorname{\mathbf{app}})) = \lambda(\operatorname{\mathbf{app}})) \\ &= \lambda(\operatorname{\mathbf{app}}(\varphi_n(\lambda(f)), id)) & (naturality of \lambda) \\ &= \lambda(\varphi_2(\operatorname{\mathbf{app}})(\varphi_n(\lambda(f)), \varphi_1(id))) & (\varphi \text{ preserves } id \text{ and } \operatorname{\mathbf{app}}) \\ &= \lambda(\varphi_{n+1}(\operatorname{\mathbf{app}}(\lambda(f), id))) & (\varphi \text{ preserves composition}) \\ &= \lambda(\varphi_{n+1}(f)) & (\beta\text{-rule}). \end{split}$$

Let us write **SemiClosedOperad** for the category of semi-closed operads and homomorphisms.

Proposition 1 The term model of the planar lambda calculus modulo β -equality gives an initial object Λ^{planar} of **SemiClosedOperad**.

Explicitly, $\Lambda^{planar}(n)$ is the set of β -equivalence classes of terms with n free variables x_1, \ldots, x_n . id is (the equivalence class of) $x_1 \vdash x_1$, **app** is $x_1, x_2 \vdash x_1 x_2$, while λ sends $x_1, \ldots, x_n, x_{n+1} \vdash M$ to $x_1, \ldots, x_n \vdash \lambda x_{n+1}.M$. Composition is given by the substitution of terms with appropriate renamings. For any semiclosed operad \mathcal{P} , the unique homomorphism from Λ^{planar} to \mathcal{P} is determined by the obvious translation given by $[\![x]\!] = id, [\![M N]\!] = \operatorname{app}([\![M]\!], [\![N]\!])$ and $[\![\lambda x.M]\!] = \lambda([\![M]\!])$.

Corollary 2 Semi-closed operads are sound and complete for the planar lambda calculus with β -equality.

2 Axiomatizing Planar Lambda Algebras

Let λ_{planar} be the set of planar lambda terms and $\mathbf{BI}(_)^{\bullet}$ be the set of terms generated by variables (each occurring at most once), **B**, **I**, application and the $(_)^{\bullet}$ -operator on closed terms. Let $=_{\mathbf{ext}}$ be the smallest congruence on $\mathbf{BI}(_)^{\bullet}$ satisfying the following axioms

$$BPQR = P(QR)$$
(B)

$$IP = P$$
(I)

$$P^{\bullet}Q = QP$$
(•)

$$BI = I$$
(BI)

$$BB^{\bullet}(BB(BBB)) = B(BB)B$$
(B•)

$$BI^{\bullet}B = BI$$
(I•)

$$BP^{\bullet \bullet}B = B(BP^{\bullet})B$$
(••)

$$(PQ)^{\bullet} = BQ^{\bullet}(BP^{\bullet}B)$$
(app•)

It has been shown that this extensional theory $=_{ext}$ is sound and complete for the $\beta\eta$ -theory of the planar lambda calculus and the following translations [1].

Translations Define $(-)^{\sharp} : \mathbf{BI}(_{-})^{\bullet} \to \lambda_{\mathsf{planar}}$ by

$$\begin{array}{rcl}
\mathbf{B}^{\sharp} &\equiv& \lambda xyz.x \left(y \, z \right) \\
\mathbf{I}^{\sharp} &\equiv& \lambda x.x \\
\left(P \, Q \right)^{\sharp} &\equiv& P^{\sharp} \, Q^{\sharp} \\
\left(P^{\bullet} \right)^{\sharp} &\equiv& \lambda x.x \, P^{\sharp} \\
x^{\sharp} &\equiv& x
\end{array}$$

and $(-)^{\flat}: \lambda_{\mathsf{planar}} \to \mathbf{BI}(_{-})^{\bullet}$ by

$$\begin{array}{rcl} (\lambda x.M)^{\flat} & \equiv & \lambda^* x.M^{\flat} \\ (M N)^{\flat} & \equiv & M^{\flat} N^{\flat} \\ & x^{\flat} & \equiv & x \end{array}$$

where, for P with the rightmost variable x, $\lambda^* x.P$ is given as follows [4].

$$\lambda^* x.x = \mathbf{I}$$

$$\lambda^* x.P Q = \begin{cases} \mathbf{B} Q^{\bullet} (\lambda^* x.P) & (x \in \mathrm{fv}(P)) \\ \mathbf{B} P (\lambda^* x.Q) & (x \in \mathrm{fv}(Q)) \end{cases}$$

We want to modify these axioms to be sound and complete with respect to the β -theory of the planar lambda calculus. Among these axioms, only (BI) is unsound for β , as it requires the η -equality:

$$(\mathbf{B}\mathbf{I})^{\sharp} \equiv (\lambda x y z . x (y z)) (\lambda x . x) =_{\beta} \lambda y z . y z \neq_{\beta} \lambda y . y \equiv \mathbf{I}^{\sharp}$$

Indeed, each $n \ge 0$ should give distinct $\mathbf{B}^n \mathbf{I}$ as

$$(\mathbf{B}^n \mathbf{I})^{\sharp} =_{\beta} \lambda x_0 x_1 \dots x_n . x_0 x_1 \dots x_n$$

while $\mathbf{B}^n \mathbf{I}$ is equal to \mathbf{I} in the extensional theory.

For the β -theory, although **BI**P = P is in general not valid, we still need to validate the following cases.

$$\begin{array}{rcl} \mathbf{B}\mathbf{I}\mathbf{B} &=& \mathbf{B} & (\mathrm{BI}_{\mathbf{B}_0}) \\ \mathbf{B}\mathbf{I}\mathbf{I} &=& \mathbf{I} & (\mathrm{BI}_{\mathbf{I}}) \\ \mathbf{B}\mathbf{I}P^\bullet &=& P^\bullet & (\mathrm{BI}_\bullet) \\ \mathbf{B}\mathbf{I}(\mathbf{B}P) &=& \mathbf{B}P & (\mathrm{BI}_{\mathbf{B}_1}) \\ \mathbf{B}\mathbf{I}(\mathbf{B}PQ) &=& \mathbf{B}PQ & (\mathrm{BI}_{\mathbf{B}_2}) \end{array}$$

The last two can be replaced by the following parameter-free axioms.

$$\mathbf{B} (\mathbf{B} \mathbf{I}) \mathbf{B} = \mathbf{B} (\mathbf{B} \mathbf{I}_{\mathbf{B}_1})$$
$$\mathbf{B} (\mathbf{B} (\mathbf{B} \mathbf{I})) \mathbf{B} = \mathbf{B} (\mathbf{B} \mathbf{I}_{\mathbf{B}_2})$$

It turns out that (BI_{B_0}) and (BI_{B_1}) are derivable from other axioms.¹ Hence all we need are

$$\begin{array}{rcl}
\mathbf{B}\mathbf{I}\mathbf{I} &=& \mathbf{I} & (\mathrm{BI}_{\mathbf{I}}) \\
\mathbf{B}\mathbf{I}P^{\bullet} &=& P^{\bullet} & (\mathrm{BI}_{\bullet}) \\
\mathbf{B}(\mathbf{B}(\mathbf{B}\mathbf{I}))\mathbf{B} &=& \mathbf{B} & (\mathrm{BI}_{\mathbf{B}})
\end{array}$$

(For ease of presentation, in the sequel (BI_{B_2}) is renamed just (BI_B) .) By (BI), we mean these three axioms (BI_I) , (BI_{\bullet}) and (BI_B) instead of the original unsound $\mathbf{BI} = \mathbf{I}$, and let $=_{\mathbf{BI}(_)^{\bullet}}$ be the smallest congruence on $\mathbf{BI}(_)^{\bullet}$ satisfying this new set of axioms (summarised in Figure 1). Below we show that they are sound and complete with respect to the β -theory of the planar lambda calculus.

2.1 Proof

Lemma 3 The following equations are derivable in $=_{\mathbf{BI}(_)}$.

$$\begin{array}{rcl} \mathbf{B} \left(\mathbf{B} P Q \right) &=& \mathbf{B} \left(\mathbf{B} P \right) \left(\mathbf{B} Q \right) & (\mathbf{B} 2) \\ \mathbf{B} \mathbf{B} \left(\mathbf{B} P \right) &=& \mathbf{B} \left(\mathbf{B} \left(\mathbf{B} P \right) \right) \mathbf{B} & (\mathbf{B} 3) \\ \mathbf{B} P \mathbf{I} &=& \mathbf{B} \mathbf{I} P & (\mathbf{B} \mathbf{I} 2) \\ \mathbf{B} \left(\mathbf{B} P Q \right) R &=& \mathbf{B} P \left(\mathbf{B} Q R \right) & (assoc) \end{array}$$

 $^1 \mathrm{We}$ can derive $(\mathrm{BI}_{\mathbf{B}_1})$ from $(\mathrm{BI}_{\mathbf{B}_2})$ and other axioms as follows:

$$\begin{array}{rcl} \mathbf{B}\left(\mathbf{B}\,\mathbf{I}\right)\mathbf{B} &=& \mathbf{B}\left(\mathbf{B}\,\mathbf{I}\right)\left(\mathbf{B}\left(\mathbf{B}\left(\mathbf{B}\,\mathbf{I}\right)\right)\mathbf{B}\right) && \left(\mathbf{B}\mathbf{I}_{\mathbf{B}_{2}}\right) \\ &=& \mathbf{B}\left(\mathbf{B}\left(\mathbf{B}\,\mathbf{I}\right)\left(\mathbf{B}\left(\mathbf{B}\,\mathbf{I}\right)\right)\right)\mathbf{B} && \left(assoc\right) \\ &=& \mathbf{B}\left(\mathbf{B}\left(\mathbf{B}\,\mathbf{B}\,\mathbf{I}\right)\right)\mathbf{B}\left(\mathbf{B}\,\mathbf{I}\right)\right)\mathbf{B} && \left(\mathbf{B}\right) \\ &=& \mathbf{B}\left(\mathbf{B}\left(\mathbf{B}\,\mathbf{I}\right)\right)\mathbf{B} && \left(\mathbf{B}\mathbf{I}_{\mathbf{B}_{2}}\right) \\ &=& \mathbf{B} && \left(\mathbf{B}\mathbf{I}_{\mathbf{B}_{2}}\right) \end{array}$$

where we use (assoc) from Lemma 3 which is derivable without using $(BI_{\mathbf{B}_0})$ nor $(BI_{\mathbf{B}_1})$. Similarly, we can derive $(BI_{\mathbf{B}_0})$ from $(BI_{\mathbf{B}_1})$ — replace $(\mathbf{B}\mathbf{I})$ in the proof above by \mathbf{I} .

<u>Proof</u> (B3) is derivable from (B), (\bullet) and (B \bullet):

$$BB(BP) = B(BB)BP (B)
= BB^{\bullet}(BB(BBB))P (B)
= B^{\bullet}(BB(BBB)P) (B)
= BB(BBB)PB (0)
= B(BBBP)B (B)
= B(B(BP))B (B)$$

(B2) is derivable from (B) and (B3):

$$\mathbf{B} (\mathbf{B} P Q) = \mathbf{B} \mathbf{B} (\mathbf{B} P) Q \quad (B) = \mathbf{B} (\mathbf{B} (\mathbf{B} P)) \mathbf{B} Q \quad (B3) = \mathbf{B} (\mathbf{B} P) (\mathbf{B} Q) \quad (B)$$

(BI2) follows from (B), $(I\bullet)$, (\bullet) :

$$\mathbf{B} P \mathbf{I} = \mathbf{I}^{\bullet} (\mathbf{B} P) \quad (\bullet) \\ = \mathbf{B} \mathbf{I}^{\bullet} \mathbf{B} P \quad (\mathbf{B}) \\ = \mathbf{B} \mathbf{I} P \quad (\mathbf{I} \bullet)$$

From (BI2) we have $\mathbf{B}(\lambda^* x.P)\mathbf{I} = \mathbf{B}\mathbf{I}(\lambda^* x.P) = \lambda^* x.P$ because $\lambda^* x.P$ is either \mathbf{I} or $\mathbf{B}QR$ for some Q and R.

The associativity law (assoc), to be frequently used below, is derivable as

 $\mathbf{B} \left(\mathbf{B} P Q \right) R \stackrel{\text{B2}}{=} \mathbf{B} \left(\mathbf{B} P \right) \left(\mathbf{B} Q \right) R \stackrel{\text{B}}{=} \mathbf{B} P \left(\mathbf{B} Q R \right).$

Lemma 4 $P =_{\mathbf{BI}(_)} Q$ implies $P^{\sharp} =_{\beta} Q^{\sharp}$.

<u>Proof</u> Just to check that $P^{\sharp} =_{\beta} Q^{\sharp}$ holds for each axiom P = Q.

Lemma 5 (Crucial) $P =_{\mathbf{BI}(_)\bullet} Q$ implies $\lambda^* x.P =_{\mathbf{BI}(_)\bullet} \lambda^* x.Q$.

<u>Proof</u> For each axiom P = Q with free (rightmost) x we show $\lambda^* x.P =_{\mathbf{BI}(_)} \mathbf{A}^* x.Q$. The relevant cases are (B), (I) and ($\mathbf{\bullet}$), as other axioms are variable-free.

1. (B)
$$\lambda^* x \cdot \mathbf{B} P Q R = \lambda^* x \cdot P (Q R)$$
 with $x \in fv(P)$:

$$\begin{array}{rcl} \lambda^* x. \mathbf{B} P Q R &\equiv & \mathbf{B} R^{\bullet} \left(\mathbf{B} Q^{\bullet} \left(\mathbf{B} \mathbf{B} \left(\lambda^* x. P \right) \right) \right) \\ &= & \mathbf{B} R^{\bullet} \left(\mathbf{B} \left(\mathbf{B} Q^{\bullet} \mathbf{B} \right) \left(\lambda^* x. P \right) \right) & (assoc) \\ &= & \mathbf{B} \left(\mathbf{B} R^{\bullet} \left(\mathbf{B} Q^{\bullet} \mathbf{B} \right) \right) \left(\lambda^* x. P \right) & (assoc) \\ &= & \mathbf{B} \left(Q R \right)^{\bullet} \left(\lambda^* x. P \right) & (app \bullet) \\ &\equiv & \lambda^* x. P \left(Q R \right) \end{array}$$

2. (B)
$$\lambda^* x. \mathbf{B} P Q R = \lambda^* x. P(Q R)$$
 with $x \in fv(Q)$:

$$\begin{array}{rcl} \lambda^* x. \mathbf{B} P Q R &\equiv \mathbf{B} R^{\bullet} \left(\mathbf{B} \left(\mathbf{B} P \right) \left(\lambda^* x. Q \right) \right) \\ &= \mathbf{B} \left(\mathbf{B} R^{\bullet} \left(\mathbf{B} P \right) \right) \left(\lambda^* x. Q \right) & (assoc) \\ &= \mathbf{B} \left(\mathbf{B} \left(\mathbf{B} R^{\bullet} \right) \mathbf{B} P \right) \left(\lambda^* x. Q \right) & (\mathbf{B} \right) \\ &= \mathbf{B} \left(\mathbf{B} R^{\bullet \bullet} \mathbf{B} P \right) \left(\lambda^* x. Q \right) & (\mathbf{\bullet} \bullet) \\ &= \mathbf{B} \left(R^{\bullet \bullet} \left(\mathbf{B} P \right) \right) \left(\lambda^* x. Q \right) & (\mathbf{B} \right) \\ &= \mathbf{B} \left(\mathbf{B} P R^{\bullet} \right) \left(\lambda^* x. Q \right) & (\mathbf{\bullet} \right) \\ &= \mathbf{B} P \left(\mathbf{B} R^{\bullet} \left(\lambda^* x. Q \right) \right) & (assoc) \\ &\equiv \lambda^* x. P \left(Q R \right) \end{array}$$

3. (B) $\lambda^* x \cdot \mathbf{B} P Q R = \lambda^* x \cdot P (Q R)$ with $x \in fv(R)$:

$$\begin{array}{lll} \lambda^* x. \mathbf{B} P Q R &\equiv & \mathbf{B} \left(\mathbf{B} P Q \right) \left(\lambda^* x. R \right) \\ &= & \left(\mathbf{B} P \right) \left(\mathbf{B} Q \left(\lambda^* x. R \right) \right) & (assoc) \\ &\equiv & \lambda^* x. P \left(Q R \right) \end{array}$$

4. (I) $\lambda^* x. \mathbf{I} P = \lambda^* x. P$ with $x \in fv(P)$:

$$\lambda^* x. \mathbf{I} P \equiv \mathbf{B} \mathbf{I} (\lambda^* x. P) = \lambda^* x. P$$
(BI)

5. (•) $\lambda^* x \cdot P^{\bullet} Q = \lambda^* x \cdot Q P$ with $x \in fv(Q)$:

$$\begin{array}{rcl} \lambda^* x.P^{\bullet} \, Q & \equiv & \mathbf{B} \, P^{\bullet} \left(\lambda^* x.Q \right) \\ & \equiv & \lambda^* x.Q \, P \end{array}$$

Lemma 6 $(M[x := N])^{\flat} \equiv M^{\flat}[x := N^{\flat}].$

<u>Proof</u> Easy induction on M.

Lemma 7 $(\lambda^* x.P) Q =_{\mathbf{BI}(_)} P[x := Q].$

<u>Proof</u> Easy induction on P, using axioms (B), (I) and (\bullet).

Lemma 8 $M =_{\beta} N$ implies $M^{\flat} =_{\mathbf{BI}(_)} N^{\flat}$.

<u>Proof</u> Induction on the derivation of $M =_{\beta} N$.

The case of β -axiom $(\lambda x.M) N =_{\beta} M[x := N]$ follows from Lemma 6 and 7. Most other cases are obvious, except the case of the compatibility with lambda abstraction (the ξ -rule)

$$\frac{M =_{\beta} N}{\lambda x.M =_{\beta} \lambda x.N}$$

For this assume $M =_{\beta} N$. By induction hypothesis we have $M^{\flat} =_{\mathbf{BI}(_)} N^{\flat}$. By Lemma 5 we obtain $\lambda^* x. M^{\flat} =_{\mathbf{BI}(_)} \lambda^* x. N^{\flat}$, hence $(\lambda x. M)^{\flat} =_{\mathbf{BI}(_)} (\lambda x. N)^{\flat}$.

Lemma 9 $(P^{\sharp})^{\flat} =_{\mathbf{BI}(_)^{\bullet}} P.$

<u>Proof</u> Induction on P. The cases of variables, applications and \mathbf{I} are obvious.

For \mathbf{B} :

$$\begin{array}{rcl} (\mathbf{B}^{\sharp})^{\flat} &\equiv& \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, (\mathbf{B} \, \mathbf{B} \, \mathbf{I}))^{\bullet} \, (\mathbf{B} \, \mathbf{B} \, (\mathbf{B} \, \mathbf{I} \, \mathbf{B})) & (\mathbf{B} \, \mathbf{I} \\ &=& \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, (\mathbf{B} \, \mathbf{B} \, \mathbf{B})) & (\mathbf{B} \, \mathbf{I} \, \mathbf{B})) \\ &=& \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, (\mathbf{B} \, \mathbf{B} \, \mathbf{B}) & (\mathbf{I}^{\bullet}) \\ &=& \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, (\mathbf{B} \, \mathbf{B} \, \mathbf{B})) & (\mathbf{I}^{\bullet}) \\ &=& \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, (\mathbf{B} \, \mathbf{B}^{\bullet} \, \mathbf{B})) \, (\mathbf{B} \, \mathbf{B} \, \mathbf{B}) & (\mathbf{a} \, \mathbf{s} \, \mathbf{s} \, \mathbf{c}) \\ &=& \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, (\mathbf{B} \, \mathbf{B} \, \mathbf{B})) & (\mathbf{a} \, \mathbf{s} \, \mathbf{s} \, \mathbf{c}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{B} \, \mathbf{B} \, \mathbf{B}) & (\mathbf{B}^{\bullet}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{I}^{\bullet} \, (\mathbf{B} \, \mathbf{B})) \, \mathbf{B} & (\mathbf{B}^{\bullet}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{I}^{\bullet} \, \mathbf{B} \, \mathbf{B}) \, \mathbf{B} & (\mathbf{e}^{\bullet}) \\ &=& \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, \mathbf{B} \, \mathbf{B} \, \mathbf{B} & (\mathbf{e}^{\bullet}) \\ &=& \mathbf{B} \, (\mathbf{I}^{\bullet \bullet} \, (\mathbf{B} \, \mathbf{B})) \, \mathbf{B} & (\mathbf{e}) \\ &=& \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, \mathbf{B}) & (\mathbf{a} \, \mathbf{s} \, \mathbf{s} \, \mathbf{c}) \\ &=& \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, \mathbf{B}) & (\mathbf{a} \, \mathbf{s} \, \mathbf{s} \, \mathbf{c}) \\ &=& \mathbf{B} \, \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, \mathbf{B}) & (\mathbf{a} \, \mathbf{s} \, \mathbf{s} \, \mathbf{c}) \\ &=& \mathbf{B} \, \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, \mathbf{B}) & (\mathbf{a} \, \mathbf{s} \, \mathbf{s} \, \mathbf{c}) \\ &=& \mathbf{B} \, \mathbf{B} \, (\mathbf{B} \, \mathbf{I}^{\bullet} \, \mathbf{B}) & (\mathbf{a} \, \mathbf{s} \, \mathbf{s} \, \mathbf{c}) \\ &=& \mathbf{B} \, \mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{a} \, \mathbf{S} \, \mathbf{s} \, \mathbf{c}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{S}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{S}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{S}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{S}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{S}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{S}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{S}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{S}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{S}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{B}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{B}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{I}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{B}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{B}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{B}) \\ &=& \mathbf{B} \, (\mathbf{B} \, (\mathbf{B} \, \mathbf{B}) \, \mathbf{B} & (\mathbf{B} \, \mathbf{B}) \\$$

For P^{\bullet} :

$$((P^{\bullet})^{\sharp})^{\flat} \equiv \mathbf{B} ((P^{\sharp})^{\flat})^{\bullet} \mathbf{I}$$

= $\mathbf{B} \mathbf{I} ((P^{\sharp})^{\flat})^{\bullet}$ (BI2)
= $((P^{\sharp})^{\flat})^{\bullet}$ (BI_{\bullet})
= P^{\bullet} ind. hyp.

Lemma 10 $(\lambda^* x.P)^{\sharp} =_{\beta} \lambda x.P^{\sharp}.$

 $\underline{\text{Proof}}$ Induction on P.

• $P \equiv x$:

$$(\lambda^* x.x)^{\sharp} \equiv \mathbf{I}^{\sharp} \equiv \lambda x.x \equiv \lambda x.x^{\sharp}.$$

• $P \equiv QR$ with $x \in fv(Q)$:

$$\begin{aligned} (\lambda^* x.Q R)^{\sharp} &\equiv (\mathbf{B} R^{\bullet} (\lambda^* x.Q))^{\sharp} \\ &\equiv \mathbf{B}^{\sharp} (R^{\bullet})^{\sharp} (\lambda^* x.Q)^{\sharp} \\ &\equiv \mathbf{B}^{\sharp} (\lambda u.u R^{\sharp}) (\lambda^* x.Q)^{\sharp} \\ &=_{\beta} \mathbf{B}^{\sharp} (\lambda u.u R^{\sharp}) (\lambda x.Q^{\sharp}) & \text{i.h.} \\ &\equiv (\lambda xyz.x (y z)) (\lambda u.u R^{\sharp}) (\lambda x.Q^{\sharp}) \\ &=_{\beta} \lambda z. (\lambda u.u R^{\sharp}) ((\lambda x.Q^{\sharp}) z) \\ &=_{\beta} \lambda x. (\lambda u.u R^{\sharp}) Q^{\sharp} \\ &=_{\beta} \lambda x. (Q^{\sharp} R^{\sharp}) \\ &\equiv \lambda x. (Q R)^{\sharp} \end{aligned}$$

• $P \equiv Q R$ with $x \in fv(R)$:

$$\begin{aligned} (\lambda^* x.Q R)^{\sharp} &\equiv (\mathbf{B} Q (\lambda^* x.R))^{\sharp} \\ &\equiv \mathbf{B}^{\sharp} Q^{\sharp} (\lambda^* x.R)^{\sharp} \\ &=_{\beta} \mathbf{B}^{\sharp} Q^{\sharp} (\lambda x.R^{\sharp}) & \text{i.h.} \\ &\equiv (\lambda xyz.x (yz)) Q^{\sharp} (\lambda x.R^{\sharp}) \\ &=_{\beta} \lambda z.Q^{\sharp} ((\lambda x.R^{\sharp}) z) \\ &=_{\beta} \lambda x.Q^{\sharp} R^{\sharp} \\ &\equiv \lambda x.(Q R)^{\sharp} \end{aligned}$$

Lemma 11 $(M^{\flat})^{\sharp} =_{\beta} M.$

<u>Proof</u> Induction on M. Only the case of lambda abstraction is nontrivial, in which we use Lemma 10.

Proposition 12 $P =_{\mathbf{BI}(_)} Q$ iff $P^{\sharp} =_{\beta} Q^{\sharp}$.

 $\underline{\operatorname{Proof}} P^{\sharp} =_{\beta} Q^{\sharp} \text{ implies } P =_{\mathbf{BI}(_)} \bullet (P^{\sharp})^{\flat} =_{\mathbf{BI}(_)} \bullet (Q^{\sharp})^{\flat} =_{\mathbf{BI}(_)} \bullet Q \text{ by Lemma 9}$ and 8.

Proposition 13 $M =_{\beta} N$ iff $M^{\flat} =_{\mathbf{BI}(_)} N^{\flat}$.

<u>Proof</u> $M^{\flat} =_{\mathbf{BI}(_)} N^{\flat}$ implies $M =_{\beta} (M^{\flat})^{\sharp} =_{\beta} (N^{\flat})^{\sharp} =_{\beta} N$ by Lemma 11 and 4.

In summary, we have shown that the axioms in Figure 1 are sound and complete for the β -theory of the planar lambda calculus.

2.2 Planar lambda algebras

A **BI**(_)•-algebra satisfying the axioms of Figure 1 will be called a *planar lambda algebra*. Note that our (BI) axioms are similar to Selinger's axioms for lambda algebras in the classical case (**SK**-algebras) [3], where $\mathbf{1} = \mathbf{S} (\mathbf{K} \mathbf{I})$ plays the role of **BI**. Any extensional **BI**(_)•-algebra is a planar lambda algebra, as all (BI) axioms follow from the axiom **BI** = **I** of extensional **BI**(_)•-algebras.

For planar lambda algebras \mathcal{A} and \mathcal{B} , a homomorphism $h : \mathcal{A} \to \mathcal{B}$ is a map h from \mathcal{A} to \mathcal{B} satisfying $h(\mathbf{I}) = \mathbf{I}$, $h(\mathbf{B}) = \mathbf{B}$, $h(a^{\bullet}) = (h(a))^{\bullet}$ and h(ab) = h(a) h(b).

The category of planar lambda algebras and homomorphisms will be denoted by **PlanarLamAlg**. The closed term model of the planar lambda calculus (modulo β -equality) gives an initial object Λ_0^{planar} of **PlanarLamAlg**.

3 Internal Operads

We expect that Hyland's approach to the lambda calculus using semi-closed cartesian operads [2] and our previous approach to extensional $BI(_)^{\bullet}$ -algebras

$\mathbf{B} a b c$	=	a(bc)	(B)
I a	=	a	(I)
$a^{\bullet} b$	=	b a	(•)
$\mathbf{B}\left(\mathbf{B}\left(\mathbf{B}\mathbf{I} ight) ight)\mathbf{B}$	=	В	$(BI_{\mathbf{B}})$
BII	=	I	$(BI_{\mathbf{I}})$
$\mathbf{BI} a^{\bullet}$	=	a^{ullet}	(BI_{\bullet})
$\mathbf{B} \mathbf{B}^{\bullet} (\mathbf{B} \mathbf{B} (\mathbf{B} \mathbf{B} \mathbf{B}))$	=	$\mathbf{B}(\mathbf{B}\mathbf{B})\mathbf{B}$	(B●)
B I• B	=	BI	(I●)
$\mathbf{B} a^{\bullet \bullet} \mathbf{B}$	=	$\mathbf{B}\left(\mathbf{B}a^{\bullet} ight)\mathbf{B}$	(●●)
$(a b)^{\bullet}$	=	$\mathbf{B}b^{\bullet}(\mathbf{B}a^{\bullet}\mathbf{B})$	$(app\bullet)$

If we write $a \circ b$ for the composition **B** a b, they can be rewritten as follows.

$\mathbf{B} a b c$	=	a(bc)	(B)
$\mathbf{I} a$	=	a	(I)
$a^{\bullet} b$	=	b a	(ullet)
$(\mathbf{B}(\mathbf{B}\mathbf{I}))\circ\mathbf{B}$	=	В	$(BI_{\mathbf{B}})$
$\mathbf{I} \circ \mathbf{I}$	=	Ι	$(BI_{\mathbf{I}})$
$\mathbf{I} \circ a^{\bullet}$	=	a^{ullet}	(BI_{\bullet})
$\mathbf{B}^{\bullet} \circ (\mathbf{B} \circ (\mathbf{B} \circ \mathbf{B}))$	=	$(\mathbf{B}\mathbf{B})\circ\mathbf{B}$	(B●)
$\mathbf{I}^{ullet} \circ \mathbf{B}$	=	BI	$(I\bullet)$
$a^{\bullet \bullet} \circ \mathbf{B}$	=	$(\mathbf{B} a^{ullet}) \circ \mathbf{B}$	$(\bullet \bullet)$
$(a b)^{\bullet}$	=	$b^{\bullet} \circ (a^{\bullet} \circ \mathbf{B})$	$(app\bullet)$

Figure 1: Axioms of planar lambda algebras

using closed operads and the internal operad construction [1] can be applied to the planar lambda calculus (with the β -equality) and planar lambda algebras. Below we shall spell out some of the basic concepts and preliminary results towards this direction.

3.1 From semi-closed operads to planar lambda algebras

Every semi-closed operad \mathcal{P} gives rise to a planar lambda algebra $\mathcal{P}(0)$:

Proposition 14 For any semi-closed operad P with $\mathbf{app} \in \mathcal{P}(2)$ and $\lambda : \mathcal{P}(n + 1) \to \mathcal{P}(n)$, $\mathcal{P}(0)$ is a planar lambda algebra with $a \cdot b = \mathbf{app}(a, b)$, $\mathbf{I} = \lambda(id)$, $\mathbf{B} = \lambda(\lambda(\lambda(\mathbf{app}(id, \mathbf{app}))))$ and $a^{\bullet} = \lambda(\mathbf{app}(id, a))$. This map $\mathcal{P} \mapsto \mathcal{P}(0)$ extends to a functor \mathcal{U} : **SemiClosedOperad** \to **PlanarLamAlg** sending $\varphi : \mathcal{P} \to \mathcal{Q}$ to $\varphi_0 : \mathcal{P}(0) \to \mathcal{Q}(0)$.

<u>Proof</u> Verifying that $\mathcal{P}(0)$ is a planar lambda algebra is routine, and essentially amounts to the soundness of the translation $(-)^{\sharp}$ into the planar lambda calculus (Lemma 4). Seeing that $\varphi_0 : \mathcal{P}(0) \to \mathcal{Q}(0)$ is a homomorphism of planar lambda algebras is immediate as φ preserves all the constructs of the planar lambda algebras by definition.

Proposition 15 Let \mathcal{P} and \mathcal{Q} be semi-closed operads. Suppose that there is a homomorphism $h : \mathcal{P}(0) \to \mathcal{Q}(0)$ between the planar lambda algebras $\mathcal{P}(0)$ and $\mathcal{Q}(0)$ given as the previous proposition. Then there exists a homomorphism of operads $\varphi : \mathcal{P} \to \mathcal{Q}$ such that $\varphi_0 = h$ holds.

<u>Proof</u> Define $\varphi_n : \mathcal{P}(n) \to \mathcal{Q}(n)$ by $\varphi_0 = h$ and $\varphi_{n+1}(f) = \operatorname{app}(\varphi_n(\lambda(f)), id)$. We shall verify that φ is a homomorphism of semi-closed operads.

• $\varphi_1(id) = id$:

$$\varphi_{1}(id) = \mathbf{app}(h(\lambda(id)), id)$$

$$= \mathbf{app}(h(\mathbf{I}), id) \quad (\mathbf{I} = \lambda(id))$$

$$= \mathbf{app}(\mathbf{I}, id) \quad (h(\mathbf{I}) = \mathbf{I})$$

$$= \mathbf{app}(\lambda(id), id) \quad (\mathbf{I} = \lambda(id))$$

$$= id$$

• $\varphi_{k_1+\ldots+k_n}(g(f_1,\ldots,f_n)) = \varphi_n(g)(\varphi_{k_1}(f_1)\ldots,\varphi_{k_n}(f_n)):$ For $f \in \mathcal{P}(n)$ let $\lceil f \rceil = \lambda(\ldots\lambda(f)\ldots) \in \mathcal{P}(0)$. We shall note that $\varphi_n(f) = \lambda(\ldots app(h(\lceil f \rceil), id)\ldots, id)$ holds. Then

$$\lceil g(f_1,\ldots,f_n)\rceil = F \lceil g\rceil \lceil f_1\rceil \ldots \lceil f_n\rceil$$

holds, where $F \in \mathcal{P}(0)$ is given by

$$\lambda^* p q_1 \dots q_n x_{11} \dots x_{nk_n} \cdot p \left(q_1 x_{11} \dots x_{1k_1} \right) \dots \left(q_n x_{n1} \dots x_{nk_n} \right).$$

Since h is a homomorphism of planar lambda algebras, we have

 $\begin{array}{l} h(\lceil g(f_1, \dots, f_n) \rceil) \\ = & h(F \lceil g \rceil \lceil f_1 \rceil \dots \lceil f_n \rceil) \\ = & F \left(h(\lceil g \rceil) \left(h(\lceil f_1 \rceil) \right) \dots \left(h(\lceil f_n \rceil) \right) \right) \\ = & \lambda^* x_{11} \dots x_{nk_n} . h(\lceil g \rceil) \left(h(\lceil f_1 \rceil) x_{11} \dots x_{1k_1} \right) \dots \left(h(\lceil f_n \rceil) x_{n1} \dots x_{nk_n} \right) \end{array}$

and $\varphi_{k_1+...+k_n}(g(f_1,...,f_n)) = \varphi_n(g)(\varphi_{k_1}(f_1)...,\varphi_{k_n}(f_n)).^2$

•
$$\varphi_2(\mathbf{app}) = \mathbf{app}$$

•
$$\varphi_1(\lambda(\mathbf{app})) = \lambda(\mathbf{app})$$
:

$$\varphi_1(\lambda(\mathbf{app})) = \mathbf{app}(h(\lambda(\lambda(\mathbf{app}))), id)$$

= $\mathbf{app}(\lambda(\lambda(\mathbf{app})), id)$ just as the above
= $\lambda(\mathbf{app}).$

Corollary 16 Let \mathcal{P} and \mathcal{Q} be semi-closed operads such that $\mathcal{P}(0)$ and $\mathcal{Q}(0)$ are isomorphic as planar lambda algebras. Then \mathcal{P} and \mathcal{Q} are isomorphic as semi-closed operads.

Thus, for any planar combinatory algebra \mathcal{A} , up to isomorphism there is at most one semi-closed operad \mathcal{P} such that $\mathcal{P}(0) \cong \mathcal{A}$. This applies to extensional $\mathbf{BI}(_)^{\bullet}$ -algebras too, and the claim in [1] that there can be many non-isomorphic closed operads giving rise to the same extensional $\mathbf{BI}(_)^{\bullet}$ -algebra is invalid. The adjunction between closed operads and extensional $\mathbf{BI}(_)^{\bullet}$ -algebras is actually an equivalence.

3.2 Internal operads of planar lambda algebras

The internal operad construction [1] can be carried out on any planar lambda algebra and the construction gives an equivalence between **SemiClosedOperad** and **PlanarLamAlg**. We shall spell out the expected construction, which is largely the same as the extensional case [1], though the lack of extensionality calls for some extra care.

Definition 17 An element a of a planar lambda algebra \mathcal{A} is said to be of arity $m \rightarrow n$ when

$$a^{\bullet} \circ \mathbf{B}^{m+1} = (\mathbf{B} a) \circ \mathbf{B}^n$$
 and $(\mathbf{B}^m \mathbf{I}) \circ a = a$

hold.

 $^{^{2}}$ This part is hard to follow, largely because the notations of operads and those of combinatory algebras are badly mixed. A better presentation would be desirable.

Note that, in the extensional case [1], only the first equation in Definition 17 is required; the second equation is always valid in the extensional case.

For the basic constructs of planar lambda algebras, we have

- **B** is of arity $2 \rightarrow 1$ by the axioms (B•) and (BI_B);
- I is of arity $0 \rightarrow 0$ by the axioms (I•) and (BI_I); and
- a^{\bullet} is of arity $0 \to 1$ by the axioms (••) and (BI_•).

Thus six among the ten axioms of planar lambda algebras are directly related to the notion of arity. Assuming the first equation $a^{\bullet} \circ \mathbf{B}^{m+1} = (\mathbf{B} a) \circ \mathbf{B}^n$, the second equation $(\mathbf{B}^m \mathbf{I}) \circ a = a$ is equivalent to $a \circ (\mathbf{B}^n \mathbf{I}) = a$. It follows that the composition respects the arities, and $\mathbf{B}^m \mathbf{I} : m \to m$ serves as the identity on m. We shall note that, when n = 1, a is of arity $m \to 1$ if and only if the equation

$$(a \mathbf{I})^{\bullet} \circ \mathbf{B}^m = a$$

holds.³ This is the same condition as the one used for the extensional case [1]. So, as long as we are to define internal operads (where only the case of n = 1 is needed), we can re-use the same characterization from the extensional case. However, for handling the internal PRO, we do need an extra axiom $(\mathbf{B}^m \mathbf{I}) \circ a = a$.

Tensor products are given using the composition \circ and the following "adding lower/upper strands" constructions [1]: for $a: m \to n$,

$$k + a = \mathbf{B}^k a : k + m \to k + n$$

and

$$a + k = (\mathbf{B}^{m+k} \mathbf{I}) \circ a = a \circ (\mathbf{B}^{n+k} \mathbf{I}) : m + k \to n + k.$$

Then, for $a: m \to n$ and $a': m' \to n'$, their tensor $a + a': m + m' \to n + n'$ is $(a + m') \circ (n + a') = (m + a') \circ (a + n')$.

These data determine a PRO $\mathcal{C}_{\mathcal{A}}$ with $\mathcal{C}_{\mathcal{A}}(m,n) = \{a \in \mathcal{A} \mid a : m \to n\}$ and an operad — the internal operad — $\mathcal{P}_{\mathcal{A}}$ with $\mathcal{P}_{\mathcal{A}}(m) = \mathcal{C}_{\mathcal{A}}(m,1)$.

³This might not be entirely obvious. Assuming $a: m \to 1$, we have

 $(a \mathbf{I})$

$$\mathbf{\bullet} \circ \mathbf{B}^{m} = \mathbf{I}^{\bullet} \circ a^{\bullet} \circ \mathbf{B}^{m+1} \quad (\text{app} \bullet)$$

$$= \mathbf{I}^{\bullet} \circ (\mathbf{B} a) \circ \mathbf{B} \quad (a:m \to 1)$$

$$= ((\mathbf{B} (\mathbf{I}^{\bullet}) \circ \mathbf{B}) a) \circ \mathbf{B} \quad (B)$$

$$= ((\mathbf{I}^{\bullet \bullet} \circ \mathbf{B}) a) \circ \mathbf{B} \quad (\bullet \bullet)$$

$$= a \circ \mathbf{I}^{\bullet} \circ \mathbf{B} \quad (B, \bullet)$$

$$= a \circ \mathbf{B} \mathbf{I} \quad (I \bullet)$$

$$= a \quad (a:m \to 1)$$

Conversely, assuming $a = b^{\bullet} \circ \mathbf{B}^m$, we have $a : m \to 1$ from $b^{\bullet} : 0 \to 1$ and $\mathbf{B} : 2 \to 1$ using the argument for adding upper strands: whenever $a : l \to m$ and $b : m + k \to n$, $a \circ b = a \circ (\mathbf{B}^{m+k} \mathbf{I}) \circ b = (a+k) \circ b$ is of arity $l + k \to n$.

For $a \in \mathcal{P}_{\mathcal{A}}(m+1)$, let $\lambda(a) = (a \mathbf{I})^{\bullet} \circ \mathbf{B}^m \in \mathcal{P}_{\mathcal{A}}(m)$. Let $\mathbf{app} = \mathbf{B} \in \mathcal{P}_{\mathcal{A}}(2)$. Then

$$\begin{aligned} \mathbf{app}(\lambda(a), id) &= (\lambda(a) + 1) \circ \mathbf{app} \\ &= (\mathbf{B}^{m+1} \mathbf{I}) \circ (a \mathbf{I})^{\bullet} \circ \mathbf{B}^m \circ \mathbf{B} \\ &= (\mathbf{B}^{m+1} \mathbf{I}) \circ \mathbf{I}^{\bullet} \circ a^{\bullet} \circ \mathbf{B} \circ \mathbf{B}^m \circ \mathbf{B} \\ &= (\mathbf{B}^{m+1} \mathbf{I}) \circ \mathbf{I}^{\bullet} \circ (\mathbf{B} a) \circ \mathbf{B} \\ &= (\mathbf{B}^{m+1} \mathbf{I}) \circ a \circ \mathbf{I}^{\bullet} \circ \mathbf{B} \\ &= a \circ (\mathbf{B} \mathbf{I}) \\ &= a \end{aligned}$$

as expected. Moreover, the naturality $b \circ \lambda(a) = \lambda((b+1) \circ a) \in \mathcal{P}_{\mathcal{A}}(m')$ holds for $a \in \mathcal{P}_{\mathcal{A}}(m)$ and $b : m' \to m$. Hence $\mathcal{P}_{\mathcal{A}}$ is a semi-closed operad. On the other hand, the η -equality is not valid: for $a \in \mathcal{P}_{\mathcal{A}}(m)$, $\lambda(\operatorname{app}(a, id)) = \lambda((a+1) \circ \mathbf{B}) = a \circ \lambda(\mathbf{B}) = a \circ (\mathbf{B}\mathbf{I})^{\bullet} \circ \mathbf{B}$ may not be equal to a.

It follows that $\mathcal{P}_{\mathcal{A}}(0) = \mathcal{A}^{\bullet} \equiv \{a^{\bullet} \mid a \in \mathcal{A}\}$. The axioms (••) and (BI_•) say that a^{\bullet} is of arity $0 \to 1$, hence $a^{\bullet} \in \mathcal{P}_{\mathcal{A}}(0)$. Conversely, if b is of arity $0 \to 1$,

$$b = b \circ (\mathbf{B} \mathbf{I}) \qquad (b: 0 \to 1)$$

$$= b \circ \mathbf{I}^{\bullet} \circ \mathbf{B} \qquad (\mathbf{I}^{\bullet})$$

$$= (\mathbf{B} \mathbf{I}^{\bullet \bullet} \mathbf{B} b) \circ \mathbf{B} \qquad (B)$$

$$= (\mathbf{B} (\mathbf{B} \mathbf{I}^{\bullet}) \mathbf{B} b) \circ \mathbf{B} \qquad (\bullet^{\bullet})$$

$$= \mathbf{I}^{\bullet} \circ (\mathbf{B} b) \circ \mathbf{B} \qquad (B)$$

$$= \mathbf{I}^{\bullet} \circ b^{\bullet} \circ \mathbf{B} \qquad (b: 0 \to 1)$$

$$= (b \mathbf{I})^{\bullet} \qquad (app^{\bullet})$$

hence $b = (b \mathbf{I})^{\bullet} \in \mathcal{A}^{\bullet}$. As in the extensional case, $\mathcal{A}^{\bullet} \cong \mathcal{A}$ holds, via (_) \mathbf{I} : $\mathcal{A}^{\bullet} \to \mathcal{A}$ and (_) $^{\bullet} : \mathcal{A} \to \mathcal{A}^{\bullet}$. Thus $\mathcal{P}_{\mathcal{A}}$ is a semi-closed operad such that $\mathcal{P}_{\mathcal{A}}(0)$ is isomorphic to \mathcal{A} .

3.3 Example: the internal operad of the planar lambda calculus

Consider the planar lambda algebra Λ_0^{planar} of the β -equivalence classes of closed planar lambda terms. Then an element a is of arity $m \to n$ if and only if a is the equivalence class of a β -normal form

$$\lambda f x_1 \dots x_m . f M_1 \dots M_n$$

with no free f in M_i 's.⁴ In particular, an element of arity $a \to 1$ is of the form

$$\lambda f x_1 \dots x_m . f M$$

which encodes

$$x_1, \ldots x_m \vdash M$$

in $\Lambda^{planar}(n)$ of the semi-closed operad Λ^{planar} . For instance:

 $^{^4\}mathrm{This}$ claim is far from obvious; we even think that this is one of the most difficult results in our study.

- $\mathbf{B} = \lambda f x_1 x_2 . f (x_1 x_2)$ encodes the application $\mathbf{app} = x_1, x_2 \vdash x_1 x_2$.
- **B**I = $\lambda f x_1 \cdot f x_1$ encodes the identity $id = x_1 \vdash x_1$.
- For closed $M, M^{\bullet} = \lambda f.f M$ encodes $\vdash M$.

For $a = \lambda f x_1 \dots x_m f M_1 \dots M_n$, adding lower k strands gives

$$k + a = \mathbf{B}^k a = \lambda f y_1 \dots y_k x_1 \dots x_m \cdot f y_1 \dots y_k M_1 \dots M_n$$

whereas adding upper k strands gives

$$a + \mathbf{k} = (\mathbf{B}^{m+k} \mathbf{I}) \circ a = \lambda f x_1 \dots x_m z_1 \dots z_k \cdot f M_1 \dots M_n z_1 \dots z_k.$$

For $a = \lambda f x_1 \dots x_m f M_1 \dots M_n$ and $a' = \lambda f y_1 \dots y_{m'} f M'_1 \dots M'_{n'}$, their tensor product a + a' is

$$\lambda f x_1 \dots x_m, y_1 \dots y_{m'} \dots f M_1 \dots M_n M_1' \dots M_{n'}'$$

For

$$a = \lambda f x_1 \dots x_l f M_1 \dots M_m : l \to m$$

and

$$b = \lambda f y_1 \dots y_m z_1 \dots z_k f N_1 \dots N_n : m + k \to n,$$

 $a \circ b : l + k \to n$ is

$$\lambda f x_1 \dots x_l z_1 \dots z_k (f N_1 \dots N_n) [y_1 := M_1, \dots, y_m := M_m]$$

For $a = \lambda f x_1 \dots x_n x_{n+1} f M$, let $\lambda(a) = \lambda f x_1 \dots x_n f (\lambda x_{n+1} M)$. For $a = \lambda f x_1 \dots x_m f M$ and $b = \lambda f y_1 \dots y_n f N$, $app(a, b) = a \circ (\mathbf{B} b) \circ \mathbf{B}$ gives

$$\lambda f x_1 \dots x_m y_1 \dots y_n f (M N)$$

as expected.

All these can be given in the graphical language of the planar lambda calculus as done in [1]. The crucial difference from *ibid.* is that now adding upper stands is not free at all as we do not assume the η -equality.

4 Extensions

We sketch three extensions of planar lambda algebras: the symmetric, braided, and cartesian lambda algebras.

Adding Symmetry A *symmetry* in a planar lambda algebra is an element **C** which is subject to the following conditions.

• C is of arity $2 \rightarrow 2$, i.e., satisfies

$$\mathbf{C}^{\bullet} \circ \mathbf{B}^3 = (\mathbf{B} \mathbf{C}) \circ \mathbf{B}^2$$
 and $(\mathbf{B}^2 \mathbf{I}) \circ \mathbf{C} = \mathbf{C}$

• The Coxter relations (or Reidemeister moves)

$$\mathbf{C} \circ \mathbf{C} = \mathbf{B}^2 \mathbf{I}$$
 and $(\mathbf{B} \mathbf{C}) \circ \mathbf{C} \circ (\mathbf{B} \mathbf{C}) = \mathbf{C} \circ (\mathbf{B} \mathbf{C}) \circ \mathbf{C}$

hold.

• Naturality with respect to $\mathbf{B}: 2 \to 1$ and $a^{\bullet}: 0 \to 1$

$$(\mathbf{B}\mathbf{B})\circ\mathbf{C}=\mathbf{C}\circ(\mathbf{B}\mathbf{C})\circ\mathbf{B}$$
 and $a^{\bullet}\circ\mathbf{C}=\mathbf{B}a^{\bullet}$

hold.

From the naturality with respect to a^{\bullet} , we can derive

$$\mathbf{C} a b c = a c b$$

It follows that $a^{\bullet} = \mathbf{CI} a$ holds, and more generally $a^{\bullet} \circ b = \mathbf{C} b a$ is derivable. So it is possible to axiomatize planar lambda algebras with a symmetry as **BCI**algebras where (_)[•] is not a primitive construct but a derived operator \mathbf{CI} (_). For instance, the arity condition for $a : m \to n$ can be replaced by

$$(\mathbf{C} \mathbf{B} a) \circ \mathbf{B}^m = (\mathbf{B} a) \circ \mathbf{B}^n \text{ and } (\mathbf{B}^m \mathbf{I}) \circ a = a.$$

Such an axiomatization is given in Figure 2. In this axiomatization,

- (BI_B) and (α) say **B** : 2 \rightarrow 1;
- (BI_C) and (cox_2) say C : 2 \rightarrow 2;
- (BI_I) and (ρ) say **I** : 0 \rightarrow 0;
- (cox_1) and (cox_3) are the Coxter relations: and
- (bc) is the naturality of **C** with respect to **B** : $2 \rightarrow 1$.

Let us call such algebras symmetric lambda algebras (or linear lambda algebras if we want to emphasize linearity). Symmetric lambda algebras satisfying $\mathbf{BI} = \mathbf{I}$ are precisely the extensional **BCI**-algebras in [1]. The internal operad of a symmetric lambda algebra is a semi-closed symmetric operad.

Adding Braiding A *braiding* in a planar lambda algebra is a pair of elements C^+ and C^- which are subject to the following conditions.

• \mathbf{C}^+ and \mathbf{C}^- are of arity $2 \rightarrow 2$, i.e.,

 $\mathbf{C}^{\pm \bullet} \circ \mathbf{B}^3 = (\mathbf{B} \mathbf{C}^{\pm}) \circ \mathbf{B}^2$ and $(\mathbf{B}^2 \mathbf{I}) \circ \mathbf{C}^{\pm} = \mathbf{C}^{\pm}$.

• The Coxter relations (or Reidemeister moves):

$$\mathbf{C}^{\pm} \circ \mathbf{C}^{\mp} = \mathbf{B}^2 \mathbf{I} \quad \text{and} \quad (\mathbf{B} \mathbf{C}^{\pm}) \circ \mathbf{C}^{\pm} \circ (\mathbf{B} \mathbf{C}^{\pm}) = \mathbf{C}^{\pm} \circ (\mathbf{B} \mathbf{C}^{\pm}) \circ \mathbf{C}^{\pm}.$$

$\mathbf{B} a b c$	=	a(bc)	(B)
$\mathbf{C} a b c$	=	acb	(C)
$\mathbf{I} a$	=	a	(I)
$(\mathbf{B}(\mathbf{B}\mathbf{I}))\circ\mathbf{B}$	=	В	$(BI_{\mathbf{B}})$
$(\mathbf{B}(\mathbf{B}\mathbf{I}))\circ\mathbf{C}$	=	С	$(BI_{\mathbf{C}})$
$\mathbf{I} \circ \mathbf{I}$	=	Ι	$(BI_{\mathbf{I}})$
CBI	=	BI	(ho)
$(\mathbf{B}\mathbf{B})\circ\mathbf{B}$	=	$(\mathbf{C} \mathbf{B} \mathbf{B}) \circ (\mathbf{B} \circ \mathbf{B})$	(α)
$\mathbf{C} \circ \mathbf{C}$	=	$\mathbf{B}(\mathbf{B}\mathbf{I})$	(cox_1)
$(\mathbf{B} \mathbf{C}) \circ (\mathbf{B} \circ \mathbf{B})$	=	$(\mathbf{C} \mathbf{B} \mathbf{C}) \circ (\mathbf{B} \circ \mathbf{B})$	(cox_2)
$(\mathbf{B} \mathbf{C}) \circ (\mathbf{C} \circ (\mathbf{B} \mathbf{C}))$	=	$\mathbf{C} \circ ((\mathbf{B} \mathbf{C}) \circ \mathbf{C})$	(cox_3)
$(\mathbf{B}\mathbf{B})\circ\mathbf{C}$	=	$\mathbf{C} \circ ((\mathbf{B} \mathbf{C}) \circ \mathbf{B})$	(bc)

Figure 2: Axioms of symmetric lambda algebras

• Naturality with respect to $\mathbf{B}: 2 \to 1$ and $a^{\bullet}: 0 \to 1$:

$$(\mathbf{B} \mathbf{B}) \circ \mathbf{C}^{\pm} = \mathbf{C}^{\pm} \circ (\mathbf{B} \mathbf{C}^{\pm}) \circ \mathbf{B}$$
 and $a^{\bullet} \circ \mathbf{C}^{\pm} = \mathbf{B} a^{\bullet}$.

From the naturality condition we can defrive

 $\mathbf{C}^{\pm} a b c = a c b$ and $\mathbf{C}^{+} a b = \mathbf{C}^{-} a b$.

We shall call a planar lambda algebra with a braiding a *braided lambda algebra*. Similarly to the case of symmetry, it is possible to axiomatize braided lambda algebras in terms of \mathbf{B} , \mathbf{C}^+ , \mathbf{C}^- and \mathbf{I} ; see Figure 3.

The internal operad of a braided lambda algebra is a semi-closed braided operad.

Adding Comonoid Structure A *cartesian lambda algebra* is a symmetric lambda algebra with elements W and K subject to the axioms saying

- $\mathbf{W}: 1 \rightarrow 2 \text{ and } \mathbf{K}: 1 \rightarrow 0,$
- $\bullet~\mathbf{W}$ and \mathbf{K} form a co-commutative comonoid, and
- B and a[•] are comonoid morphisms (the latter implies W a b = a b b and K a b = a).

Explicitly, these axioms can be given as Figure 4. Cartesian lambda algebras are precisely the lambda algebras in the sense of [3], and their internal operads are semi-closed cartesian operads.

References

[1] Hasegawa, M., *The internal operads of combinatory algebras*, in Proc. 38th International Conference on Mathematical Foundations

$\mathbf{B} a b c$	=	a(bc)	(B)
$\mathbf{C}^{\star} a b c$	=	acb	(C)
I a	=	a	(I)
$\mathbf{C}^+ a b$	=	$\mathbf{C}^{-} a b$	(C2)
$\left(\mathbf{B}\left(\mathbf{B}\mathbf{I} ight) ight) \circ\mathbf{B}$	=	В	$(BI_{\mathbf{B}})$
$(\mathbf{B} (\mathbf{B} \mathbf{I})) \circ \mathbf{C}^{\pm}$	=	\mathbf{C}^{\pm}	$(\mathrm{BI}_{\mathbf{C}^{\pm}})$
$\mathbf{I} \circ \mathbf{I}$	=	I	$(BI_{\mathbf{I}})$
C* BI	=	Ι	(ho)
$(\mathbf{B}\mathbf{B})\circ\mathbf{B}$	=	$(\mathbf{C}^{\star} \mathbf{B} \mathbf{B}) \circ (\mathbf{B} \circ \mathbf{B})$	(α)
$\mathbf{C}^{\pm} \circ \mathbf{C}^{\mp}$	=	$\mathbf{B}(\mathbf{BI})$	(cox_1)
$(\mathbf{B} \mathbf{C}^{\pm}) \circ (\mathbf{B} \circ \mathbf{B})$	=	$(\mathbf{C}^{\star} \mathbf{B} \mathbf{C}^{\pm}) \circ (\mathbf{B} \circ \mathbf{B})$	(cox_2)
$(\mathbf{B} \mathbf{C}^{\pm}) \circ (\mathbf{C}^{\pm} \circ (\mathbf{B} \mathbf{C}^{\pm}))$	=	$\mathbf{C}^{\pm} \circ ((\mathbf{B} \mathbf{C}^{\pm}) \circ \mathbf{C}^{\pm})$	(cox_3)
$(\mathbf{B}\mathbf{B})\circ\mathbf{C}^{\pm}$	=	$\mathbf{C}^{\pm} \circ ((\mathbf{B} \mathbf{C}^{\pm}) \circ \mathbf{B})$	(bc)

The double signs \pm and \mp in an equation should be taken as appropriately linked, while \star indicates an arbitrary choice of + or -.

Figure 3: Axioms of braided lambda algebras

$\mathbf{W}^{\bullet} \circ \mathbf{B} \circ \mathbf{B}$	=	$(\mathbf{B} \mathbf{W}) \circ \mathbf{B} \circ \mathbf{B}$	$(\mathbf{W}: 1 \to 2)$
$\mathbf{K}^{\bullet} \circ \mathbf{B} \circ \mathbf{B}$	=	BK	$(\mathbf{K}: 1 \to 0)$
$(\mathbf{B} \mathbf{I}) \circ \mathbf{W}$	=	W	$(\mathbf{W}: 1 \to 2)$
$(\mathbf{B} \mathbf{I}) \circ \mathbf{K}$	=	Κ	$(\mathbf{W}: 1 \to 0)$
$\mathbf{W} \circ \mathbf{K}$	=	BI	(co-unit)
$\mathbf{W} \circ \mathbf{W}$	=	$\mathbf{W} \circ (\mathbf{B} \mathbf{W})$	(co-associativity)
$\mathbf{W} \circ \mathbf{C}$	=	W	(co-commutativity)
$\mathbf{B} \circ \mathbf{W}$	=	$(\mathbf{B}\mathbf{W})\circ\mathbf{W}\circ(\mathbf{B}\mathbf{C})\circ\mathbf{B}\circ(\mathbf{B}\mathbf{B})$	$(\mathbf{B} \ comonoid \ hom)$
$\mathbf{B} \circ \mathbf{K}$	=	$\mathbf{K} \circ \mathbf{K}$	$(\mathbf{B} \ comonoid \ hom)$
$a^{\bullet} \circ \mathbf{W}$	=	$a^{\bullet} \circ a^{\bullet}$	$(a^{\bullet} \ comonoid \ hom)$
$a^{\bullet} \circ \mathbf{K}$	=	I	$(a^{\bullet} \ comonoid \ hom)$

Figure 4: Axioms of cartesian lambda algebras (only those for ${\bf W}$ and ${\bf K})$

of Programming Semantics (MFPS XXXVIII). Electronic Notes in Theoretical Informatics and Computer Science 1 (2023). DOI: https://doi.org/10.46298/entics.10338

- [2] Hyland, J.M.E., Classical lambda calculus in modern dress, Mathematical Structures in Computer Science 27 (2017), 762–781, DOI: https://doi.org/10.1017/S0960129515000377
- [3] Selinger, P., The lambda calculus is algebraic, J.
 Functional Programming 12 (2002), 549-566, DOI: https://doi.org/10.1017/S0956796801004294
- [4] Tomita, H., Realizability without symmetry, Proc. 29th EACSL Annual Conference on Computer Science Logic (CSL 2021), Leibniz International Proceedings in Informatics 183 (2021), 38:1–38:16, DOI: https://drops.dagstuhl.de/opus/volltexte/2021/13472