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The structure theorem of Joyal, Street and Verity says that every traced monoidal

category C arises as a monoidal full subcategory of the tortile monoidal category IntC.

In this paper we focus on a simple observation that a traced monoidal category C is

closed if and only if the canonical inclusion from C into IntC has a right adjoint. Thus,

every traced monoidal closed category arises as a monoidal co-reflexive full subcategory

of a tortile monoidal category. From this, we derive a series of facts on traced models of

linear logic, and some on models of fixed-point computation.

1. Introduction

In (Joyal et al. 1996), Joyal, Street and Verity introduced the notion of traced monoidal

categories. They showed that every traced monoidal category C fully faithfully embeds

in a tortile monoidal category IntC, and that this Int-construction gives a left biadjoint

of the forgetful 2-functor from the 2-category of tortile monoidal categories to that of

traced monoidal categories. This remarkable result attracted much attention from theo-

retical computer scientists, particularly in connection with linear logic (Girard 1987) and

Geometry of Interaction (Girard 1989; Abramsky and Jagadeesan 1994; Abramsky 1996;

Haghverdi 2000; Abramsky et al.; Haghverdi and Scott 2006), where the special case of

traced symmetric monoidal categories and compact closed categories (Kelly and Laplaza

1980) is of interest.

In this paper we shall see that the monoidal closed structure can be tied with the Int-

construction in an unexpected manner. Namely, we show the following result (Theorem

4.1):

Theorem. A traced monoidal category C is closed if and only if the embedding from C

into IntC has a right adjoint.

Despite its simplicity, to the best of our knowledge, this fact has not been pointed out

in the literature. Perhaps this is partly because the Int-construction works too nicely:

tortile monoidal categories are closed, therefore every traced monoidal category embeds

into a closed one just via the Int-construction. So it seems that for this reason we did not

feel that traced monoidal closed categories were themselves interesting (with (Coccia et

al. 2002) as an exception where traced monoidal closed categories with extra structure
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are used for modelling higher-order cyclic shared structures). However, tortile structure

(or compact closed structure in the symmetric case) describes just a very special kind of

closedness, and not every traced monoidal closed category is tortile. Our result says that

the relation between tortile structure and general closed structure is still in harmony:

every traced monoidal closed category arises as a monoidal co-reflexive full subcategory

of a tortile monoidal category. The embedding from C to Int C may not preserve the

closed structure, but the closed structure on C is determined by the closed structure of

Int C and the co-reflection.

The author noticed this result in July 2005, after learning from Paul-André Melliès

about the traced monoidal closed category of negative Conway games (Melliès 2004). It

took the author a few months to realize that it did have several applications on models of

linear logic and also models of fixed-point computation. After that, Shin-ya Katsumata

and Susumu Nishimura discovered a concrete example of this in the study of program

transformations in 2006 (Katsumata and Nishimura 2006), and then Katsumata gave

a striking application in the theory of attribute grammars in 2007 (Katsumata 2007).

These discoveries prompted the author to write down the result so that it is hopefully

accessible to theoretical computer scientists with mild background in category theory.

To this end, instead of just stating and proving the main result (which would need only

a few pages, see Section 4), we shall include all needed definitions and results (but without

proofs) on traced monoidal categories, Int-construction, monoidal closed categories and

monoidal adjunctions in Section 2 and 3, making the paper largely self-contained. Section

5 is devoted for applications in models of linear logic and fixed-point computation; for

the latter the author’s old work on recursion created from cyclic sharing is recast as

linear fixed-point operators in traced models of intuitionistic linear logic. In addition,

we shall make use of the graphical presentation for monoidal categories and monoidal

functors (Joyal and Street 1991; Cockett and Seely 1999; Melliès 2006) (which goes back

to Penrose’s diagrams for calculating with tensors (Penrose and Rindler 1984)), which is

intuitively helpful and technically convenient.

While most work in computer science focus on the symmetric case (traced symmetric

monoidal categories and compact closed categories), in this paper, whenever possible,

we consider general traced balanced (braided) monoidal categories and tortile monoidal

categories, following the original development by Joyal, Street and Verity; most of our

results are valid for this generality — and also we expect (rather optimistically) that non-

symmetric situations will become useful in future developments in computer science.

2. Preliminaries

2.1. Monoidal Categories

A monoidal category (Mac Lane 1971) (or tensor category (Joyal and Street 1993)) C =

(C,⊗, I, a, l, r) consists of a category C, a functor ⊗ : C × C → C, an object I ∈ C and

natural isomorphisms aA,B,C : (A ⊗ B) ⊗ C
∼
→ A ⊗ (B ⊗ C), lA : I ⊗ A

∼
→ A and
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rA : A⊗ I
∼
→ A such that the following two diagrams commute for all A, B, C and D:

((A⊗B)⊗ C)⊗D (A⊗B)⊗ (C ⊗D)

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

-a

?

a⊗D

?

a

-
a

-
A⊗a

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

-a

HHHjr⊗B

���� A⊗l

Mac Lane’s coherence theorem (Mac Lane 1971; Joyal and Street 1993) states that all

diagrams built from a, l and r commute. It follows that, in principle, most results stated

for the strict monoidal categories (where a, l, r are the identity arrows and (A⊗B)⊗C

is identified with A ⊗ (B ⊗ C), and similarly for tensor unit) can be reformulated and

proved without strictness. In many places of this paper, for ease of presentation, we avoid

putting brackets on tensor products when rigour is guaranteed by the coherence theorem.

A braiding is a natural isomorphism cA,B : A⊗ B
∼
→ B ⊗ A such that both c and c−1

satisfy the following “bilinearity” diagrams (the case for c−1 is omitted):

(A⊗B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗A

(B ⊗A)⊗ C B ⊗ (A⊗ C) B ⊗ (C ⊗A)
?

c⊗C

-a -c

?
a

-
a

-
B⊗c

A symmetry is a braiding such that cA,B = c−1
B,A. A braided/symmetric monoidal category

is a monoidal category equipped with a braiding/symmetry.

A twist or a balance for a braided monoidal category is a natural isomorphism θA :

A
∼
→ A such that θI = idI and θA⊗B = cB,A ◦ (θB⊗θA)◦ cA,B hold. A balanced monoidal

category is a braided monoidal category with a twist. Note that a symmetric monoidal

category is a balanced monoidal category with θA = idA for every A.

2.2. Monoidal Functors and Natural Transformations

For monoidal categories C = (C,⊗, I, a, l, r) and C′ = (C′,⊗′, I ′, a′, l′, r′), a monoidal

functor from C to C′ is a tuple (F, m, mI ) where F is a functor from C to C′, m is a

natural transformation from F (−) ⊗′ F (=) to F (−⊗ =) and mI : I ′ → FI is an arrow
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in C′, satisfying the coherence conditions below.

(FA⊗′ FB)⊗′ FC F (A⊗B)⊗′ FC F ((A ⊗B)⊗ C)

FA⊗′ (FB ⊗′ FC) FA⊗′ F (B ⊗ C) F (A⊗ (B ⊗ C))
?

a′

-m⊗′FC -m

?

Fa

-
FA⊗′m

-
m

I ′ ⊗′ FA FA

FI ⊗′ FA F (I ⊗A)
?

mI⊗FA

-l′

-
m

6
Fl

FA⊗′ I ′ FA

FA⊗′ FI F (A⊗ I)
?

FA⊗mI

-r′

-
m

6
Fr

It is called strong if mA,B and mI are all isomorphisms.

A balanced monoidal functor from a balanced C to another C′ is a monoidal functor

(F, m, mI ) which additionally satisfies the following condition

FA⊗′ FB FB ⊗′ FA

F (A⊗B) F (B ⊗A)

-c′

?

m

?

m

-
Fc

and F (θA) = θFA.

For monoidal functors (F, m, mI ), (G, n, nI) with the same source and target monoidal

categories, a monoidal natural transformation from (F, m, mI ) to (G, n, nI) is a natural

transformation ϕ : F → G such that the following diagrams commute:

FA⊗′ FB F (A⊗B)

GA⊗′ GB G(A⊗B)
?

ϕ⊗′ϕ

-m

?

ϕ

-
n

I ′

FI GI

�
�	

mI @
@R
nI

-
ϕ

A (balanced/symmetric) monoidal adjunction between (balanced/symmetric) monoidal

categories is an adjunction in which both of the functors are (balanced/symmetric)

monoidal and the unit and counit are monoidal natural transformations.

2.3. Geometry of Monoidal Categories

In this paper we make use of the graphical language for monoidal categories, known as

string diagrams or Penrose diagrams, developped by Joyal and Street (Joyal and Street

1991). A morphism f : A1⊗A2⊗ . . .⊗Am → B1⊗B2⊗ . . .⊗Bn in a monoidal category

can be drawn as (from left to right)
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f

Am

A2

:

A1

-Bn

-B2

:

-B1

Morphisms can be composed, either sequentially —

X f -Y Y g -Z

⇒
X f Y g -Z

f : X → Y, g : Y → Z g ◦ f : X → Z

or in parallel:

A f -B

C g -D

⇒
A f -B

C g -D

f : A→ B, g : C → D f ⊗ g : A⊗ C → B ⊗D

Braids are expressed by crossing: c = -
-

�� , c−1 = -
-

@@ . Twists are drawn as

θ = - and θ−1 = - .

Remark 2.1. Links in these pictures should be regarded as “ribbons” or “framed tan-

gles”, as stressed in (Joyal and Street 1991; Joyal and Street 1993; Shum 1994). Our

notation for twists is intended to be a reasonable alternative for the ribbon twisting

notation used in the literature.

Monoidal functors and monoidal natural transformations also allow concise graphi-

cal presentations, as demonstrated by Cockett and Seely (Cockett and Seely 1999) and

Melliès (Melliès 2006). Consider a monoidal functor F = (F, m, mI ) : C → D. Given

f : A ⊗ B → C in C, we may draw a picture with “box” (here with the dark shadow,

should not be confused with the square around f)

f -
F A

F B

A

B

C F C

which represents FA ⊗ FB
mA,B

→ F (A ⊗B)
Ff
→ FC. The dark area is in C, where as the

white area in D. Similarly, given a : I → A, the picture

a -A F A

represents I
mI→ FI

Fa
→ FA. The three coherence conditions of monoidal functors ensure

that this notation works well for general f : A1 ⊗ . . . ⊗ An → B, where the grouping

of Ai’s does not matter. In addition, if F is strong monoidal, we can do the same for

tensors in the codomain. It is a pleasant exercise to write down the coherence conditions

for braids and monoidal natural transformations using this box notation. For instance,

one of the diagrams for monoidal natural transformations can be shown as follows.

f
F A

F B

A

B

C F C GCϕ -
=

ϕ

ϕ
f -

F A

F B

GA

GB

A

B

C GC
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See (Cockett and Seely 1999) and (Melliès 2006) for further details and examples.

3. Traced Monoidal Categories

3.1. Traced Monoidal Categories

We present a slightly simplified definition of traced monoidal categories, where trace is

defined in an object-wise manner. Such a theory of object-wise trace has been developped

by Blute, Cockett and Seely for linearly distributive categories (Blute et al. 2000); Milner

also gave a similar axiomatization for his reflexive action calculi (Milner 1994).

A traced monoidal category (Joyal et al. 1996) is a balanced monoidal category C

equipped with a family of functions, called trace operator

TrX
A,B : C(A⊗X, B ⊗X) −→ C(A, B)

fA

X

-B
-X

7→

�
 �	�

fA -B

subject to the following four coherence axioms.

Tightening (Naturality) TrX
A′,B′((k ⊗ idX) ◦ f ◦ (h⊗ idX)) = k ◦ TrX

A,B(f) ◦ h�
 �	�

h
f

k - =

�
 �	�

h
f

k -

Yanking TrX
X,X(cX,X ) ◦ θ−1

X = idX = TrX
X,X(c−1

X,X) ◦ θX�
 �	�

�� - = - =

�
 �	�

@@ -

Superposing TrX
C⊗A,C⊗B(idC ⊗ f) = idC ⊗ TrX

A,B(f)�
 �	�

f -
-

=

�
 �	�

f -
-

Exchange

TrX
A,B(TrY

A⊗X,B⊗X(f)) = TrY
A,B(TrX

A⊗Y,B⊗Y ((idB ⊗ cY,X) ◦ f ◦ (idA ⊗ c−1
Y,X)))

�
 �	�
'
&

$
%

�

f
- =

�
 �	�
'
&

$
%

�

�� f
@@

-
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Readers familiar with the paper by Joyal, Street and Verity (Joyal et al. 1996) should

find no difficulty in seeing that these are all derivable from the original axiomatization.

Conversely, original axioms are derivable from our axioms; we shall give a slightly non-

trivial derivation of the Sliding and Vanishing for tensor in an appendix. The remaining

Vanishing for unit is in fact redundant in the original axiomatisation (as demonstrated

in an appendix), so our axioms are equivalent to the original axioms in ibid.

3.2. Tortile Monoidal Categories

A tortile monoidal category (Shum 1994) (also ribbon category (Yetter 2001)) is a balanced

monoidal category with an object A∗ for each object A, unit ηA : I → A⊗A∗ and counit

εA : A∗ ⊗A→ I such that each of

A
l
−1

A→ I ⊗A
ηA⊗idA
→ (A⊗A∗)⊗A

aA,A∗,A
→ A⊗ (A∗ ⊗ A)

idA⊗εA→ A⊗ I
rA→ A

A∗ r
−1

A∗

→ A∗ ⊗ I
idA∗⊗ηA
→ A∗ ⊗ (A⊗A∗)

a
−1

A∗,A,A∗

→ (A∗ ⊗A)⊗A∗ εA⊗idA→ I ⊗A∗ lA∗

→ A∗

is the identity and moreover θ∗A = θA∗ holds, where, for f : A → B, f∗ : B∗ → A∗ is

given by (omitting l, r and a)

B∗ idB∗⊗ηA
→ B∗ ⊗A⊗A∗ idB∗⊗f⊗idA∗

→ B∗ ⊗B ⊗A∗ εB⊗idA∗

→ A∗.

It follows that (−)∗ extends to a contravariant equivalence, A∗∗ ' A, and the functor

(−) ⊗ A is left adjoint to (−) ⊗ A∗ with unit idX ⊗ ηA : X → X ⊗ A ⊗ A∗ and counit

idX ⊗ εA : X ⊗A∗ ⊗A→ X . Note that tortile symmetric monoidal categories (in which

braiding is a symmetry and twist is the identity) are familiar compact closed categories

(Kelly and Laplaza 1980). The unit and counit in tortile monoidal categories can be

drawn as

�
- and

�	� respectively. With them, three axioms are expressed as

follows. �

�	
-

= -
�

�
 �	= �
�


�
�	= �

The importance of tortile monoidal categories in knot theory comes from the following

result:

Theorem 3.1. (Shum 1994) The tortile monoidal category freely generated by a single

object is equivalent to the category of framed tangles.

Therefore, tortile monoidal categories give rise to invariants (or models) for tangles, just

in the same sense that cartesian closed categories give rise to models of the simply typed

lambda calculi (Lambek and Scott 1986).

Any tortile monoidal category has a unique trace (called canonical trace (Joyal et

al. 1996)), hence is also a traced monoidal category. The canonical trace is given by

combining η, ε, c and θ:

TrX
A,Bf = (idB ⊗ (εX ◦ (idX∗ ⊗ θX) ◦ cX,X∗)) ◦ (f ⊗ idX∗) ◦ (idA ⊗ ηX )
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�
 �	�

f -
=

�
- �	�
f

��

-

It follows that a monoidal full subcategory of a tortile monoidal category is traced.

3.3. The Int-Construction

In fact, every traced monoidal category arises in this way: given a traced monoidal cat-

egory C, we can construct a tortile monoidal category Int C to which C fully faithfully

embeds, via the Int-construction of Joyal, Street and Verity — an abstract version of

“Geometry of Interaction” of Girard/Abramsky. Below we briefly recall its ingredients.

Objects of IntC are pairs of objects of C. An arrow from (A+, A−) to (B+, B−)

in Int C is an arrow from A+ ⊗ B− to B+ ⊗ A− in C. The identity on (A+, A−) is

idA+⊗θ−1
A− ∈ C(A+⊗A−, A+⊗A−). The composition of f ∈ IntC((A+, A−), (B+, B−)) =

C(A+ ⊗B−, B+ ⊗A−) and g ∈ Int C((B+, B−), (C+, C−)) = C(B+ ⊗ C−, C+ ⊗B−) is

given by �
 �	�
B−

��
f

@@
g

��C−

A+ B+

-A−

-
C+

Next we look at the monoidal structure. On objects, we define tensor and unit by

(A+, A−) ⊗ (B+, B−) = (A+ ⊗ B+, B− ⊗ A−) and I = (I, I). On arrows, for f1 :

(A+
1 , A−

1 )→ (B+
1 , B−

1 ) and f2 : (A+
2 , A−

2 )→ (B+
2 , B−

2 ), define f1 ⊗ f2 by

@@

��
f1

@@

@@

-

f2

-

-
-

Braids and twists in Int C are not quite obvious:

c =
@@

��

-

@@
-

@@-
-

θ = @@ @@-
-

(It is an interesting exercise to write down c−1 and θ−1 explicitly.)

Finally we describe the duality, which is not so hard: (A+, A−)∗ = (A−, A+). The unit

η(A+,A−) : I → (A+, A−) ⊗ (A+, A−)∗ is given by idA+ ⊗ θ−1
A− . The counit ε(A+,A−) :

(A+, A−)∗ ⊗ (A+, A−) → I is idA− ⊗ θA+ . We can extend (−)∗ to be a contravariant

equivalence on IntC — on arrows f : (A+, A−) → (B+, B−) define f∗ : (B+, B−)∗ →

(A+, A−)∗ as

�� f @@ -
-

Theorem 3.2. (Joyal et al. 1996) These data determine a tortile monoidal structure on
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Int C. Moreover, the functor N : C → Int C sending A to (A, I) strongly preserves the

traced monoidal structure, and is full faithful.

Explicitly, the canonical trace on IntC can be given as follows. (It is not entirely obvious

for the non-symmetric case.) For f : (A+, A−)⊗ (X+, X−)→ (B+, B−)⊗ (X+, X−), its

trace Tr(X +,X−)f : (A+, A−)→ (B+, B−) is'
&

$
%

��
 �	�

��
��

f

-

��
@@ -

It easily follows that N preserves trace up to canonical isomorphisms.

In fact, Int-construction is universal, as shown in ibid.: it gives a left biadjoint to the

forgetful 2-functor from the 2-category of tortile monoidal categories to that of traced

monoidal categories.

3.4. Trace-Fixpoint Correspondence

The following correspondence between traces and fixed-point operators on categories

with finite products, noticed by Martin Hyland and the author independently†, shows

that traces and fixed-point operators commonly used in computer science are very closely

related.

Let C be a category with finite products. A parameterized fixed-point operator on C

is a family of functions

(−)† : C(A×X, X)→ C(A, X)

which is natural in A and satisfies the fixed-point equation f † = f ◦ 〈idA, f †〉 : A → X

for any f : A × X → X . It is called a Conway fixed-point operator if it satisfies the

dinaturality

(f ◦ 〈πA,X , g〉)† = f ◦ 〈idA, (g ◦ 〈πA,Y , f〉)†〉 : A→ X

for f : A× Y → X and g : A×X → Y , and the diagonal property

(f ◦ (idA ×∆X))† = (f †)† : A→ X

for f : A×X ×X → X , where ∆X : X → X ×X is the diagonal map.

Theorem 3.3. (Hasegawa 1997; Hasegawa 1999) For any category with finite products,

to give a Conway operator is to give a trace (where finite products are taken as the

monoidal structure).

† We should note that mathematically equivalent observations were made by several authors before the
notion of traced monoidal categories was introduced, in particular by Bloom and Ésik (Bloom and
Ésik 1993) and Ştefǎnescu (Ştefǎnescu 2000).
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Here we shall just recall the constructions of this bijective correspondence:

f : A×X → X

f † = TrX
A,X(∆X ◦ f) : A→ X

g : A×X → B ×X

TrX
A,B(g) = πB,X ◦ (g ◦ (idA × π′

B,X))† : A→ B

The construction of Conway operator from a trace can be drawn as follows.

f - ⇒ f -

�� ���
=

�
�@
@

f

f

�� �
�

-

Thus many categories in denotational/algebraic semantics are traced. For example, the

category Cppo of pointed cpo’s and continuous functions is traced, where trace deter-

mined by the least fixed-points.

4. Traced Monoidal Closed Categories

So far we have not thought much about closed structure, or higher-types. Recall that a

monoidal category C is closed if −⊗A : C→ C has a right adjoint A ( −:

C(X ⊗A, Y ) ' C(X, A ( Y )

In particular, tortile monoidal categories are closed, with A ( B = B ⊗ A∗. We will

denote (the Y -component of) the counit of this adjunction by evA,Y : (A ( Y )⊗A −→ Y ,

and for f : X ⊗ A −→ Y let Λ(f) : X −→ A ( Y be the unique arrow satisfying

evA,Y ◦ (Λ(f)⊗ idA) = f .

In the context of linear logic (Girard 1987), being symmetric monoidal closed means

that we can interpret the intuitionistic multiplicative fragment (tensor ⊗, unit >, and

linear implication () in C. In the rest of this paper, we will see that, for a traced monoidal

category, closedness has yet another reading in terms of the Int-construction, which in

turn is also related to the modality ! and linear decomposition A → B = !A ( B in

linear logic.

4.1. Monoidal Closed Categories and Co-reflection

It is known that a monoidal co-reflective full subcategory of a monoidal closed category

is also closed (although the closed structure may not be preserved by the inclusion):

Lemma 4.1. (folklore‡). Let C
F−→
⊥←−
U

D be a monoidal adjunction. If F is full faithful and

D is closed, then C is also closed, with A (C B = U(FA (D FB).

‡ Martin Hyland (private communication) attributes this result to Brian Day.
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Proof.

C(C ⊗A, B) ' D(F(C ⊗A), FB) F is full faithful

' D(FC ⊗ FA, FB) F is strong monoidal

' D(FC, FA ( FB) D is closed

' C(C, U(FA ( FB)) F a U

Here we appeal to the fact that an adjunction F a U is a monoidal adjunction if and

only if F is strong monoidal (Kelly 1974).

4.2. Main Observation

Below we present a variation for traced monoidal categories. It characterizes closedness

in terms of an adjunction associated to the Int-construction.

Theorem 4.1. (main observation) Let C be a traced monoidal category, and N : C→

Int C be the canonical inclusion from C into Int C (i.e. N(A) = (A, I)). Then C is closed

if and only if N has a right adjoint.

Corollary 4.1. Every traced monoidal closed category is equivalent to a monoidal co-

reflexive full subcategory of a tortile monoidal category.

Proof of Theorem 4.1. “if” follows from the previous folklore lemma, as N is full faithful

and strong symmetric monoidal. Note that, by the lemma,

A (C B ' U(NA (Int C NB) = U((A, I)∗ ⊗ (B, I)) ' U(B, A)

where U is right adjoint to N. This suggests how we proceed to show the “only if” part.

That is, if C is closed, define U(A+, A−) = A−
( A+. For f : (A+, A−)→ (B+, B−), let

U(f) : (A−
( A+)→ (B−

( B+) be

Λ(TrA−

(A−
(A+)⊗B−,B+(f ◦ (evA−,A+ ⊗ idB−) ◦ (idA−

(A+ ⊗ cB−,A−)))

or, more internally, a map sending k : A− → A+ to TrA−

B−,B+(f ◦ (k ⊗ B−) ◦ cB−,A−) :

B− → B+, see the picture below. �
 �	�

�� k
f

B−
A− A+ B+

-

In other words, U(f) describes “composition with f in Int C” in terms of C.�
 �	�
A−

�� @@
f

��B−

I

k

A+

-I

-
B+

From this, it is immediate to see that U is indeed a functor.
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Finally, it is easy to see the adjointness:

IntC(N(A), (B+, B−)) = Int C((A, I), (B+, B−))

= C(A⊗B−, B+ ⊗ I)

' C(A, B−
( B+)

= C(A, U(B+, B−)).

The (A+, A−)-component of the counit of the adjunction is given by evA−,A+ : (A−
(

A+)⊗A− → A+, while the unit is trivial.

Note that the adjunction in the theorem above gives rise to an idempotent balanced

monoidal comonad NU on IntC which sends (A+, A−) to (A−
( A+, I). Recall that, for

an idempotent comonad K on a category C, its co-Kleisli category CK and co-Eilenberg-

Moore category CK are both equivalent to the co-reflexive full subcategory of C whose

objects are in the image of K. Thus we have:

Corollary 4.2. For any traced monoidal closed category C, there is an idempotent

balanced monoidal comonad on IntC such that its co-Kleisli category is equivalent to C.

Thus all traced monoical closed categories come from tortile monoidal categories with an

idempotent balanced monoidal comonad. The converse is not true, however: there is a

tortile monoidal category Y with an idempotent balanced monoidal comonad ! such that

Int (Y!) is not equivalent to Y — see Section 6.2.

Remark 4.1. It might be the case that Int-construction and co-Kleisli construction give

rise to a biadjunction between the 2-category of traced monoidal closed categories and

a suitable 2-category of tortile monoidal categories with idempotent balanced monoidal

comonad, but for now we do not know the answer.

5. Applications

5.1. Models of Linear Logic

We have already noted that symmetric monoidal closed categories are the models of

multiplicative fragment of intuitionistic linear logic (IMLL). Here we shall quickly recall

additional structures needed for modelling other elements of linear logic (Seely 1989; Barr

1991; Benton 1995; Bierman 1995; Barber and Plotkin 1997; Hyland and Schalk 2003;

Melliès 2003).

A symmetric monoidal closed category with an object⊥ so that the canonical map from

A to (A ( ⊥) ( ⊥ is invertible for all objects A is called a ∗-autonomous category (Barr

1991). ∗-autonomous categories are the models of multiplicative fragment of classical

linear logic (MLL), where ⊥ (called a dualizing object) models the falsity and A ( ⊥ the

linear negation of A. Compact closed categories (= tortile symmetric monoidal categories)

are special instances of ∗-autonomous categories, so they also are models of MLL.

To interpret additive conjunctions and disjunctions of linear logic, it suffices just to

assume finite products and finite coproducts. However, they are not particularly impor-
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tant in this paper; we do not know useful conditions to ensure the existence of finite

(bi)products§ on Int C, so for now additives do not have good place in our story.

A symmetric monoidal adjunction between a category with finite products and a sym-

metric monoidal category gives rise to a comonad on the symmetric monoidal category,

which models the exponential ! of linear logic (Barber and Plotkin 1997; Bierman 1995).

Such a comonad is called a linear exponential comonad (Hyland and Schalk 2003). Ex-

plicitly, a linear exponential comonad is a symmetric monoidal comonad ! on a symmetric

monoidal category C such that the category of its coalgebras is a category of commutative

comonoids, which means

— there are specified monoidal natural transformations eA :!A → I and dA :!A →

!A⊗!A which form a commutative comonoid (!A, eA, dA) in C and also are coalgebra

morphisms from (!A, δA) to (I, mI) and (!A⊗!A, m!A,!A ◦ (δA⊗ δA)) respectively, and

— any coalgebra morphism from (!A, δA) to (!B, δB) is also a comonoid morphism from

(!A, eA, dA) to (!B, eB , dB).

In summary, a model of multiplicative exponential fragment of intuitionistic linear logic

(IMELL) is a symmetric monoidal closed category with a linear exponential comonad.

A model of multiplicative exponential fragment of classical linear logic (MELL) is a

∗-autonomous category with a linear exponential comonad.

Returning to our study on traced categories, if C is a traced cartesian closed category,

our main theorem implies that C
N−→
⊥←−
U

IntC is a symmetric monoidal adjunction, thus

NU is a linear exponential comonad on IntC.

Corollary 5.1. For any traced cartesian closed category C, there is an idempotent linear

exponential comonad on Int C such that its co-Kleisli category is equivalent to C.

Explicitly, this comonad sends (A+, A−) to (A− ⇒ A+, 1).

Together with the trace-fixpoint correspondence:

Corollary 5.2. Any cartesian closed category with a Conway fixed-point operator is

equivalent to one arising from a compact closed model of MELL via the co-Kleisli con-

struction.

We can go further. Since monoidal adjunctions are closed under composition, Int-

construction actually sends a traced model for IMELL to a compact closed model for

MELL:

Corollary 5.3. Let C be a traced symmetric monoidal closed category with a linear

exponential comonad ! (i.e. a model of IMELL). Then Int C is equipped with a linear

exponential comonad !′ given by !′(A+, A−) = N(!(U(A+, A−))) = (!(A−
( A+), I).

-�
�! C

-N

�
U
⊥ IntC

§ If a tortile monoidal category has finite products, they are biproducts (Houston 2006).
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This gives an alternative possibility for interpreting exponentials in Geometry of Inter-

action — not quite the same as Girard’s (Girard 1989) or the treatment by Abramsky,

Haghverdi, Scott et al (Abramsky and Jagadeesan 1994; Haghverdi 2000; Abramsky et

al.; Haghverdi and Scott 2006).

5.2. Linear Fixed-points: Recursion from Cyclic Sharing Revisited

In (Hasegawa 1997; Hasegawa 1999), it is shown that¶

Theorem 5.1. Given a symmetric monoidal adjunction C
F−→
⊥←−
U

D between a category C

with finite products (taken as the monoidal structure) and a traced symmetric monoidal

category D, there exists a family of functions

(−)† : D(FA⊗X, X) −→ D(FA, X)

which is natural in A and dinatural in X .

Explicitly, f † is given by

εX ◦ TrFUX
FA,FUX(mF

UX,UX

−1
◦ F (∆UX ◦ Uf ◦mU

FA,X ◦ (ηA × idUX )) ◦mF
A,UX)

where η and ε are the unit and counit of the adjunction (should not be confused with

those for tortile monoidal categories). In particular, f † satisfies the fixed-point equation:

f † = f ◦ (idFA ⊗ f †) ◦mF −1
◦ F∆A

This result has been used for providing semantics of recursion in lambda calculi with

cyclic sharing (Hasegawa 1997; Hasegawa 1999).

Using the box notation (Cockett and Seely 1999; Melliès 2006), this f † can be nicely

expressed as follows.

f
η ε

�
�

�
�

�

-

In this picture, the inner box and outer box correspond to functors U and F respectively,

and the components in the gray zone belong to C while those in white to D. Happily, we

do not have to be bothered by the coherence morphisms mF and mU . In an appendix

we give a graphical derivation of the fixed-point equation using the box notation, which

replaces the lengthy calculation in (Hasegawa 1999).

If D is closed, the operator (−)† can be replaced by a family of arrows of D(FU(X (

X), X) ' D(I, FU(X ( X) ( X). In terms of the linear lambda calculus corresponding

¶ In (Hasegawa 1997; Hasegawa 1999), only Kleisli adjunctions of commutative monads were considered,
and this theorem was stated with an additional condition that F is an identity-on-object, strict
monoidal functor. But this restriction is not essential, as we demonstrate here.
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to intuitionistic linear logic (Barber and Plotkin 1997), this amounts to a linear fixed-

point combinator YX :!(X ( X) ( X such that

YX (!M) = M (YX (!M))

holds for any term M : X ( X with no free linear variable. Note that this is different

from the usual fixed-point combinator with type !(!X ( X) ( X which returns a

fixed point of a non-linear map of type !X ( X . As demonstrated in (Hasegawa 1997;

Hasegawa 1999), linear fixed-point operators can exist even in the settings where such a

standard non-linear fixed-point operator is not available.‖

Proposition 5.1. Suppose that D is a traced symmetric monoidal closed category with a

linear exponential comonad !. Then there exists a family of arrows fixX :!(X ( X) −→ X

such that, for any f :!A⊗X −→ X , f † = fixX◦!(Λ(f)) ◦ δA :!A→ X (with Λ(f) :!A −→

X ( X the adjoint mate of f) is a fixed-point of f , that is, f † agrees with

!A
d
→!A⊗!A

id!A⊗f†

→ !A⊗X
f
→ X.

As we have seen, if C is a traced symmetric monoidal closed category with a linear

exponential comonad ! (traced model of IMELL), then IntC is a compact closed category

with a linear exponential comonad !′(A+, A−) = (!(A−
( A+), I) (compact model of

MELL). Therefore, both C and Int C admit interpretations of such linear fixed-points.

The linear fixed-point on (X+, X−) in IntC is determined by the linear fixed-point

on X−
( X+ in C. Spelling out the detail, to give a linear fixed-point Y(X+,X−) :

!′((X+, X−) ( (X+, X−)) ( (X+, X−) in Int C is to give a map of

(X−⊗ !((X+ ⊗X−) ( (X+ ⊗X−))) ( X∗

in C, which is described as

λ(yX1

⊗ !f ((X+⊗X−)((X+⊗X−))).YX−
(X+ (!(Uf)) y.

Example 5.1. Let C be a traced cartesian closed category. Take a morphism f =

〈f+, f−〉 : (X+, X−) → (X+, X−) in IntC, thus f+ : X+ × X− → X+ and f− :

X+×X− → X− in C. Using the simply typed lambda calculus with µ-fixpoint operator

as an internal language of C, Uf : X+X−

→ X+X−

can be described as

λkX−→X+

.λyX−

.f+(µxX+

.k (f− (x, y)), y−) : (X− → X+)→ (X− → X+)

where µz.g(z) denotes the corresponding Conway fixed-point. The linear fixed-point f † :

(1, 1)→ (X+, X−) is determined by a morphism from X− to X+ in C, which is given by

‖ One may define Y′
X :!(!X ( X) ( X from Y by (using the syntax of DILL (Barber and Plotkin

1997))

λg!(!X(X).let !f !X(X
be g in let !zX

be Y!X (λy!X .let !xX
be y in !(f (!x))) in z

but this does not satisfy the non-linear fixed-point equation Y
′ (!M) = M (!(Y′ (!M))). More con-

cretely, consider the compact closed category Rel of sets and relations, with the powerset comonad
— this has a linear fixed-point operator (Hasegawa 1997; Hasegawa 1999) but no non-linear one (cf.
(Melliès 2006)).
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the fixed-point of Uf , that is,

µkX−→X+

.λyX−

.f+(µxX+

.k (f− (x, y)), y−) : X− → X+.

6. Related Work and Discussions

6.1. Program Transformations and Attribute Grammars

Recently, Katsumata and Nishimura (Katsumata and Nishimura 2006) introduced a pro-

gram transformation technique called (semantic) higher-order removal. Roughly, their

technique transforms a higher-order map g : (A− ⇒ A+) ⇒ (B− ⇒ B+) (created in

the process of dealing with fusions of functions with accumulating parameters, which

involves certain bi-directional information flow) to a less-expensive first-order map f :

A+×B− ⇒ B+×A− such that U(f) = g holds, where U is right adjoint to N. They give

a syntactic condition which ensures that g is in the image of U in their semantic models,

and presented a procedure for identifying f such that U(f) = g.

More recently, Katsumata (Katsumata 2007) has shown that a substantial part of the

theory of attribute grammars (Knuth 1968) can be carried out very cleanly in terms

of traced monoidal categories and Int-construction. Very roughly, an attribute grammar

assigns computation with bidirectional information flow to term trees of a context free

grammar, which can be interpreted in traced monoidal categories just in the same manner

as Geometry of Interaction:

term tree attribute grammar interpretation via trace

x

f

g

y

�� SS
x

f

g

y

6?

��7��/ SSoSSw

6?

y
g

x

f

�
 �	� �
 �	�
'
&

$
%

�

-

In Katsumata’s work, the adjunction N a U of Theorem 4.1 provides the equivalence

between attribute grammars and synthesized attribute grammars (attribute grammars

with just bottom-up information flow). This generalizes the result on the equivalence

between such attribute grammars formulated in a domain-theoretic setting citeCM79.

6.2. Game Semantics

An interesting (non)example is the category Y− of negative Conway games (Melliès 2004).

Y− is a symmetric monoidal full subcategory of the compact closed category Y of Con-

way games (Joyal 1977). The inclusion from Y− to Y has a right adjoint. Thus (by the

folklore lemma) Y− is a traced symmetric monoidal closed category. Y− is one of very

few interesting traced symmetric monoidal closed categories which are neither cartesian

closed nor compact closed.

Int Y− is not equivalent to Y — thus it does not really fit in our result. But the difference

is subtle; more precisely, Int Y− is equivalent to a compact closed full subcategory of Y,
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whose objects are the tensor products of positive and negative games. We expect that

similar situation should be found in many categories of games, which would deserve

further study. A recent relevant example is the category of multi-bracketed games of

Melliès and Tabareau (Melliès and Tabareau 2007).

6.3. Concluding Remarks

We have observed that closedness for a traced monoidal category is equivalent to an

adjointness associated to the Int-construction. This simple result has a number of ap-

plications, on models of linear logic and fixed-point computation. We hope that these

provide some good motivations to study traced monoidal closed categories. In particular,

we expect that it is possible to develop “Geometry of Higher-Order Interaction” along

the line of this work.

We shall conclude this paper by giving some further research directions. Firstly, to

obtain a more solid understanding of traced monoidal closed categories, it is desirable

to find a good concrete description of free traced monoidal closed categories. Intuitively,

it should be a sort of “higher-order tangles” — in the same sense that a free traced

monoidal category can be given as a category of usual (framed) tangles. Alternatively,

it might be useful to consider free tortile monoidal categories with idempotent balanced

monoidal comonads.

Secondly, related to the previous direction, and less ambitiously, it should be useful

to develop a syntax for traced monoidal closed categories. Perhaps this can be done by

extending existing term calculi or proof nets for linear logic.

Thirdly, useful ways of constructing traced monoidal closed categories should be stud-

ied. We are yet to see if the constructions based on uniformity (Hasegawa 2004) can be

used for the closed setting as well.

Appendix A. Derivation of Sliding and Vanishing

Proposition A.1. Sliding TrX
A,B((idB ⊗ h) ◦ f) = TrY

A,B(f ◦ (idA ⊗ h)) is derivable.�
 �	�

f -
h

=

�
 �	�

f -
h

Proof. By Yanking, the left hand side is equal to�
�

�
�

�

f -

�
 �	�

�� h

Using Superposing and Tightening, we have
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�
�

�
�

�

f -

�
 �	�

�� h

Then we apply Exchange:

�
�

�
�

�

��
f -

�
 �	�

�� h
@@

Thanks to the naturality of braidings, this is equal to the following.

�
�

�
�

�

f -

�
 �	�

��h

Applying Tightening and Superposing, we obtain

�
�

�
�

�

f -

�
 �	�

��h

By Yanking �
 �	�

f -
h

This is equal to the right hand side of the equation, by the naturality of twisting.

Proposition A.2. Vanishing for tensor TrX
A,B(TrY

A⊗X,B⊗X(f)) = TrX⊗Y
A,B (f) is deriv-

able.

Proof. We first show a variant of sliding

TrX
A,B(TrY

A⊗X,B⊗X((idB ⊗ h) ◦ f)) = TrZ
A,B(f ◦ (idA ⊗ h))

for f : A⊗X ⊗ Y → B ⊗ Z and h : Z → X ⊗ Y
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�
 �	�
�
�

�
�

�

f
-

h

=

�
�

�
�

�

f
-

h

by the same technique used for deriving the sliding axiom above. From the left hand side

of the equation, by yanking, superposing and tightening, we get

�
 �	�
�
�

�
�

�
'

&

$

%

�

f
-

�� h

@@ ��

to which we apply the exchange axiom twice:

�
 �	�
�
�

�
�

�
'

&

$

%

�

��
��

f
-

�� h

@@
@@

@@ ��

By the naturality and bilinearity of braidings, and by tightening, superposing, we have

h ��
��

�� ���

��

�� ���

��
@@

�� f

'

&

$

%

�

-

The rest of proof is now easy, by yanking and the naturality of twisting; here we should

recall the axiom θA⊗B = cB,A ◦ (θB⊗θA)◦ cA,B of twists. The vanishing axiom for tensor

follows from this equation, by letting Z be X ⊗ Y and h be idX⊗Y .

Remark A.1. Vanishing for unit TrI
A,Bf = rB ◦f ◦r

−1
A (f : A⊗I → B⊗I) is redundant
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in original axioms in (Joyal et al. 1996). For completeness, here is a direct demonstration:

r−1
A

f rB -
=

r−1
A

��

�
 �	�

f rB -
yanking

=
r−1
A

�
 �	�

��
f rB -

superpose/tight.

=

�
 �	�

r−1
A

��
f

@@
rB -

c−1
I,I = idI⊗I

=
r−1
A

�
 �	�
�

��

f

@
@@

rB -
superpose/tight.

=
r−1
A

rA

�
 �	�

f -
naturality of r

=

�
 �	�

f -

Appendix B. Linear Fixed-points Graphically

We show that, for f : FA⊗X → X ,

f † = ε ◦ TrFUX(mF −1
◦ F (∆ ◦ Uf ◦mU ◦ (η × id)) ◦mF ) : FA→ X

satisfies the (linear) fixed-point equation, using the box notation for monoidal functors

(Cockett and Seely 1999; Melliès 2006).

f
η ε

�
�

�
�

�

-

First, duplicate Uf ◦mU ◦ (η × id):
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f

f
η

η
ε

�
�

�
�

�

-

Since F is strong monoidal, the gray box can be decomposed —

f

f
η

η
ε

�
�

�
�

�

-

and further:

f

f
η

η
ε

�
�

�
�

�

-

Since ε is a monoidal natural transformation from FU to the identity functor, we have

f

f
ε

ε

η

η

�
�

�
�

�

-
hhh

By adjointness, ε ◦ Uη = id:
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f

f
ε

η

�
�

�
�

�

-
hhh

By axioms of trace:

f

f
ε

η

�
�

�
�

�

-

Now we have done: f † = f ◦ (id⊗ f) ◦m−1 ◦ F∆.

f

f
ε

η

�
�

�
�

�

-
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Bloom, S. and Ésik, Z. (1993) Iteration Theories. EATCS Monographs on Theoretical Computer

Science, Springer-Verlag.

Blute, R.F., Cockett, J.R.B. and Seely, R.A.G. (2000) Feedback for linearly distributive cate-

gories: traces and fixpoints. J. Pure Appl. Algebra 154, 27–69.

Chirica, L.M. and Martin, D.F. (1979) An order-algebraic definition of knuthian semantics.

Mathematical Systems Theory 13, 1–27.

Coccia, M., Gadducci, F. and Montanari, U. (2002) GS-Λ theories: a syntax for higher-order

graphs. In Proc. Category Theory and Computer Science, Electr. Notes Theor. Comput. Sci.

69.

Cockett, J.R.B. and Seely, R.A.G. (1999) Linearly distributive functors. J. Pure Appl. Algebra

143, 155–203.

Girard, J.-Y. (1987) Linear logic.Theoret. Comp. Sci. 50, 1–102.

Girard, J.-Y. (1989) Geometry of Interaction I: interpretation of system F. In Proc. Logic Col-

loquium ’88, pp. 221–260.

Haghverdi, E. (2000) A Categorical Approach to Linear Logic, Geometry of Interaction and Full

Completeness, PhD thesis, University of Ottawa.

Haghverdi, E. and Scott, P.J. (2006) A categorical model for the geometry of interaction. Theor.

Comput. Sci. 350(2-3), 252–274.

Hasegawa, M. (1997) Recursion from cyclic sharing: traced monoidal categories and models

of cyclic lambda calculi. In Proc. Typed Lambda Calculi and Applications, Springer Lecture

Notes in Comput. Sci. 1210, pp. 196–213.

Hasegawa, M. (1999) Models of Sharing Graphs: A Categorical Semantics of let and letrec.

Distinguished Dissertations Series, Springer-Verlag.

Hasegawa, M. (2004) The uniformity principle on traced monoidal categories. Publ. Res. Inst.

Math. Sci. 40(3), 991–1014.

Houston, R. (2006) Finite products are biproducts in a compact closed category.

arXiv:math/0604542.

Hyland, M. and Schalk, A. (2003) Glueing and orthogonality for models of linear logic. Theoret.

Comp. Sci. 294(1/2), 183–231.

Joyal, A. and Street, R. (1991) The geometry of tensor calculus, I. Adv. Math. 88, 55–113.

Joyal, A. and Street, R. (1993) Braided tensor categories. Adv. Math. 102, 20–78.

Joyal, A., Street, R. and Verity, D. (1996) Traced monoidal categories. Math. Proc. Cambridge

Phils. Soc. 119, 447–468.

Katsumata, S. (2007) A new foundation of attribute grammars in traced symmetric monoidal

categories. Manuscript. Available from

http://www.kurims.kyoto-u.ac.jp/~sinya/index-e.html

Katsumata, S. and Nishimura, S. (2006) Algebraic fusion of functions with an accumulating pa-

rameter and its improvement. In Proc. International Conference on Functional Programming,

pp. 227–238.

Kelly, G.M. (1974) Doctorinal adjunction. In: Proc. Sydney Category Theory Seminar, Springer

Lecture Notes in Math. 420, pp. 257–280.

Kelly, G.M. and Laplaza, M.L. (1980), Coherence for compact closed categories, J. Pure Appl.

Algebra 19, 193-213.



Masahito Hasegawa 24

Knuth, D.E. (1968) Semantics of context-free languages. Mathematical Systems Theory 2(2),

127–145.

Lambek, J. and Scott, P.J. (1986) Introduction to Higher Order Categorical Logic. Cambridge

University Press.

Mac Lane, S. (1971) Categories for the Working Mathematician. Graduate Texts in Mathematics

5, Springer-Verlag.

Melliès, P.-A. (2003) Categorical models of linear logic revisited. To appear in Theoret. Comp.

Sci.

Melliès, P.-A. (2004) Asynchronous games 3: an innocent model of linear logic. In Proc. Category

Theory and Computer Science, Electr. Notes Theor. Comput. Sci. 122, pp. 171–192.

Melliès, P.-A. (2006) Functorial boxes in string diagrams. In Proc. Computer Science Logic,

Springer Lecture Notes in Comput. Sci. 4207, pp. 1–30.

Melliès, P.-A. and Tabareau, N. (2007) Resource modalities in game semantics. In Proc. 22nd

Logic in Computer Science, pp. 389–398.

Milner, R. (1994) Action calculi V: reflexive molecular forms (with appendix by O. Jensen).

Manuscript, LFCS, University of Edinburgh.

Penrose, R. and Rindler, R. (1984) Spinors and Space-Time, Vol. 1. Cambridge University Press.

Seely, R.A.G. (1989) Linear logic, ∗-autonomous categories and cofree coalgebras. In Categories

in Computer Science, AMS Contemp. Math. 92, pp. 371–389.

Shum, M.-C. (1994) Tortile tensor categories, J. Pure Appl. Algebra 93, 57–110.

Simpson, A. and Plotkin, G., (2000) Complete axioms for categorical fixed-point operators, In

Proc. 15th Logic in Computer Science, pp. 30–41.
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