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Monads and algebras

Given a monad T on a category C, we have the notion of algebras over T .
These algebras and homomorphisms form a category (the Eilenberg-Moore
category) CT .

When the base category C has a nice structure/property, it is natural to
ask if the structure/property can be lifted to the category of algebras CT

so that the forgetful functor CT → C preserves the structure.
Such situations are ubiquitous and of interest in various areas of
mathematics, physics and computer science.
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Lifting monoidal structures

In this talk I will discuss conditions on monads for lifting the structure of
monoidal categories (tensor categories), as well as several additional
structures including symmetry/braiding, duality, closed structure,
∗-autonomy, and trace.

In most cases, opmonoidal (= oplax monoidal) monads and Hopf monads
provide satisfactory answers. However, the case of trace is much subtler.

The case of ∗-autonomy is a joint work with J.S. Lemay (2018).
The case of trace is also joint with J.S., though still in progress.
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Monads

A monad on a category C consists of a functor T : C → C and natural
transformations η : 1C

·→ T (unit) and µ : T 2 ·→ T (multiplication) such
that µ ◦ ηT = µ ◦ Tη = 1T (the unit law) and µ ◦ Tµ = µ ◦ µT
(associativity) hold.

TA T 2A T 3A T 2A

T 2A TA T 2A TA

TηA

ηTA
1TA

µA

TµA

µTA µA

µA µA
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Algebras over a monad

An algebra over a monad T on a category C consists of an object A of C
and a morphism α : TA → A satisfying α ◦ ηA = 1A and α ◦ µA = α ◦ Tα.

A TA T 2A TA

A TA A

ηA

1A
α

µA

Tα α

α

A homomorphism from an algebra (A, α) to an algebra (B, β) is a
morphism f : A → B such that f ◦ α = β ◦ Tf holds:

TA TB

A B

Tf

α β

f

The category of algebras and homomorphisms, called Eilenberg-Moore
category, will be denoted by CT . There is an obvious forgetful functor
U : CT → C sending (A, α) to A.
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Example

Let (M, ·, e) be a monoid (in the usual sense).
Consider the functor T = M × (−) : Set → Set.

T is a monad with unit ηA : A → M × A and multiplication
µA : M × (M × A) → M × A given by ηA(a) = (e, a) and
µA(m, (n, a)) = (m · n, a).

An algebra over T is a set A equipped with an M-action • : M × A → A
satisfying e • a = a and m • (n • a) = (m · n) • a.
A homomorphism from (A, •) to (B, •) is a map f : A → B such that
f (m • a) = m • f (a) holds.

Thus the Eilenberg-Moore category SetT is just the category of M-sets
(which is equivalent to the presheaf category [Mop,Set] where M is
regarded as a one-object category).
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Example

Set is cartesian closed. How about SetT for T = M × (−)?
If SetT is cartesian closed, does U : SetT → Set preserve the cartesian
closed structure?

SetT has finite products.
(In fact, for any monad T on a category C, CT has all limits existing in C,
and U : CT → C creates limits.)

SetT is cartesian closed, with exponential

(A, •) ⇒ (B, •) = {f : M × A → B |m • f (n, x) = f (m · n,m • x)}

and M-action (m • f )(n, x) = m • f (n, x).
However, U : SetT → Set may not preserve the exponential.

U preserves the cartesian closed structure exactly when M is a group.
When M is a group, (A, •) ⇒ (B, •) ∼= BA, since f ∈ (A, •) ⇒ (B, •)
is determined by f (e,−) ∈ BA as f (m, a) = m • f (e,m−1 • a).
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Example

Similar situation is found in linear algebra / representation theory.

The category Vecfink of finite dimensional vector spaces over a field k is
compact closed (= symmetric monoidal category equipped with duality).

For a co-commutative bialgebra B in Vecfink ,
T = B ⊗ (−) : Vecfink → Vecfink is a monad.
The category (Vecfink )T of its algebras is the category of B-modules (=
representations of B).

(Vecfink )T is a symmetric monoidal category and U : (Vecfink )T → Vecfink
preserves the symmetric monoidal structure.

(Vecfink )T is compact closed and U preserves the structure exactly when B
is a Hopf algebra (= bialgebra with antipode).
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Monoidal categories

Monoidal categories (= tensor categories) are categories equipped with
monoidal product ⊗ and its unit I as well as suitable isomorphisms for
associativity A⊗ (B ⊗ C ) ' (A⊗ B)⊗ C and unit law A⊗ I ' A ' I ⊗ A.

In this talk, a morphism f : A1 ⊗A2 ⊗ · · · ⊗Am → B1 ⊗B2 ⊗ · · · ⊗Bn in a
monoidal category will be drawn as (to be read from left to right)

f

Am

A2

:

A1

Bn

B2

:

B1

Morphisms can be composed, either sequentially or in parallel:

X f Y Y g Z 7→ X f Y g Z

g ◦ f
A f B

C g D

7→
A f B

C g D

f ⊗ g
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Opmonoidal monads

A monad (T , η, µ) on a monoidal category C is opmonoidal
(= oplax monoidal = comonoidal) when

T is an opmonoidal functor with a natural transformation
mA,B : T (A⊗ B) → TA⊗ TB and a morphism mI : TI → I ,
meaning that mA,B and mI satisfies coherence conditions for
associativity and unit law

η and µ are opmonoidal natural transformation, meaning that they
are compatible with mA,B and mI

Examples:

For any monoid M, the monad M × (−) on Set is opmonoidal.

In fact, any monad T is opmonoidal when the tensor is cartesian, with
m1 =!T1 : T1 → 1 and mA,B = 〈Tπ1,Tπ2〉 : T (A× B) → TA× TB.

For any bialgebra B, the monad B ⊗ (−) on Vecfink is opmonoidal.

[Warning: Moerdijk (2002) called an opmonoidal monad a Hopf monad. His
terminology is no longer standard.]
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Lifting monoidal structure

Theorem (folklore/Moerdijk 2002)
A monad on a monoidal category lifts the monoidal structure if and only if
it is an opmonoidal monad.

Proof: We have a bijective correspondence:

An opmonoidal monad Tdetermines a monoidal structure on algebras

(A, α)⊗ (B, β) = (A⊗ B,T (A⊗ B)
mA,B→ TA⊗ TB

α⊗β→ A⊗ B)

with tensor unit I = (I ,mI ), and the forgetful functor preserves the
monoidal structure.
Conversely, when the algebras form a monoidal category and the
forgetful functor preserves the structure, let

(TA⊗ TB, γA,B : T (TA⊗ TB) → TA⊗ TB)

be the tensor product of free algebras (TA, µA) and (TB, µB).
With mA,B = γA,B ◦ T (ηA ⊗ ηB) : T (A⊗ B) → TA⊗ TB and
mI : TI → I the unit algebra, T is opmonoidal.
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Lifting symmetry (and braiding)

A monoidal category is symmetric if it is equipped with a natural
isomorphism (called symmetry) σA,B : A⊗ B ∼= B ⊗ A satisfying the
hexagon axiom and σ−1

A,B = σB,A.

An opmonoidal monad T on a symmetric monoidal category is symmetric
when mA,B is compatible with the symmetry.

Theorem (folklore/Moerdijk)
A monad on a symmetric monoidal category lifts the symmetric monoidal
structure if and only if it is a symmetric opmonoidal monad.

The similar result holds for braiding (which may not satisfy σ−1
A,B = σB,A) :

Theorem (folklore)
A monad on a braided monoidal category lifts the braided monoidal
structure if and only if it is a braided opmonoidal monad.
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Duality in monoidal categories

A (left) dual of an object A in a monoidal category is an object A∗

equipped with a unit morphism ηA : I → A⊗ A∗ and a counit morphism
εA : A∗ ⊗ A → I , drawn as

A∗

A
and

A

A∗
respectively, such that

= =

A compact closed category is a symmetric monoidal category in which
every object has a dual.
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Monoidal closed categories

A monoidal category C is (bi-)closed when both A⊗ (−) : C → C and
(−)⊗ A : C → C are left adjoint for every A.

C(A⊗ X ,Y ) ∼= C(X ,A ⊸ Y )
C(X ⊗ A,Y ) ∼= C(X ,Y

⊸

A)

When C is symmetric or braided, it suffices to ask just one of them.

A compact closed category is (bi)closed, with A ⊸ B = A∗ ⊗ B.

When the tensor is cartesian, we say C is cartesian closed.

C(A× X ,Y ) ∼= C(X ,Y A)
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Hopf monads

An opmonoidal monad T on a monoidal category is a Hopf monad
(Bruguières, Lack and Virelizier 2011) when the fusion maps

H l
A,B = T (A⊗ TB)

mA,TB→ TA⊗ T 2B
1TA⊗µB→ TA⊗ TB

H r
A,B = T (TA⊗ B)

mTA,B→ T 2A⊗ TB
µA⊗1TB→ TA⊗ TB

are invertible.

Examples:

For a monoid M, the opmonoidal monad M ⊗ (−) on Set is a Hopf
monad when M is a group.

For a bialgebra B, the opmonoidal monad B ⊗ (−) on Vecfink is a
Hopf monad when B is a Hopf algebra.

More generally, for a bialgebra B in a symmetric monoidal category,
the opmonoidal monad B ⊗ (−) is Hopf when B is a Hopf algebra
with invertible antipode.
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Example

For a monoid M, T = M × (−) on Set is an opmonoidal monad with

ηA : A → TA ηA(a) = (e, a)
µA : T 2A → TA µA(m, (n, a)) = (m · n, a)
mA,B : T (A× B) → TA× TB mA,B(m, (a, b)) = ((m, a), (m, b))
m1 : T1 → 1 m1(m, ∗) = ∗

The fusion maps are

H l : T (A× TB) → TA× TB H l
A,B(m, (a, (n, b))) = ((m, a), (m · n, b))

H r : T (TA× B) → TA× TB H r
A,B(m, ((n, a), b)) = ((m · n, a), (m, b))

which are invertible when M is a group:

H l
A,B

−1
((m, a), (n, b)) = (m, (a, (m−1 · n, b)))

H r
A,B

−1((m, a), (n, b))) = (m, ((m−1 · n, a), b))
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Lifting duality and monoidal closure

Surprisingly, opmonoidal monads lifting duality / monoidal closed structure
are neatly characterized as Hopf monads:

Theorem (Bruguières and Virelizier / Bruguières, Lack and Virelizier)
An opmonoidal monad on a monoidal category with duals (autonomous
category) lifts the structure if and only if it is a Hopf monad.

Theorem (Bruguières, Lack and Virelizier)
An opmonoidal monad on a monoidal bi-closed category lifts the structure
if and only if it is a Hopf monad.

Proof Idea (for the second theorem): For algebras (A, α) and (B, β), we
can define an algebra on A ⊸ B as the transpose of

A⊗ T (A⊸B)
ηA⊗T (α⊸B)−→ TA⊗ T (TA ⊸ B)

(H r )−1

−→ T (TA⊗ (TA ⊸ B))
Tev−→ TB

β−→ B.

These theorems cover the case of M × (−) on Set and B ⊗ (−) on Vecfink .
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Lifting ∗-autonomous categories

A ∗-autonomous category (Barr) is a monoidal bi-closed category equipped
with a dualizing object ⊥ making the canonical “double negation” map
A −→ ⊥ ⊸

(A ⊸ ⊥) invertible.
They give models of classical linear logic, and also give an abstract account
for Grothendieck-Verdier duality in the study of constructible sheaves.

Monads lifting ∗-autonomous structure can be characterized in terms of
Hopf monads:

Theorem (Pastro and Street / Hasegawa and Lemay)
A opmonoidal monad on a ∗-autonomous category lifts the structure if and
only if it is Hopf and there is an algebra structure on the dualizing object.

(Pastro and Street studied comonads lifting ∗-autonomous structure to the

category of coalgebras, though the relation to Hopf (co)monads was not obvious.)
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Example

Consider the real numbers R with the usual order ≤. Fix a real number
r ∈ R.

With I = 0, x ⊗ y = x + y , x ⊸ y = y − x and ⊥ = r , the linear order
(regarded as a category) (R,≤) is ∗-autonomous.

The ceiling function (regarded as a functor) T = d−e : R → R sending x
to the least integer y such that x ≤ y is a Hopf monad on R. Note that
RT ' Z.

T lifts *-autonomous structure iff r has an algebra structure (i.e. r is an
integer).
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Traced monoidal categories

A traced symmetric monoidal category (Joyal, Street and Verity) is a
symmetric monoidal category C equipped with a trace

TrXA,B : C(A⊗ X ,B ⊗ X ) −→ C(A,B)

fA

X

B

X

7→ fA B

subject to a few coherence axioms. (Traces can be defined on braided

monoidal categories, but today I will discuss just the symmetric case.)

Alternatively, traced monoidal categories are characterized as
monoidal full subcategories of compact closed categories:
every traced symmetric monoidal category C fully faithfully embeds in a
compact closed category Int C.

In particular, any compact closed category is a traced monoidal category
(in a unique way).
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Traced monoidal categories: examples

In computer science:
• the traced cartesian closed category of pointed ω-cpo’s and continuous
maps
• cartesian categories with Conway fixed-point operators
• the compact closed category of Conway games
• the compact closed category of sets and binary relations
• models of Geometry of Interaction via Int-construction
• dagger compact closed categories in categorical quantum mechanics

In mathematics:
• the compact closed category of finite dimensional vector spaces
• ribbon categories of linear representations of quantum groups
• the ribbon category of framed tangles
• modular tensor categories for TQFT
(Many of them are braided rather than symmetric)
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Traced monads

We say a symmetric opmonoidal monad T on a traced symmetric
monoidal category C is traced when it lifts trace, i.e. CT is traced and
U : CT → C preserves trace.
That is, T is traced if

T (A⊗ X ) T (B ⊗ X )

TA⊗ TX TB ⊗ TX ⇒

A⊗ X B ⊗ X

Tf

mA,X mB,X

a⊗x b⊗x

f

TA TB

A B

T (TrX f )

a b

TrX f

for any f : A⊗ X → B ⊗ X and algebras (A, a), (B, b) and (X , x).

Is there a simple characterization of traced monads (with no mention to
algebras)?
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Traced monads vs Hopf monads

Since traced monoidal categories are full subcategories of compact closed
categories, it is natural to expect that a Hopf monad lifts trace as well.
However, it is not quite the case. In the positive side, we have

Theorem (Hasegawa and Lemay).
A symmetric Hopf monad T on a traced symmetric monoidal category is
traced if and only if the following trace-coherence condition holds:

T (TrTX (f )) = TrTX (H l
B,X ◦ Tf ◦ H l−1

A,X ) : TA → TB

holds for any f : A⊗ TX → B ⊗ TX .

For instance, for any co-commutative Hopf algebra H in a traced category,
the monad H ⊗ (−) is symmetric Hopf and trace-coherent, hence traced.
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Non-Hopf traced monads

There are several traced monads which are not Hopf.
Many of them are from basic domain theory:

Let Cppo be the traced cartesian closed category of ω-cpo’s with
bottom (pointed cpo’s = cppo’s) and continuous maps. Then the
lifting monad TX = X⊥ is traced but not Hopf.

Consider the Sierpinski space Σ = {⊥ ≤ >} in Cppo with the monoid
structure with (>,∧). T = Σ× (−) is a traced monad, but not Hopf
(as Σ is not a group).

Even on a compact closed category, a traced monad may not be
symmetric Hopf (a counterexample can be given by traced symmetric
monoidal closed categories and the monad induced by the
Int-construction).
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A Hopf monad via distributive coproducts New

There exists a symmetric Hopf monad which is not traced.
Let C be a symmetric monoidal category with distributive binary
coproducts and two distinct traces Tr and Tr′.

C2 is a traced symmetric monoidal category with

Tr
(X ,X ′)
(A,A′),(B,B′)(f , f

′) = (TrXA,B f ,Tr
′X ′

A′,B′f ′) : (A,A′) → (B,B ′)

where f : A⊗ X → B ⊗ X and f ′ : A′ ⊗ X ′ → B ′ ⊗ X ′.

T (X ,Y ) = (X + Y ,X + Y ) is a Hopf monad on C2; its fusion map is
given by the canonical map

(X1 + X2)⊗ Y1 + (X1 + X2)⊗ Y2 → (X1 + X2)⊗ (Y1 + Y2)

hence distributivity means T is Hopf.

(C2)T is equivalent to C — the diagonal functor C → C2 is monadic.
Alas, the forgetful functor (or the diagonal functor) cannot be traced
unless Tr and Tr′ are the same trace.
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Summary

A monad lifts monoidal structure exactly when it is opmonoidal.

An opmonoidal monad lifts duality/closed structure exactly when it is
a Hopf monad.

An opmonoidal monad lifts ∗-autonomous structure exactly when it is
Hopf and there is an algebra on the dualizing object.

When an opmonoidal monad lifts trace, we call it a traced monad.
However, we do not have a good characterization of traced monad.

Although we identified when a Hopf monad is a traced monad (the
trace-coherence condition), there are several non-Hopf traced monads
and non-traced Hopf monads.

The gap between traced monads and Hopf monads reflects the fact that
trace is a structure on symmetric monoidal categories while being compact
closed is a property of symmetric monoidal categories.
At least, a characterization of traced monads needs to explicitly specify
the trace to be lifted (e.g. the trace-coherence condition).
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