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. . . . . .

Introduction

We define Yokota type invariants for oriented graphs from Costantino-
Murakami’s invariants (CM invariants).

〈
a

b

c

d

e

f

g

〉
Y ′

:=

〈
a

b

c

d

e

f

g

〉
CM

〈
a

b

c

d

e

f

g

ori. reversed
mirror image

〉
CM

Let Γ be a plane graph (one component). We conjecture that for
appropriate sequence of colors the next equation holds.

π

2
lim

n→∞

log 〈Γ〉Y ′

n
= Vol(SΓ),

where SΓ is a hyperbolic polyhedron bounded by Γ whose dihedral angles
are corresponds to colors.
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Knot and spatial graph
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. . . . . .

Knots and spatial graphs

.

Definition 1.1

.

.

.

. ..

.

.

A knot is an embedding of a circle into the three-sphere.
A spatial graph (a knotted graph) is embedding of a graph (V , E ) into the
three-sphere. Where V is a set of vertices and E is a set of edges.
A plane graph is a spatial graph which can be embedded to the two-sphere.

S3

knot

,

S3

spatial graph

,

S3

plane graph

We treat them through diagrams derived from regular projections to the
two-sphere.
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. . . . . .

Reidemeister moves

There are 5 local moves called Reidemeister moves for knot and spatial
graph diagrams.

RI RII RIII

RIV RV

.

Theorem 1.2

.

.

.

. ..

.

.

Two diagrams are transformed to each other by a sequence of Reidemeister
moves. ⇔ Two diagrams represent the same knot or spatial graph.
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. . . . . .

Volume conjecture

The N-th colored Jones polynomial JN(K ; q) for a knot K is defined by an
irreducible N-dimensional representation of the quantum group Uq(sl2).

.

Conjecture 1 ([Kashaev], [H. Mrakami-J. Murakami])

.

.

.

. ..

.

.

Let K be a hyperbolic knot in the three-sphere. Then

2π lim
N→∞

log |JN(K ; exp(2π
√
−1/N))|

N
= Vol(S3 \ K )

where Vol is the hyperbolic volume.
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. . . . . .

Yokota’s invariants

Let Γ be a trivalent spatial graph. For each edge of Γ we add a natural
number called color which corresponds to the dimension of the
representation of Uq(sl2). Yokota’s invariants 〈 · 〉Y are defined through a
colored diagram of Γ by the next relation.〈

a

b

c
d

e

f

g

〉
Y

:=
∏

Three colors of
vertices

θ(i , j , k)−1

〈
a

b

c
d

e

f

g

〉〈
a

b

c
d

e

f

g

mirror image

〉
,

where 〈 · 〉 on the right-hand side is Kauffman bracket and

θ(i , j , k) :=

〈
i

j

k

〉
. We put ∆i :=

〈
i

〉
. Yokota’s invariants

are generalized for more than 3-valent vertex by the next relation.〈 〉
Y

=
∑

i

∆i

〈
i

〉
Y

.

Yokota’s invariants are also generalized for 1 and 2-valent vertex by other
relations.
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Costantino-Murakami’s invariants
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. . . . . .

Costantino-Murakami’s invariants

This section follows the paper [Costantino-Murakami].

F. Costantino and J. Murakami defined invariants for framed oriented
trivalent graphs (i.e. invariants for RII, RIII and RV moves) through
non-integral representations of Uq(sl2) where q is a root of unity.

We prepare notations. Fix a natural number n, ξn := exp(π
√
−1

n ).

{a} = ξa
n − ξ−a

n (a ∈ C), [a] =
{a}
{1}

, {k}! =
k∏

j=1

{j} (k ∈ N)

[
a
b

]
=

a−b−1∏
j=0

{a − j}
{a − b − j}

(a, b ∈ C s.t. a − b ∈ {0, 1, . . . , n − 1})
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. . . . . .

Uq(sl2)

Uq(sl2) is a Hopf algebra as follows.

Generator: E , F , K ,K−1

Relation:

[E , F ]=
K 2 − K−2

q − q−1
, KE =qEK , KF =q−1FK , KK−1 =K−1K = 1.

Structure of a Hopf algebra:

∆(E )=E⊗K+K−1⊗E , ∆(F )=F⊗K+K−1⊗F , ∆(K±1) = K±1⊗K±1,

S(E ) = −qE , S(F ) = −q−1F , S(K ) = K−1,

ϵ(E ) = ϵ(F ) = 0, ϵ(K ) = 1.
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. . . . . .

Representation of Uq(sl2)

For each complex number a ∈ C \ 1
2Z, there is a simple representation of

Uξn(sl2) for n-dimensional vector space V a whose basis is
{ea

0 , ea
1 , · · · , ea

n−1}. The actions are given by

E (ea
j ) = [j ]ea

j−1, F (ea
j ) = [2a − j ]ea

j+1, K (ea
j ) = ξa−j

n ea
j (ea

−1 =ea
n =0)

For each edge of a framed spatial graph Γ, we add a complex number
a ∈ C \ 1

2Z corresponds to the representation for V a. Due to the
isomorphism (V a)∗ ∼= V n−1−a, we can consider a colored edge and
n − 1− a colored opposite direction edge are equal. We put a = n − 1− a.

a

b
c

d
e

f
a = a
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. . . . . .

Admissible condition

For non-half-integers a, b, if a + b is nor half-integer, there is a
decomposition V a ⊗ V b =

⊕
c V c here a + b − c ∈ {0, 1, · · · , n − 1}.

.

admissible conditions

.

.

.

. ..

.

.

If three colors a, b, c of edges at a vertex satisfy the next condition, we call
the triple (a, b, c) is admissible.

a + b + c ∈ {n − 1, n, . . . , 2n − 2},
a

bc

here the orientations of the three edges are all toward the vertex.

If three colors of a vertex is admissible, we can give a representation
canonically at the vertex.
From now on, unless otherwise noted, colors in summations

∑
move all

admissible colors.
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. . . . . .

(1, 1)-Tangle

To define Costantino-Murakami’s invariants, we cut an edge of the
admissibly colored framed spatial graph Γ and make (1, 1)-tangle diagram
T . Then we slice T so that each piece has only one singular point
(maximal, minimal, crossing point or vertex). The slices are regarded as
maps from bottom to top as follows.

a

b

c

d

e

f

g

Γ

→

a

a

b

c

c

d

d

d

e

e

f

g g

T

a ida : V a → V a

a b
b
aR : V a ⊗ V b → V b ⊗ V a

a b
b
a(R

−1):V a⊗V b → V b⊗V a

a b ∩a,b : V a ⊗ V b → C
a b ∪a,b : C → V a ⊗ V b

a b
c Y a,b

c : V c → V a ⊗ V b

a b
c

Y c
a,b : V a ⊗ V b → V c
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. . . . . .

Maps

∪a,b = δb,n−1−a

n−1∑

i=0

ξ−(a−i)(n−1)
n ea

i ⊗ eb
n−1−i

∩a,b(ea
i , eb

j) = δb,n−1−aδi,n−1−jξ
−(a−i)(n−1)
n

m ∈ [0,min(i, n− 1− j)] ∩ N

b
aR(ea

i ⊗ eb
j) =

∑

m

{m}!ξ2(a−i)(b−j)−m(a−b−i+j)−m(m+1)
2

n
[

i
i−m

] [
2b− j

2b− j −m

]
eb
j+m ⊗ ea

i−m

Y a,b
c (ec

k) =
∑

i+j−k
=a+b−c

Ca,b,c
i,j,k ea

i ⊗ eb
j

Ca,b,c
i,j,k =

√
−1

c−a−b
(−1)j−kξ

j(2b−j+1)−i(2a−i+1)
2

n

[
2c

2c− k

]−1 [
2c

a + b + c− (n− 1)

]

∑

z+w=k

(−1)zξ
(2z−k)(2c−k+1)

2
n

[
a + b− c

i− z

] [
2a− i + z

a2− i

] [
2b− j + w

2b− j

]

where 

where 

Y c
a,b(e

a
i ⊗ eb

j) =
∑

i+j−k
=a+b−c

Cn−1−b,n−1−a,n−1−c
n−1−j,n−1−i,n−1−k ec

k
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. . . . . .

Definition of Costantino-Murakami’s invariants

a

a

b

c

c

d

d

d

e

e

f

g g

T

6

op(T )

We have a morphism op(T ) : V a → V a by compos-
ing the maps derived from slices of T . By Schur’s
lemma, op(T ) is a scalar multiplied identity λ(T )ida.
Then Costantino-Murakami’s invariant 〈 · 〉CM is de-
fined as

〈Γ〉CM := λ(T )

[
2a + n
2a + 1

]−1

.

The value is independent of the choice of the edge
that was cut.
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. . . . . .

Remark

1. For a half-integer a ∈ 1
2Z, [

2a + n
2a + 1

]
= 0.

Hence for half-integer colors, Costantino-Murakami’s invariants may
become infinity.

2. If graphs are restricted to links, Costantino-Murakami’s invariants
correspond to Akutsu-Deguchi-Ohtsuki (colored Alexander) invariants.
Akutsu-Deguchi-Ohtsuki invariants have a property of volume conjecture
for cone manifolds whose singular sets are the links [J. Murakami].
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. . . . . .

6j-symbols

The 6j-symbols are the coefficients of the next relation.
a b c

d

e =
∑

f

{
a b e
c d f

} a b c

d

f .

They satisfy the following relations.
[Orthogonal relation]

∑
f

{
a b e
d c f

}{
d b f
a c g

}
= δeg .

[Pentagon relation]

∑
h

{
a b f
g c h

} {
a h g
e d i

}{
b c h
d i j

}
=

{
f c g
d e j

}{
a b f
j e i

}
.
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. . . . . .

6j-symbols

For a, b, c , d , e, f ∈ C \ 1
2Z and a + b − c , a + f − e, b + d − f , d + c − e

∈ Z, the 6j-symbols are calculated by the next equation.{
a b c
d e f

}
=

(−1)n−1+Bafe

[
2f + n
2f + 1

]−1 {Bdce}!{Babc}!
{Bbdf }!{Bafe}!

[
2c

Aabc + 1 − n

] [
2c

Bced

]−1

×
S∑

z=s

(−1)z
[

Aafe + 1
2e + z + 1

] [
Baef + z

Baef

] [
Bbfd + Bdce − z

Bbfd

] [
Bdec + z

Bdfb

]
,

where s = max(0,−Bbdf + Bdce), S = min(Bdce ,Bafe), Axyz = x + y + z ,
Bxyz = x + y − z .
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. . . . . .

Value of tetrahedron

〈
a

b
c

d
e

f
〉

CM

=

[
2f + n
2f + 1

]{
a b c
d e f

}
=:

{
a b c
d e f

}
tet

.

It is proved that this value is well-defined for half-integer colors.
From the symmetry of the tetrahedron for rotations, we have{

a b c
d e f

}
tet

=

{
d b f
a e c

}
tet

.
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. . . . . .

Relations

We can calculate Costantino-Murakami’s invariants axiomatically by using
following relations.〈

a

〉
CM

= ξ−2aa
n

〈
a

〉
CM

,

〈
a

〉
CM

= ξ2aa
n

〈
a

〉
CM

,

〈
a

b
c

〉
CM

= ξaa+bb−cc
n

〈
a

b
c

〉
CM

,

〈
a

b
c

〉
CM

= ξ−aa−bb+cc
n

〈
a

b
c

〉
CM

,

〈
a

b
c

d
e

f
〉

CM

=

{
a b c
d e f

}
tet

,

〈 a

b

c

〉
CM

= 1,
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. . . . . .

Relations

〈
a

b
e

c

d

〉
CM

=
∑

f

{
a b e
c d f

} 〈
a

b c

d
f

〉
CM

,

〈
a b

c d
e

f
〉

CM

=

{
a b c
d e f

}
tet

〈
a

e
f

〉
CM

,

〈
a b

〉
CM

=
∑

c

[
2c + n
2c + 1

]−1
〈

a

a

b

b
c

〉
CM

,

〈
d

a

b c

〉
CM

= δad

[
2a + n
2a + 1

]〈
a

〉
CM

.
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Ideal tetrahedra

Shapes of hyperbolic tetrahedra are determined by their 6 dihedral angles.

A vertex at an infinity point of hyperbolic space is called ideal vertex. The
tetrahedra whose 4 vertices are all ideal are called ideal tetrahedra. Two
dihedral angles of the opposite edges of ideal tetrahedra are equal. Hence
a shape of ideal tetrahedron is determined by three dihedral angle α, β, γ
(α + β + γ = π).
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. . . . . .

Truncated tetrahedra

We can consider a vertex outside the infinity points of hyperbolic space.
This vertex appears in the projective model of hyperbolic space.
For the three faces around the vertex, there is a geodesic surface which is
perpendicular to them. Cutting the tetrahedron at each vertex by the
surface, we have a finite polyhedron. This polyhedron is called truncated
tetrahedron.

,

Poincaré Model

↔

Projective Model
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. . . . . .

Property of volume conjecture

.

Theorem 2.1

.

.

.

. ..

.

.

Let S be a hyperbolic tetrahedron and Γ be a graph made of edges of S.
θa, · · · , θf are dihedral angles of S. Let an, · · · , fn be sequences of integral
colors such that limn→∞

2πan
n = π − θa, · · · , limn→∞

2πfn
n = π − θf .

If S is ideal (i.e. dihedral angles of opposite edges are equal),

Vol(S) = lim
n→∞

π

n
log

(
(−1)n−1

{
an bn cn

an bn cn

}
tet

)
= lim

n→∞

π

n
log

(
(−1)n−1

{
an bn cn

an bn cn

}
tet

)
.

If S is a truncated tetrahedron,

Vol(S) = lim
n→∞

π

2n
log

({
an bn cn

dn en fn

}
tet

{
an bn cn

dn en fn

}
tet

)
. (1)
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Yokota type invariants
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. . . . . .

Definition

Let Γ be admissibly colored oriented trivalent graph and D be its diagram.
Yokota type invariant 〈 · 〉Y ′ is defined from Costantino-Murakami’s
invariants by the next relation.

〈Γ〉Y ′ = 〈D〉CM

〈
D r

〉
CM

,

where · means a mirror image, · r means reversing orientations. For more
than 3-valent vertices, we reduce the valence to three by the next relation.

〈 〉
Y ′

=
∑

i

[
2i + n
2i + 1

]−1
〈

i

〉
Y ′

,

where we omit colors and orientations of surrounding edges. We assume
they have the same colors and orientations in the both sides. The
orientation of the i colored edge is arbitrary.
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. . . . . .

Invariance under Reidemeister moves

The invariance of Yokota type invariants for RII, RIII and RV are from that
of Costantino-Murakami’s invariants.
Invariance for RI:〈

a

〉
Y ′

=

〈
a

〉
CM

〈
a

〉
CM

= ξ−2aa
n

〈
a

〉
CM

ξ2aa
n

〈
a

〉
CM

=

〈
a

〉
CM

〈
a

〉
CM

=

〈
a

〉
Y ′

.

The invariance for RIV is shown in a similar way.
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. . . . . .

Extension to more than 3-valent vertices

We show that the values of Yokota type invariants are independent of the
way to expand an edge at the more than 3-valent vertices. It is enough to
see the next equations. (cf. [Yetter])∑

e

[
2e + n
2e + 1

]−1
〈

a

b
e

c

d

〉
Y ′

=
∑

e

[
2e + n
2e + 1

]−1
〈

a

b
e

c

d

〉
CM

〈
a

b
e

c

d

〉
CM

=
∑

e

[
2e + n
2e + 1

]−1 ∑
f

{
a b e
c d f

} 〈
a

b c

d
f

〉
CM∑

g

{
a b e

c d g

} 〈
a

b c

d
g

〉
CM
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. . . . . .

Extension to more than 3-valent vertices

•
∑
g

{
a b e

c d g

} 〈
a

b c

d
g

〉
CM

=
∑
g

[
2g + n
2g + 1

]−1 {
a b e

c d g

}
tet

〈
a

b c

d
g

〉
CM

=
∑
g

[
2g + n
2g + 1

]−1 {
c b g
a d e

}
tet

〈
a

b c

d
g

〉
CM

=
∑
g

[
2g + n
2g + 1

]−1 [
2e + n
2e + 1

]{
c b g
a d e

} 〈
a

b c

d
g

〉
CM

.

•
[

2f + n

2f + 1

]
= · · · =

[
2f + n
2f + 1

]
.
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. . . . . .

Extension to more than 3-valent vertices

(2 prev. slide) =
∑

f

∑
g

[
2g + n
2g + 1

]−1 ∑
e

{
a b e
c d f

}{
c b g
a d e

}
〈

a

b c

d
f

〉
CM

〈
a

b c

d
g

〉
CM

=
∑

f

∑
g

[
2g + n
2g + 1

]−1

δf g

〈
a

b c

d
f

〉
CM

〈
a

b c

d
g

〉
CM

=
∑

f

[
2f + n

2f + 1

]−1
〈

a

b c

d
f

〉
CM

〈
a

b c

d
f

〉
CM

=
∑

f

[
2f + n
2f + 1

]−1
〈

a

b c

d
f

〉
Y ′
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. . . . . .

Volume conjecture for polyhedra

In Theorem 2.1, the value inside log( · ) of Equation (1) is the value of
Yokota type invariants for tetrahedron graphs. Using the Yokota type
invariants, we conjecture the extension of Theorem 2.1.

.

Conjecture 2

.

.

.

. ..

.

.

Let Γ be a plane graph and SΓ be a hyperbolic convex polyhedron which is
bounded by Γ. If sequences of integral colors of Γ are taken as in Theorem
2.1 for corresponding dihedral angles of SΓ,

Vol(SΓ) = lim
n→∞

π

2n
log (〈Γ〉Y ′) .
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Examples
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. . . . . .

Square pyramids

We did algebraic and numerical calculations for following two cases.

Γ1,n:

a
b

c

d

e

f

g

h

a, c , d , h : π/4
b, e, f , g : π/3

↔ an

bn

cn

dn

en
fn

gn

hn


an = 3n/8 (+ ε) bn = n/3 (+2ε)
cn = 3n/8 (+3ε) dn = 3n/8 (+4ε)
en = n/3 (+3ε) fn = n/3 (− 6ε)
gn = n/3 (+5ε) hn = 3n/8 (+9ε)

Γ2,n:

a
b

c

d

e

f

g

h

a, c , d , h
b, e, f , g

: π/3

↔ an

bn

cn

dn

en
fn

gn

hn


an = n/3 (+ ε) bn = n/3 (+2ε)
cn = n/3 (+3ε) dn = n/3 (+4ε)
en = n/3 (+3ε) fn = n/3 (− 6ε)
gn = n/3 (+5ε) hn = n/3 (+9ε)
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Square pyramids

〈
an

bn

cn

dn

en
fn

gn

hn

〉
Y ′

=
∑

i

[
2i + n
2i + 1

]−1
〈

an

bn

cn

dn

en
fn

gn

hn
i

〉
Y ′

=
∑

i

[
2i + n
2i + 1

]−1
〈

an

bn

cn

dn

en
fn

gn

hn
i

〉
CM

〈
an

bn

cn

dn

en
fn

gn

hn
i

〉
CM

=
∑

i

[
2i + n
2i + 1

]−1 {
an en dn

i cn bn

}
tet

{
dn gn hn

fn cn i

}
tet

×
{

an en dn

i cn bn

}
tet

{
dn gn hn

fn cn i

}
tet

.
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. . . . . .

Regularity of formula for square pyramids

We calculated the above formula as a rational function of q, reduced the
numerator and the denominator by common factors then substituted
q = ξn.

Γ1 : n = 24, {a, b, c, d , e, f , g , h} = {9, 8, 9, 9, 8, 8, 8, 9}

2702553921462776104873773262573943868288

4144454025633775

Γ2 : n = 12, {a, b, c, d , e, f , g , h} = {4, 4, 4, 4, 4, 4, 4, 4}

947855223915886648400

206606306907

Γ2 : n = 24, {a, b, c, d , e, f , g , h} = {8, 8, 8, 8, 8, 8, 8, 8}

1841727671678193906056765234366258287027200

19743796020815679008287
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Numerical calculations

Table: Numerical calculations at ε = 0.0000001

n π/2n ∗ log(| 〈 Γ1,n 〉Y ′ |)
24 3.440464669

48 3.653713460

72 3.741391100

120 3.824413802

240 3.900859202

600 3.959111190

900 3.986845579

1200 3.983212953

Vol. 4.01536

n π/2n ∗ log(| 〈 Γ2,n 〉Y ′ |)
24 2.597872961

48 2.603015626

72 2.594719877

120 2.581962148

240 2.566523650

600 2.552634909

900 2.548604997

1200 2.546357950

Vol. 2.53735
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Problem

.

Problem

.

.

.

. ..

.

.

Prove Conjecture 2 for some polyhedra which have more than 3-valent
vertices.
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