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Introduction Definition 1

A graph is a pair (V, E) s.t.
m Vs a set.
m E is a subset of V x V s.t. (x,y) € E implies (y,x) € E.

For a graph G = (V, E), V is written by V(G), and E is
written by E(G).
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Definition of graph homomorphisms
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Definition 2

Introduction

A graph homomorphism from G to H is a map
f:V(G) — V(H) s.t. (f x f)(E(G)) C E(H).

The following is a classical problem in graph theory.

Problem 1 (The existence problem of graph homomorphisms)

Given two graphs G and H. Consider an easy method to
determine whether 9f : G — H or not.
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For a positive integer n, the n-cycle graph C, is defined by
n V(C,) =7Z/nZ.
m E(C) ={(x,x£t1)|x€Z/nL}.

Cs



Odd girth go(G)
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Introduction gQ(G) = inf{n > 1 | n is odd and ElCn — G}

If go(G) =1, then G has a loop. (Hence if G is non-looped,
then go(G) > 3.)

Lemma 1
If 3G — H, then go(G) > go(H).

Put n = go(G). Then 3C, — G, hence 3C, — H. Therefore
go(H) < n= go(G). O
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The existence problem of the graph homomorphism is related
to the existence problems of the Zjy-equivariant maps, via the
box complex B(G).
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An (abstract) simplicial complex is a pair (V, A) satisfying the
followings :

Introduction

m Vs a set.

m A is a family of finite subsets of V.
mVv,veV={v}eA
mVoeAVredY, rco=r1€A.
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Definition of order complex
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Definition 5

A partially ordered set is often called a poset. A subset o C P
is called a chain if the restriction of the order of P to o is
totally ordered. The order complex A(P) is the simplicial
complex

m V(A(P))=P.
m A(P)={o C P| o is a finite chain of P.}.

Introduction
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Definition 6
Introduction The box complex B(G) of a graph G is a poset

B(G) ={(0,7)| 0,7 €2Y(O\{B},0 x r C E(G).}
with the order such that (o,7) < (¢/,7) < 0 C o’ and 7 C 7',

Remark that B(G) has the Zj-action (o, 7) <+ (7,0). For a
graph homomorphism f : G — H, the map B(G) — B(H),
(o,7) — (f(0), (7)) is Zp-equivariant. Hence if we can show
that AB(G) —2— B(H), then we have AG — H.
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Let n > 0. The graph K, is defined by
Introduction = V(Kn) = {]_, cee n}_

w E(Kn) = {(x.) | x £y},

A graph homomorphism G — K, is called an n-coloring of G.
The chromatic number x(G) of the graph G is defined by

Takahiro

xX(G)=inf{n>0]3G — K,.}.

To compute x(G) is called the graph coloring problem. Since
go(Kn) = 3 for n > 3, the odd girth is not useful to this
problem.
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An example of coloring
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An example of coloring
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An example of coloring




Neighborhood complex

Fundamental

s o For a graph G and for v € V(G), the neighborhood N(v) of v
- is defined by N(v) = {w € V(G) | (v,w) € E(G)}.

Takahiro

Definition 8
The neighborhood complex N(G) of a graph G is the simplicial

Introduction

complex
= V(N(G)) = {v e V(G) | N(v) # 0}.
m N(G)={o C V(G) | #0 < o0, and v € V(G) s.t.
o C N(v).}.

Theorem 2 (Babson-Kozlov '06)
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N(C5) and N(C6)
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Lovasz's theorem
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Let n > —1. If N(G) is n-connected, then x(G) > n+ 3.
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Introduction

Proof.

Since B(G) ~ N(G), B(G) is n-connected. By the Gysin
sequence, we have wy(B(G))™! # 0. On the other hand,
suppose 3G — Kp,. Then B(G) N B(Kp) ~ S™2, we
have wi(B(G))™~1 = 0. Hence we have

n+1l<m-—1.
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Definition 9

Intreduction Let Kk > 0 and n > 2k. The Kneser graph KG, x is defined by
m V(KGpx)={o C{1,---,n}|#0 =k}

m E(KGhi) ={(o,7) |onT=10.}.

It is easy to see x(KGp «) < n—2k+2, and Kneser conjectured
X(KGp k) = n—2k 42 in 1955 (Kneser's conjecture). Lovész
proved that N(KG, x) is (n — 2k — 1)-connected, and show
that x(KG, x) = n— 2k + 2 in 1978.
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(Z,)-topologies of B(G) and N(G) and x(G)
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m (Lovdsz) For a connected graph G, N(G) (or B(G)) is
connected iff x(G) > 3.

Lovdsz expected that there is a topological invariant of N(G)
which is equivalent to x(G).
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m (Walker '83) There is no homotopy invariant of N(G)
introduction (hence of B(G)) which is equivalent to x(G).
(M

) There is no topological invariant of N(G) and B(G)
which is equivalent to x(G).

m (M) There is no Zy-homotopy invariant of B(G) which is
equivalent to x(G).

m Whether there is a Z,-topological invariant of B(G) which
is equivalent to x(G) is still open.
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Introduction From now on, we fix a positive integer r. A based graph is a
pair (G, v) where G is a graph and v € V(G). The
r-fundamental group 7{(G, v) is a group whose definition is
similar to the fundamental group of topological spaces.
Especially, the 2-fundamental group is similar to the
fundamental group of N(G). But 7{(G, v) can be directly used
to the existence problem of the graph homomorphisms.
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Let L, denote the graph defined by V(L,) = {0,1,---
E(Ln) ={(x,y) [ |x —y[ =1}

o 1 2 3 4

@ @ L L @

Ly

,n} and

Introduction

Let (G, v) be a based graph. A graph homomorphism L, — G
s.t. 0,n+ v is called a loop of (G, v) with length n.
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e Let L(G, v) denote the set of loops of (G, v). For ¢ € L(G, V),

we write /() for the length of .

Fix a positive integer r, consider the following two conditions

(1) and (1), for loops ¢, 1.

(1) () = () +2 and 3x € (0,1, ,n} s.t. (i) = (i)

for i < x and (i) = (i 4 2) for i > x.

(1) 1) = () and o
# € {0, 1, 1(p) [ (i) = (D))} <r.

Introduction
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Condition ()
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Definition 10

Let ~, denote the equivalence relation generated by the
conditions (1) and (I1),. Put

Introduction

m1(G,v) = L(G,v)/ ~,

and call this the r-fundamental group of the based graph
(G,v).

77(G, v) become a group with compositions of loops.
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71(G,v) = Za, [¢]r — (I(¢) mod.2)

is a well-defined group homomorphism, and the kernel is
written by 77(G, v)ey, and is called the even part of 7{(G, v).
Let Gp denote the connected component of G containing v.
Then 7{(G,v) = 7{(G, v)e iff X(Go) < 2.



r-neighborhood complex
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e defined as follows.

m Ni(v) = N(v).
m Nep1(v) = Uwenv) N(w).

Introduction

Definition 11

The r-neighborhood complex N,(G) is the simplicial complex
m V(N(G)) ={v e V(G)|N(v) #0}.
m N,(G)={oc C V(G) | #0 < o0,3v e V(G) s.t.
o C Ni(v).}.

In particular, Ni(G) = N(G).
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Theorem 4 (M)
Let (G,v) be a based graph s.t. N(v) # (). Then

m1 (N (G), v) = ﬂ%’(G, V)ev-

Especially m1(N(G),v) = 72(G, v)ey.
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Let a € 7{(G, v). Put

I(e) = inf{l(p) [ ¢ € a}

and call this the length of a.



Length and stable length

Fundamental ..
groups of PropoS|t|0n 5

Let (an)nen be a sequence of non-negative real numbers s.t.

Introduction dn+m S an + am (Vn, m & N)
Then lim,_,~ an/n exists and

. dn . dn
lim — = inf —.
n—oo n neN n

For a € m{(G, v), the sequence (/(a"))nen satisfies the above
hypothesis, and we define the stable length of « by
I(a™)

Is(a) == nIl_)rT;o Pt




Application of 7]

Fundamental
groups of

r-fundamental groups can be applied to the existence problem
of graph homomorphisms.

Introduction Let f: (G, v) — (H,w) be a based graph homomorphism.
Then the map £, : 7{(G,v) = w{(H,w), [¢]; — [f o], is
well-defined, and satisfies the followings:

(0) f. is a group homomorphism.

(1) f. preserves parities.

(2) 1(fi(a)) < I(e).

(3) Is(fi(e)) < Is(e).

For example, let us consider the existence of graph
homomorphisms to odd cycles.
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The followings hold.

(1) For odd n > 3, we have

Introduction
, Zoo  (r<n
IS TS SN

/2 (r=n),

and the generator «v is odd and Is(a) = n if r < n.
(2) For even n > 4, we have

. _JZa (r<n/2)
Tl Ca) = {1 (r > n/2).

and the generator o is even and Is(a) = n if r < n/2
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Let n be an odd integer s.t. n > 3, and G a connected graph.
If 3G — C,, then Is(8) > n for any r < n and any odd element
B of i (G, v).

Introduction

Proof.

Suppose there is a graph homomorphism f : G — C,. Since
f.(8) is odd, 3k € Z s.t. £.(B) = a®*1. Hence

5(8) 2 I5(£.(8)) = s(a®T) = 2k + 1[ls(e) 2 s(@) = n.

O
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Recall that x(KG, k) = n— 2k 4+ 2. Hence
JKGok41,k — K3 = C3. For a positive integer k > 1,
73(KGak+1.k) = Z/2. Hence by the previous theorem, we have
AKGyi41,k —+ Cs. On the other hand, it is known that the odd
girth go(KGak41.k) is equal to 2k + 1.
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/ 3n 7 7
Hence we haVe IS(/B) = I|mn—>oo (gn) = ||mn—>00 372 — —

Introduction
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Hence the stable length of the generator 3 of m3(X) = Z is
smaller than 3. Since 3 is odd, we have AX — (3 = K3. This
implies that x(X) > 3.

Since 72(G)ey = m1(N(G)), m1(N(K3)) — m1(N(X)) is an
isomorphism. Indeed, this N(G) < N(X) is homotopy
equivalence (hence B(G) — B(X) is Zp-homotopy

equivalence) s.t. x(G) # x(X).

Introduction
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Ny(v) = N(v) and Nep1(v) = | J N(w
weNs(v)

Introduction

Definition 12

A graph homomorphism p: G — H is said to be an r-covering
map if for any v € V(G),

ple(v) : Ns(V) — Ns(p(V))

is bijective for 1 <s < r.
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S There is similar relations between 7{(G, v) and r-covering
Nt maps, as is the case of covering space theory.

Intreduction (1) If p: (G,v) — (H,w) is an r-covering map, then
p« : (G, v) — w{(H, w) is injective.
(2) For each I' < 7{(G, v), there is an r-covering map
(Gr,vr) — (G, v) s.t. Gr is connected, and
p«(7i(Gr, vr)) =T, and this is unique up to isomorphisms.
(3) Suppose f : (T,x) — (H,w) is a graph homomorphism
and p: (G,v) — (H,w) an r-covering map. If T is
connected and f,7](T,x) C p.7i(G,v), then
Jg :(T,x) = (G,v)st. pog=F.
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The 2nd projection K x G — G is an r-covering map for any
r > 1. If G is connected and x(G) > 3, then Ky x G is
connected, and the associated subgroup of 7{(G) is the even
part 77(G)ey-



Fundamental
groups of

Introduction




Fundamental
groups of
graphs

Takahiro
Ma hita

Introduction

EES




Fundamental
groups of
graphs

Takahiro
Ma hita

Introduction

EES




EES

Fundamental
groups of
graphs

Takahiro
Matsushita

Introduction

m 72(K,) = Z/2 for n > 4, connected 2-covering over K,
(n>4)is Gor K x G.

m Since 73 (KGoki1.k) = Z/2, connected 3-covering over
KG2k+17k is KG2k+1,k or Kr x KG2k+17k. But since
wf(KngH’k) is a free group, and hence there are many
connected 2-covering maps over KGoyy1 k-
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Hence if Ko x G = K> x H, we have

Introduction
T1(G)ey 2 i(Ka x G) Z 71 (Ko x H) Z 71{(H)ey-

Since T2(N(G))ev = 72(G)ey, We have that if

Ky x G = Ky x H, then m1(N(G)) = m1(N(H)). Indeed, we
can say that if K x G = Ky x H, then N(G) = N(H) and
B(G) = B(H) as poset.
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For further researches
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Lbodicues Let n be a positive integer, and G a connected graph s.t.

#N(v) = n for v € V(G). Consider the following property.

(%) For v,w € V(G) with N(v) N N(w) # 0, then
#(N(v) N N(w)) > n/2.

Then the diameter of G is smaller than 4. (Especially, G is

finite.)
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Definition 13
Introduction A graph property (P) is said to be r-local if for a surjective
r-covering map p: G — H, G satisfies (P) if and only if H
satisfies (P).

Then the condition (x) is a 2-local property.

Suppose a 2-local property (P) implies the finiteness of
connected graphs. Suppose a connected graph G satisfies (P).
Then the universal 2-covering of G satisfies it and is finite.
Hence 72(G) is finite. This implies that x(G) # 3.
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Problem 2

Find the r-local property s.t. a connected graph satisfying such
a property is finite.
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