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Surface-links
▶ A surface-link is a closed surface smoothly

embedded in R4 (or in S4).
▶ A surface-knot is a one component surface-link.

· A 2-sphere-link is sometimes called a 2-link.
· A 2-link of 1-component is called a 2-knot.

▶ Two surface-links L and L ′ in R4 are equivalent if
they are ambient isotopic, i.e.,

∃ orient. pres. homeo. h : R4 → R4 s.t. h(L ) = L ′

⇐⇒∃ a smooth family of diffeomorphisms fs : R4 → R4

(s ∈ [0,1]) s.t. f0 = idR4 and f1(L ) = L ′.

▶ If each component Ki of a surface-link
L = K1 ∪·· ·∪Kµ is oriented, L is called an oriented
surface-link. Two oriented surface-links L and L ′

are equivalent if the restriction h|L : L → L ′ is also
orientation preserving.



Examples of surface-knots

▶ Artin’s spinning construction:
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π1(R3 −K)∼= π1(R4 −K ).



Methods of describing surface-links
▶ Motion pictures (Movies)
▶ Normal forms
▶ Broken surface diagrams/Roseman moves
▶ Charts/Chart moves
▶ Two dimensional braids/Markov equivalence
▶ Braid charts/Braid chart moves
▶ Marked graph diagrams/Yoshikawa moves



Some known invariants of surface-links
▶ The complement X = R4 −L

=⇒ Homotopy type of X: π1(X), π2(X), etc.
Homology of infinite cyclic covering X∞ of X:

Alexander module H∗(X∞;Z[t, t−1])

▶ Normal Euler number, . . ..
▶ Broken surface diagram =⇒

Triple point number, Quandle cocycle invariants,
Fundamental biquandles, . . ..

▶ Braid presentation of orientable surface-link L
=⇒ Braid index b(L ), . . ..

▶ Marked vertex diagrams =⇒ ch-index, Quandle
cocycle invariants, Fundamental biquandles, . . ..



Marked graphs in R3

▶ A marked graph is a spatial graph G in R3 which
satisfies the following

▶ G is a finite regular graph possibly with 4-valent
vertices, say v1,v2, . . . ,vn.

▶ Each vi is a rigid vertex, i.e., we fix a sufficiently small
rectangular neighborhood

Ni ∼= {(x,y) ∈ R2|−1 ≤ x,y ≤ 1},

where vi corresponds to the origin and the edges
incident to vi are represented by x2 = y2.

▶ Each vi has a marker, which is the interval on Ni given
by {(x,0) ∈ R2|− 1

2 ≤ x ≤ 1
2}.



Orientations of marked graphs
▶ An orientation of a marked graph G is a choice of an

orientation for each edge of G in such a way that
every vertex in G looks like ⌞

⌝
⌜
⌟

or ⌝
⌞
⌟

⌜
.

▶ A marked graph is said to be orientable if it admits an
orientation. Otherwise, it is said to be non-orientable.

▶ By an oriented marked graph we mean an orientable
marked graph with a fixed orientation.
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>>
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>> >

▶ Two (oriented) marked graphs are said to be
equivalent if they are ambient isotopic in R3 with
keeping the rectangular neighborhoods, (orientation)
and markers.



Oriented marked graph diagrams
▶ An oriented marked graph G in R3 can be described

as usual by a diagram D in R2, which is an oriented
link diagram in R2 possibly with some marked
4-valent vertices whose incident edges are oriented
illustrated as above, and is called an oriented marked
graph diagram (simply, oriented MG diagram) of G .

▶ Two oriented MG diagrams in R2 represent equivalent
oriented marked graphs in R3 if and only if they are
transformed into each other by a finite sequence of
the oriented rigid vertex 4-regular spatial graph
moves (simply RV4 moves) Γ1,Γ

′
1,Γ2,Γ3,Γ4,Γ

′
4 and Γ5

shown in Figure below.



RV4 moves

Γ1 :

Γ1 :

< >
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Γ4 :

Γ4 :

Γ5 :



Unoriented marked graph diagrams
▶ An unoriented marked graph diagram or simply a

marked graph diagram (MG diagram) means a
nonorientable or an orientable but not oriented
marked graph diagram in R2, and so it represents
marked graphs in R3 without orientations.

▶ Two MG diagrams in R2 represent equivalent marked
graphs in R3 if and only if they are transformed into
each other by a finite sequence of the moves
Ω1,Ω2,Ω3,Ω4,Ω

′
4 and Ω5, where Ωi stands for the

move Γi without orientation.



Admissible MG diagrams
For an (oriented) MG diagram D, let L−(D) and L+(D) be
the (oriented) link diagrams obtained from D by replacing
each marked vertex with and , respectively.

▶ We call L−(D) and L+(D) the negative resolution and
the positive resolution of D, respectively.

▶ An (oriented) MG diagram D is admissible if both
resolutions L−(D) and L+(D) are trivial link diagrams.



Surface-links from adm. MG diagrams
Let D be a given admissible MG diagram with marked
vertices v1, . . . ,vn. Define a surface F(D)⊂ R3 × [−1,1] by

(R3
t ,F(D)∩R3

t )=


(R3,L+(D)) for 0 < t ≤ 1,(
R3,L−(D)∪

(
n
∪

i=1
Bi

))
for t = 0,

(R3,L−(D)) for −1 ≤ t < 0,

where R3
t := {(x1,x2,x3,x4) ∈ R4 | x4 = t} and Bi(1 ≤ i ≤ n)

is a band attached to L−(D) at each marked vertex vi as

L-(D) U {Bi}

vi
Bi

We call F(D) the proper surface associated with D.



Surface-links from adm. MG diagrams
▶ When D is oriented, L−(D) and L+(D) have the

orientations induced from the orientation of D. We
assume that the proper surface F(D) is oriented so
that the induced orientation on L+(D) = ∂F(D)∩R3

1
matches the orientation of L+(D).

▶ Since D is admissible, we can obtain a surface-link
from F(D) by attaching trivial disks in R3 × [1,∞) and
another trivial disks in R3 × (−∞,1]. We denote the
resulting (oriented) surface-link by L (D), and call it
the (oriented) surface-link associated with D.

▶ It is well known that the isotopy type of L (D) does
not depend on the choices of trivial disks
(Horibe-Yanakawa Lemma).



Adm. MG diagram D −→ Surface-link L (D)

D

F(D)

L (D)+

L (D)-



Surface-links presented by MG diagrams
Definition
Let L be an (oriented) surface-link in R4. We say that L
is presented by an (oriented) MG diagram D if L is
ambient isotopic to the (oriented) surface-link L (D) in R4.

▶ Let D be an admissible (oriented) MG diagram. By
definition, L (D) is presented by D.

From now on, we explain that any (oriented) surface-link
is presented by an admissible (oriented) MG diagram.



MG diagrams from surface-links
▶ It is well known that any surface link L in R4 =R3 ×R

can be deformed into a surface link L ′, called a
hyperbolic splitting of L , by an ambient isotopy of R4

in such a way that the projection p : L ′ → R satisfies
the followings:

▶ all critical points are non-degenerate,
▶ all the index 0 critical points (minimal points) are in
R3
−1,

▶ all the index 1 critical points (saddle points) are in R3
0,

▶ all the index 2 critical points (maximal points) are in
R3

1.

saddle point

maximal point

minimal point

t=0

t=1

t=-1



MG diagrams from surface-links
▶ Then the cross-section

L ′
0 = L ′∩R3

0 at t = 0

is a spatial 4-valent regular graph in R3
0. We give a

marker at each 4-valent vertex (saddle point) that
indicates how the saddle point opens up above as
illustrated in Figure:

▶ When L is an oriented surface-link, we choose an
orientation for each edge of L ′

0 so that it coincides
with the induced orientation on the boundary of
L ′∩R3 × (−∞,0] by the orientation of L ′ inherited
from the orientation of L .



MG diagrams from surface-links
▶ The resulting (oriented) marked graph G := L ′

0 is
called an (oriented) marked graph presenting L .

▶ A diagram D of an (oriented) marked graph G := L ′
0

is clearly admissible, and is called an (oriented) MG
diagram or (oriented) ch-diagram presenting L .

In conclusion,

Theorem (Kawauchi-Shibuya-Suzuki)

(i) Let D be an admissible (oriented) MG diagram. Then
there is an (oriented) surface-link L presented by D.

(ii) Let L be an (oriented) surface-link. Then there is an
admissible (oriented) MG diagram D presenting L.



Surface-links & MG diagrams

{adm. (ori) MG diag. D}

��

(i)
// {(ori) surface-link L (D)}

Morse modification

��

{adm. (ori) MG diag. D′}

?

OO

{hyperbolic split. L ′(D)}
(ii)
oo

Theorem (Kearton-Kurlin, Swenton)
Two (oriented) marked graph diagrams present the same
(oriented) surface-link if and only if they are transformed
into each other by a finite sequence of RV4 moves (called
(oriented) Yoshikawa moves of type I) and (oriented)
Yoshikawa moves of type II in Figure below.



Oriented Yoshikawa moves of type I
(=RV4 moves)

Γ1 :

Γ1 :

< >
Γ2 :

Γ3 :

Γ4 :

Γ4 :

Γ5 :



Oriented Yoshikawa moves of type II

⌝
⌜

⌝
//

ooΓ6 :
⌝

⌝
⌜

⌝
//

ooΓ′
6 :

⌝

∧

∧
⌞

⌝
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⌟
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∧

∧
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Classical link invariants
Let R be a commutative ring with the additive identity 0
and the multiplicative identity 1 and let

[ ] : {classical knots and links in R3} −→ R

be a regular or an ambient isotopy invariant such that for
a unit α ∈ R and δ ∈ R,[ ]

= α

[ ]
,

[ ]
= α

−1
[ ]

. (1)[
K ⃝

]
= δ

[
K
]
, (2)

where K ⃝ denotes any addition of a disjoint circle ⃝ to a
classical knot or link diagram K.



Polynomial [[ ]] for MG diagrams via [ ]

Let D be an (oriented) MG diagram.
Let [[D]](x,y) ([[D]] for short) be the polynomial in R[x,y]
defined by the following two rules:

(L1) [[D]] = [D] if D is an (oriented) link diagram,

(L2) [[ ]] = [[ ]]x+[[ ]]y,(
[[

⌞

⌝
⌜
⌟ ]] = [[ ⌜ ⌟ ]]x+[[ ⌜ ⌟ ]]y,

[[ ⌝
⌞
⌟

⌜
]] = [[ ⌝

⌞ ]]x+[[ ⌜ ⌟ ]]y.
)



Self-writhe for MG diagrams
▶ Let D = D1 ∪·· ·∪Dm be an oriented link diagram and

let w(Di) be the usual writhe of the component Di.
The self-writhe sw(D) of D is defined to be the sum

sw(D) =
m

∑
i=1

w(Di).

▶ Let D be a MG diagram. We choose an arbitrary
orientation for each component of L+(D) and L−(D).
Define the self-writhe sw(D) of D by

sw(D) =
sw(L+(D))+ sw(L−(D))

2
,

where sw(L+(D)) and sw(L−(D)) are independent of
the choice of orientations because the writhe w(Di) is
independent of the choice of orientation for Di.



Normalization of [[ ]]

Let D be a MG diagram. Then sw(D) is invariant under the
Yoshikawa moves except the move Γ1. For Γ1 and its
mirror move,

sw
( )

= sw
( )

+1,

sw
( )

= sw
( )

−1.

Definition
Let D be an (oriented) MG diagram. We define
≪ D ≫ (x,y) (≪ D ≫ for short) to be the polynomial in
variables x and y with coefficients in R given by

≪ D ≫= α
−sw(D)[[D]](x,y).



State-sum formula for ≪ ≫
Let D be an (oriented) MG diagram. A state of D is an
assignment of T∞ or T0 to each marked vertex in D. Let
S (D) be the set of all states of D. For σ ∈ S (D), let Dσ

denote the link diagram obtained from D by

T∞

−→ ,

T0

−→ .

(
⌞

⌝
⌜
⌟

T∞

−→ ⌜ ⌟ ,
⌞

⌝
⌜
⌟

T0

−→ ⌜ ⌟ .
)

Then
≪ D ≫= α

−sw(D)
∑

σ∈S (D)

[Dσ ] xσ(∞)yσ(0),

where σ(∞) and σ(0) denote the numbers of the
assignment T∞ and T0 of the state σ , respectively.



Polynomial invariants for marked graphs in R3

Theorem (L)
Let G be an (oriented) marked graph in R3 and let D be an
(oriented) marked graph diagram representing G. For any
given regular or ambient isotopy invariant

[ ] : {classical (oriented) links in R3} −→ R

with the properties (1) and (2), the associated polynomial

≪ D ≫= α
−sw(D)

∑
σ∈S (D)

[Dσ ] xσ(∞)yσ(0) ∈ R[x,y],

is an invariant for (oriented) Yoshikawa moves of type I,
and therefore it is an invariant of the (oriented) marked
graph G.



n-tangle diagrams
An oriented n-tangle diagram (n ≥ 1) we mean an oriented
link diagram T in the rectangle I2 = [0,1]× [0,1] in R2

such that T transversely intersect with (0,1)×{0} and
(0,1)×{1} in n distinct points, respectively, called the
endpoints of T .

Let T ori
3 and T ori

4 denote the set of all oriented 3- and
4-tangle diagrams such that the orientations of the arcs of
the tangles intersecting the boundary of I2 coincide with
the orientations as shown in Figure (a) and (b) below,
respectively.

∧

∧

∨

∨

∧

∧
(a)

∧

∧

∨

∨

∧

∧

∨

∨
(b)



Closing operations of 3- and 4-tangles
For U ∈ T ori

3 and V ∈ T ori
4 , let R(U),R∗(U),S(V),S∗(V)

denote the oriented link diagrams obtained from the
tangles U and V by closing as shown in Figures below:

U U

R  (U)*

U

 R(U)

U
~ ~

V

 S(V)

V

S  (V)*

Let T3 and T4 denote the set of all 3- and 4-tangle
diagrams without orientations, respectively. For U ∈ T3
and V ∈ T4, let R(U),R∗(U),S(V),S∗(V) be the link
diagrams defined as above forgetting orientations.



Ideals of R[x,y] ass. w/ classical link invariants
Definition
For any given regular or ambient isotopy invariant

[ ] : {classical oriented links in R3} −→ R

with the properties (1) and (2). The [ ]-obstruction ideal
(or simply [ ] ideal), denoted by I, is defined to be the
ideal of R[x,y] generated by the polynomials:

P1 = δx+ y−1,
P2 = x+δy−1,

PU = ([R(U)]− [R∗(U)])xy,U ∈ T ori
3

PV = ([S(V)]− [S∗(V)])xy,V ∈ T ori
4 .



Ideal coset invariants for surface-links

Theorem (Joung-Kim-L)
The map

[ ] : {(oriented) MG diagrams} −→ R[x,y]/I

defined by
[ ](D) = [D] :=≪ D ≫+ I

is an invariant for (oriented) surface-links.



Ideal coset invariants for surface-links
Remark. Let F be an extension field of R. By Hilbert Basis
Theorem, the [ ] ideal I is completely determined by a
finite number of polynomials in F[x,y], say p1,p2, . . . ,pr, i.e.,

I =< p1,p2, . . . ,pr > .

Y. Joung, J. Kim and S. Y. Lee, Ideal coset invariants
for surface-links in R4, J. Knot Theory Ramifications
22 (2013), no. 9, 1350052 (25 pages).



Example (Kauffman bracket ideal)
Let K be a virtual knot or link diagram. The Kauffman
bracket polynomial of K is a Laurent polynomial
⟨K⟩= ⟨K⟩(A) ∈ R = Z[A,A−1] defined by the following rules:

(B1) ⟨⃝⟩= 1,

(B2) ⟨⃝ K′⟩= δ ⟨K′⟩, where δ =−A2 −A−2,

(B3)
〈 〉

= A
〈 〉

+A−1
〈 〉

,

where ⃝ K′ denotes any addition of a disjoint circle ⃝ to
a knot or link diagram K′.



Example (Kauffman bracket ideal)
▶ The Kauffman bracket ideal I is the ideal of

Z[A,A−1][x,y] generated by

(−A2 −A−2)x+ y−1,

x+(−A2 −A−2)y−1,

(A8 +A4 +1)xy.

▶ The map

⟨ ⟩ : {marked graph diagrams} −→ Z[A,A−1][x,y]/I

defined by ⟨D⟩=≪ D ≫+ I is an invariant for
unoriented surface-links.

S. Y. Lee, Towards invariants of surfaces in 4-space
via classical link invariants, Trans. Amer. Math. Soc.
361 (2009), no. 1, 237–265.



Example (Quantum A2 bracket ideal)
Theorem (Kuperberg, 1994)
There is a regular isotopy invariant ⟨·⟩A2 ∈ Z[a,a−1] for
links and TTG diagrams, called the quantum A2 bracket,
which is defined by the following recursive rules:

(K1) ⟨ /0⟩A2 = 1.
(K2) ⟨D⊔O⟩A2 = (a−6 +1+a6)⟨D⟩A2 for any diagram D.

(K3) ⟨
<

<
>> ⟩A2 = (a−3 +a3)⟨ > ⟩A2,

(K4) ⟨
⌞

⌝⌟

⌜

<

>
∧ ∨ ⟩A2 = ⟨ ⌝

⌞ ⟩A2 + ⟨ ⌞
⌝ ⟩A2,

(K5) ⟨
??__

⟩A2 =−a⟨
⌝

⌝⌜

⌜
∨ ⟩A2 +a−2⟨ ⌜ ⌝ ⟩A2,

(K6) ⟨
__ ??

⟩A2 =−a−1⟨
⌝

⌝⌜

⌜
∨ ⟩A2 +a2⟨ ⌜ ⌝ ⟩A2.



Example (Quantum A2 bracket ideal)
▶ The quantum A2 bracket ideal I is the ideal of

Z[a,a−1][x,y] generated by

(a−6 +1+a6)x+ y−1,

x+(a−6 +1+a6)y−1,

(a12 +1)(a6 +1)2xy.

▶ The map

⟨ ⟩A2
: {oriented MG diagrams} −→ Z[a,a−1][x,y]/I

defined by ⟨D⟩A2
=≪ D ≫+ I is an invariant for

oriented surface-links.

Y. Joung, S. Kamada, A. Kawauchi and S. Y. Lee,
Polynomial of an oriented surface-link diagram via
quantum A2 invariant, arXiv:1602.01558.



Question:

Is there a classical link invariant [ ] such that the

[ ] ideal is trivial?



Thank you!
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