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Section 1

First, foams are used to describe the
categorifications of sl3 invariants of classical
knots. Those foams are related to, but not
indentical to, the foams considered here. I'll
describe and illustrate local crossings of n-foams.
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The Space Y™

Let A" ={ZeR"™2: Y 2, =1& 0 < z;}
denote the standard simplex. The space

Y™ C A" is defined as follows: Y? = (1, 1).
Take A7 = {7 € A" : ; = 0}. Embed a copy,
Y=t A7 Cone UM7Y"™! to the barycenter
b= —5(1,1,...,1) of A",

y" = O (U2
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Foam Definition

An n-dimensional foam is a compact top. sp.

X for which each point # € X has a nbhd. N(x)
that is homeom. to a nbhd. M of a point in Y.
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3. There are quandle cocycle invariants of
knotted foams. In fact, the singular points of
foams are chains in the homology thy. Closed
foams form cycles.



Rough Statements

4. Moves to foams and critical points grow out of
a Morse-type analysis in a categorical context.
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Work yet to be complete

. Develop computational methods to compute
quandle (and foam) homology.

. Develop geometric methods to construct
interesting examples of knotted foams.

e Twist spinning (Carter-Yang)

e Movie techniques

. Formulate a programmatic method to
achieve goals 1 and 2.
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Foams are intrinsically interesting

Let M3 denote a closed 3-dim’l mfd. Consider a
Heegaard splitting. The co-cores of the 1 handles,
the splitting surface, and the cores of the
2-handles form an embedded foam whose
complement is a pair of 3-balls. An appropriate
set of moves to foams that includes the
Matveev-Piergallini moves is sufficient to move
one decomposition to another.

Since the model for an (n — 1)-foam is found in
an n-simplex, a triangulated manifold contains an
embedded foams. Some foam moves correspond
to the Pachner moves.
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About 27 years ago, Masahico Saito and I started
studying knotted surfaces from a diagrammatic
point of view. Clearly, our work was influenced
by that of Roseman and Giller. One thing that
we couldn’t reconcile at that time was the myriad
ways to compose 2-tangles. The answer was given
by notions of categorification. So I want to give
some rough descriptions of this idea.
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New school categorification

New School: Knots — Alexander, Jones,
HOMFLYPT — FLYTHOMP —
JLYMPHTOFU? polynomials.

KhoHo (or HF): Construct a homology theory
whose graded Euler characteristic gives the knot
polynomial.

Great invariants for classical knots and knot
cobordisms. Not so good for knotted closed
surfaces.
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Old school categorification

Different things can’t be equal.

Instead they are often related by a natural
isomorphism.

Use such isom. to study eguality relations b/2
objects.

e.g. congruence of geometric figures — group of
operators on a homogeneous space — invariants
of groups such as homology.

Instead of equality among morphisms, posit
2-morphisms that satisfy their own set of
relations. Climb the dimension ladder.
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Suppose V, W, etc. f.dim’l vec. sp. over IF.
Abstract

0

: Tensor

Formalism

N . 0
X=) Xe where e=[1|<jth nrows
0

0
so superscripts are row indices.

Write?:*. A i li RO
If W<———V islinear, Ale;) =) _ale,

1
i=1
Write A= . So Ax=b is written : @ .

Composition of linear maps is denoted by vertical juxtaposition.
C B A T
T U W \ s

W
CBAK)) enc]
8]
Vv

Vv
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Example: A Frobenius alg. is a v. sp.V tog. w/ linear maps

v v IF
J)T unit, A T multi,  ~ T non deg. pairing
IF VeV VeV
that satisfy:
2):‘ :&) here | denotes the identity map T
vey V
unital axiom
su
A -0 Y
associativity associativity of the pairing non degen’cy

We canuse \Uand /M to define comulti. and counit.
VAL T-n-

It's remarkable that most of the axiomatics for the alg.coalg str.
follows directly from the diagrammatics.
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analogue. Just assert the existence of a monoidal
category together with maps Y, etc. So let’s look
at slightly weaker monoidal category.
e Objects <+ N={0,1,...} written in unary
notation.
e morphisms gen. by X, Y, A, I, X, U, N— here,
of course, | denotes the identity morphism.
e ® on objects is addition.

e ® on morphisms is (sort of) determined by
horizontal juxt.
but WAIT! Don’t assert identities among the
I-morphisms.
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Fundamental group
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(ab)c = a(bc)

<a,b>

<ab,c>

(ab)

(ab)c

ab c

(be)

a(bc)

(Y a b
Ny

Y b3R5t

ab

<b,c>

<a,bc>



a b c ab c
<a,b> vy <bc>
b, (ab) (bc)
(ab)c = a(bc) <abc> =
<a,bc>
(ab)c a(bc)
ab ¢
<ab> N\ <b><c> % a b
w T P
= <a><c> b b ab=a*b
ab Vi a*c ab
N |<abs<c <arebe
c (ab)*c c (a*c)(b*c)

(ab)*c = (a*c)(b*c)



a b c ab ¢
<a,b> W b
be> | (@) (bo)
(ab)c = a(bc) <abc> =
<abc>
(ab)c a(bc)
ab ¢
<ab> N <b><c> A, a b <a><b>
L bre aLAb % a <a*b><c>
= <a><c> b”* b ab=a*b
ab Yi a*c ab <b,c>
\ <a*cb*c>
<ab><c
c (ab)*c ¢ (a*d)(b*c)

(ab)*c = (a*c)(b*c)

(a*b)*c = a*(bc)

<b,c>
\¢

=

<a><bc:




a b c ab c
<ab> v <bc>
<ab,c> | (ab) = (bc)
(ab)c = a(bc) e (a*b)*c = a*(bc)
(ab)c a(bc)
ab ¢ a b c a b ¢
<a,b> N <b><c> A a.__ b <a><b>| N <b,c>
L bre a YAb b%b']ab—a*b <a*b><c> a*} Iy
N :>y| O <a><c> 1N . =
@ <a><bc:
<a*cb*c> \
\ <ab><c be (a*byc ,
c (ab)*c c (a*c)(b*c) bc  a*(bo)
a c a C

<a><b> | Slath W L N\ <b><c>
<a*b><c> (\ = \) bre <a><c> a*b)*c = (a*c)*(b*c)
(ab)*c — (a*c)(b*c) <b><c 1 " N

<a*c><b*c>




YY (ab)e = a(be),

Y : (ab)<c = (a<c)(b<c),
YI: (a<b)<c = a<(be),

: (a<b)<c = (a<c)<(b<c).



A quandle

satisfies three axioms that correspond to the
Reidemeister moves:

I: (Va): a<a =

II: (Va,b)(dc) :  c<b a
I1T: (Ma,b,c): (a<b)<c = (a<c)<(bac).



A quandle

satisfies three axioms that correspond to the
Reidemeister moves:

I: (Va): a<a =

II: (Va,b)(dc) :  c<b a
I1T: (Ma,b,c): (a<b)<c = (a<c)<(bac).

We are interested in how the group G and its
associated quandle Conj(G) interact.
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Remark

There are related concepts for which the
homology sketched below applies, e.g.:
e G-families of quandles (I1JO)

e MCQ multiple conjugation quandles (Ishii,
See also CIST)

e Lebed’s qualgebras



Homology of G-families of quandles was defined
to study handle-body knots.



Homology of G-families of quandles was defined
to study handle-body knots. The higher dim’l
versions can be used to study foams.



Homology of G-families of quandles was defined
to study handle-body knots. The higher dim’l
versions can be used to study foams.

Here we use, YY, YL, IY, and lll to define the
homological conditions.
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Slicing

Cut the interval [0,n] into integral pieces.

<]‘727"'7€1><€1+1,...7€1—|—€2>...
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Slicing

Cut the interval [0,n] into integral pieces.

<]‘727"'7€1><€1+1,...7€1—|—€2>...

—1 j k
<i£+1i£><26+1n>
=1 =1 =1

Such a slice corresponds to a decomposition of
the n-ball into a product of simplices. There are
2"~1 ways to cut.
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Boundaries

OG+1,742,....5+Fk)
= A+DG+2,....5+k)



Boundaries

O+1,j+2,....,5+k)
:<U+D(+znwj+@

_|_

Mw

YG+1,. . GG+0-G+L+1),... 5+ k)
E:I



Boundaries

O+1,j+2,....,5+k)
= A+ DG+2,...,5+k)

k—1
+§: VG A+l GO G++1),. . +E)
=1

+(U< L...J+k—1).



_|_

Boundaries

(DG +1,..,(G+O-(G+L+1),...

DG+, k=1,

I(PQ) = (0P)Q + (=1)"™FP(9Q).

,J+ k)



Boundaries
o7+ 1,j+2,. ..,j+k>

= A+ DG +2,. . k)
k—1

+Z YG+1,. . G+0-G+L+1),.. . j+E)
+( DFG 41, 5+ k—1).

I(PQ) = (0P)Q + (=1)"™FP(9Q).



Following Przytycki, one can observe that
00 0 = 0 in this context, if and only if

e a(bc) = (ab)c

e a<(bc) = (a<b)<c

e (ab)<c=(a<c)(b<c)

e (adb)<c=(a<c)<(b<c)



Sample computations 1
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Sample computations 1

9(1,2,3) = (2,3) — (1-2,3)
+(1,2- 3) — (1,2)




Sample computations 2

0(1,2)3) = 9(1,2)3) + (1,2)<(3) = (1,2)
(2)(3) = (1-2)3) + (1)(3)

+(1<3,2<3) —(1,2)



Sample computations 2

0(1,2)(3) = 9(1,2)(3) + (1,2) «(3) — (1,2)

{
(2)(3) = (1-2)3) + (1)(3)
+(1<3,2<3) —(1,2)




Sample computations 3

0(1)(2,3) (2,3) — (2,3)

—(142)3) + (1 >< 3) —



Sample computations 3

0(1)(2,3) = (2,3) —(2,3) — (1)0(2,3)




Sample computations

9(1)(2)(3)



Sample computations

O(1)(2)(3) = (2)(3) —(2)(3) — (1)9((2)(3))
= —(1<2)(3) + (1)(3)
+(1<3)(2<13) — (1)(2)




a b c ab c %
<a,b>+<ab,c> <ab> . <a><b> +<a*b><c>
=<b,c>+<a,bc> v e +<b,c> =<b,c> +<a><bc>

<abc> | @b = (bc)
<a,bc>
(ab)c a(bc)
ab ¢ a b c a b ¢
<ab> \ <b><c> <as<b> N <b,c>
bre . N 0
= <a><c> <aTb><c =
ab Yi a*c caebies <b,c> <a><bc
N |<abs<c ! *b)*
c (ab)*c ¢ (a*c)(b*c) be (a*b)*c bc  a*(bc)
a b c a b ¢
<a><b> \{*b " L > <> Za><b>+<a*b><c>
<a,b> +<ab><c> <a*b><c> Q b | s (=<a><c> +<a*c><b*c>
=<b><c> +<a><c> ) <b><c ] > | i oo
% % N\ \ <a*c><b*c>
+<a C,b c> b*c (a*b)*c (a*c)*(b*c)



Triangles and Squares
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Tetrahedron




First Pris

(123=(1"3)(2*3)

Q>



Second Prism
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Cube
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8 interesting moves
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The YYY-move (Stasheff polytope)
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The YII-move




The ITY-move
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The IY'Y-move
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The tetrahedral-move

Y,

\/

-
[~

/
124

134

NN

5 /< DQF EAN
A N A
VAR, \/ YARAY,
/Jm AT
EIASENG
N /\ _>/

NTT A NTTA




The tetrahedral-move
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Critical points of the branch point set
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Critical points of the triple point set
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Critical points of the intersection set 1
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Critical points of the intersection set 2
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Critical points of the double point set
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Not all 3-morphisms (or identities among 2
morphisms) are listed here.



Not all 3-morphisms (or identities among 2
morphisms) are listed here. Some missing moves
are due to considerations on charts.



Not all 3-morphisms (or identities among 2
morphisms) are listed here. Some missing moves
are due to considerations on charts. I just haven’t
drawn them yet.



Not all 3-morphisms (or identities among 2
morphisms) are listed here. Some missing moves
are due to considerations on charts. I just haven’t
drawn them yet. Others are not listed here for
spacial considerations.



The analogues in one higher dimensions
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In this last section, I am going to review
something that is (sort-of) well-known. Namely,
the tetrahedral movie move (quadruple point
move) (a CI move in Kamada’s sense) is dual to
the permutahedron.
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Permutahedron

In R" consider the convex hull of

{(c(1),0(2),...,0(n)):0€X,}.

This is the set of vectors in R"” with distinct
coordinates taken from {1,2,...,n}. Edges of the
polytope can be labeled by adjacent
transpositions:

t = (4,7 + 1). Hexagonal faces are

t(e+1)e(z+ 1)e(e+1).



Permutahedron

In R" consider the convex hull of

{(c(1),0(2),...,0(n)):0€X,}.

This is the set of vectors in R"” with distinct
coordinates taken from {1,2,...,n}. Edges of the
polytope can be labeled by adjacent
transpositions:

t = (4,7 + 1). Hexagonal faces are

(e + Di(e + Di(e + 1). etc.
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In case of the IIY-move, I'll demonstrate the
associated polytope.



In case of the IIY-move, I'll demonstrate the
associated polytope.

In fact, there is such a polytope for each of the
YYY (1234), YYI 123|4, YY (12|34), YII 12|3]4 ,
IYY (1]234), IY1 (1|23]4), Y (1]|2|34), and I
(11213/4)
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Before I arrived in Japan, I thought that these
polytopes were new.
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Before I arrived in Japan, I thought that these
polytopes were new. But now I see that they are
sold in the grocery store.
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Clearly, graphical structure can be used to
formulate a series of Abstract tensor equations.
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In fact, one version of these equations is the
Zamolodchikov tetrahedral equation.

5123512451345234 = S234813451245123-
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In fact, one version of these equations is the
Zamolodchikov tetrahedral equation.

5123512451345234 = 5234813451245123.

I believe that these additional equations will also
find physical applications as has the YBE.

In my printed summary, I hope to give
formulations of these.

Finally, observe that the assoc. (co)hom thy.
gives a nice parameter space in which to cast
these equations.



Thanks

Thank you for your attention!



