Presentations of (immersed) surface-knots by marked graph diagrams

Jieon Kim
(Jointly with S. Kamada, A. Kawauchi and S. Y. Lee)

Osaka City University, Osaka, Japan

May 26, 2017

Intelligence of Low-dimensional Topology 2017
Contents

1. Marked graph diagrams of surface-links

2. Marked graph diagrams of immersed surface-links

3. Example
Contents

1 Marked graph diagrams of surface-links

2 Marked graph diagrams of immersed surface-links

3 Example
A **surface-link** is the image \mathcal{L} of the disjoint union of surfaces in the 4-space \mathbb{R}^4 by a smooth embedding. When it is connected, it is called a **surface-knot**.

When a surface-link is oriented, we call it an **oriented surface-link**.

Two surface-links \mathcal{L} and \mathcal{L}' are **equivalent** if there is an orientation preserving homeomorphism $h : \mathbb{R}^4 \to \mathbb{R}^4$ such that $h(\mathcal{L}) = \mathcal{L}'$ orientedly.
Normal forms of surface-links

Theorem (Kawauchi-Shibuya -Suzuki)

For any surface-link \mathcal{L}, there is a surface-link $\tilde{\mathcal{L}} \subset \mathbb{R}^3[-1,1]$ satisfying the following conditions:

(0) $\tilde{\mathcal{L}}$ is equivalent to \mathcal{L} and has only finitely many critical points, all of which are elementary.

(1) All maximal points of $\tilde{\mathcal{L}}$ are in $\mathbb{R}^3[1]$.

(2) All minimal points of $\tilde{\mathcal{L}}$ are in $\mathbb{R}^3[-1]$.

(3) All saddle points of $\tilde{\mathcal{L}}$ are in $\mathbb{R}^3[0]$.

We call $\tilde{\mathcal{L}}$ a normal form of \mathcal{L}.
A marked graph diagram is a diagram of a finite spatial regular graph with 4-valent rigid vertices such that each vertex has a marker.

An orientation of a marked graph diagram D is a choice of an orientation for each edge of D in such a way that every rigid vertex in D looks like $\begin{array}{c} \uparrow \swarrow \downarrow \nwarrow \end{array}$ or $\begin{array}{c} \nwarrow \downarrow \uparrow \swarrow \end{array}$. A marked graph diagram is said to be orientable if it admits an orientation. Otherwise, it is said to be nonorientable.
A marked graph diagram D is **admissible** if both resolutions $L_+(D)$ and $L_-(D)$ are trivial links.

![Graph Diagrams](image)

Theorem (Kawauchi-Shibuya-Suzuki, Yoshikawa)

1. For an admissible marked graph diagram D, there is a surface-link \mathcal{L} represented by D.

2. Let \mathcal{L} be a surface-link. Then there is an admissible marked graph diagram D such that \mathcal{L} is represented by D.

Jieon Kim (Jointly with S. Kamada, A. Kawauchi) Presentations of (immersed) surface-knots by

May 26, 2017 7 / 43
Example
Let \mathcal{L} be a surface-link, and $\tilde{\mathcal{L}}$ a normal form of \mathcal{L}. Then the cross-section $\tilde{\mathcal{L}} \cap \mathbb{R}^3[0]$ at $t = 0$ is a 4-valent graph in $\mathbb{R}^3[0]$.

We give a marker at each 4-valent vertex that indicates how the saddle point opens up above. Then the diagram D of resulting marked graph represents the surface-link \mathcal{L}. We call D a marked graph diagram of \mathcal{L}.

![Diagram of marked graph diagrams](image)
Yoshikawa moves for marked graph diagrams of surface-links

Theorem (Swenton, Kearton-Kurlin, Yoshikawa)

Two surface-links in \mathbb{R}^4 are equivalent if and only if their marked graph diagrams can be transformed into each other by a finite sequence of 8 types of moves, called the Yoshikawa moves.
Presentations of (immersed) surface-knots by marked graph diagrams

Γ₁ :

Γ₂ :

Γ₃ :

Γ₄ :

Γ₄' :

Γ₅ :

Jieon Kim (Jointly with S. Kamada, A. Kawauchi, S. Y. Lee) (OCU)
\(\Gamma_6 : \)
\(\Gamma'_6 : \)

\(\Gamma_7 : \)
\(\Gamma_8 : \)
An immersed surface-link is a closed surface generically immersed in \mathbb{R}^4. When \mathcal{L} is connected, it is called an immersed surface-knot.

Two immersed surface-links \mathcal{L} and \mathcal{L}' are equivalent if there is an orientation preserving homeomorphism $h : \mathbb{R}^4 \to \mathbb{R}^4$ such that $h(\mathcal{L}) = \mathcal{L}'$ orientedly.

It is known that every double point singularity is constructed by a cone over a Hopf link.
Definition

A link L is **H-trivial** if L is a split union of a finite number of trivial knots and Hopf links.

\[
\begin{align*}
\text{\text{Diagram 1}} & \quad m \geq 0 \\
\text{\text{Diagram 2}} & \quad n \geq 0
\end{align*}
\]
Trivial knot cones $\hat{O}[a,b] \& \check{O}[a,b]$, and Hopf link cones $\hat{P}[a,b] \& \check{P}[a,b]$
H-trivial link cones $H \land [a, b]$ & $H \lor [a, b]$
Theorem (Kamada-Kawamura)

For any immersed surface-link \(L \), there is an immersed surface-link \(\tilde{L} \subset \mathbb{R}^3[-2,2] \) satisfying the following conditions:

(0) \(\tilde{L} \) is equivalent to \(L \) and has only finitely many critical points, all of which are elementary.

(1) The cross-sections \(H = \tilde{L} \cap \mathbb{R}^3[1] \) and \(H' = \tilde{L} \cap \mathbb{R}^3[-1] \) of \(\tilde{L} \) are H-trivial links.

(2) All maximal points of \(\tilde{L} \) are in \(\mathbb{R}^3[2] \).

(3) All minimal points of \(\tilde{L} \) are in \(\mathbb{R}^3[-2] \).

(4) All saddle points of \(\tilde{L} \) are in \(\mathbb{R}^3[0] \).

(5) \(\tilde{L} \cap \mathbb{R}^3[1,2] = H \wedge [1,2] \) and \(\tilde{L} \cap \mathbb{R}^3[-2,-1] = H' \vee [-2,-1] \).

We call \(\tilde{L} \) a normal form of \(L \).
A marked graph diagram D is **H-admissible** if both resolutions $L_+(D)$ and $L_-(D)$ are H-trivial links.
Theorem (Kamada-Kawauchi-K.-Lee)

(1) For an H-admissible marked graph diagram D, there is an immersed surface-link L represented by D.

(2) Let L be an immersed surface-link. Then there is an H-admissible marked graph diagram D such that L is represented by D.
Construction of immersed surface-links from H-admissible marked graph diagrams

\[R^3[0] \subset R^3[-1,1] \]

- \(0 < t \leq 1\)
- \(t = 0\)
- \(-1 \leq t < 0\)
$t = 2$

$1 < t < 2$

$0 < t \leq 1$

$t = 0$

$-1 \leq t < 0$

$-2 < t < -1$

$t = -2$
Let \mathcal{L} be an immersed surface-link, and $\tilde{\mathcal{L}}$ a normal form of \mathcal{L}. Then the cross-section $\tilde{\mathcal{L}} \cap \mathbb{R}^3[0]$ at $t = 0$ is a 4-valent graph in $\mathbb{R}^3[0]$.

We give a marker at each 4-valent vertex that indicates how the saddle point opens up above. Then the diagram D of a resulting marked graph presents the surface-link \mathcal{L}. We call D a marked graph diagram of \mathcal{L}.
Further moves for immersed surface-links

Definition

A crossing point \(p \) (in a marked graph diagram \(D \)) is an **upper singular point** if \(p \) is an unlinking crossing point of a Hopf link diagram in the resolution \(L_+(D) \), and a **lower singular point** if \(p \) is an unlinking crossing point in the resolution \(L_-(D) \), resp.

Example

\[D \quad L_+(D) \quad D' \quad L_-(D') \]

\(p \) : upper singular point, \(p' \) : lower singular point.
The following moves are new entries on marked graph diagrams.

\[\Gamma_9 : \]

- In \(\Gamma_9 \), the component containing \(l^+ \) in \(L_+(D) \) is a trivial knot.
- In \(\Gamma_9 \), \(p \) is an upper singular point.
- In \(\Gamma'_9 \), the component containing \(l^- \) in \(L_-(D) \) is a trivial knot.
- In \(\Gamma'_9 \), \(p \) is a lower singular point.
The following move is a new entry on marked graph diagrams.

\[\Gamma_{10} : \quad \text{Diagram 1} \iff \text{Diagram 2} \]

Note

Let \(D \) be an H-admissible marked graph diagram. Let \(h_+(D) \) and \(h_-(D) \) be the numbers of Hopf-links in \(L_+(D) \) and \(L_-(D) \), resp.

- The ordered pair \((h_+(D), h_-(D))\) is an invariant except \(\Gamma_{10} \).
- If \(D \) and \(D' \) are related by a single \(\Gamma_{10} \) move, then \((h_+(D'), h_-(D')) = (h_+(D) + \varepsilon, h_-(D) - \varepsilon)\) for \(\varepsilon \in \{1, -1\} \).
Definition

The generalized Yoshikawa moves for marked graph diagrams are the deformations $\Gamma_1, \ldots, \Gamma_8, \Gamma_9, \Gamma'_9,$ and Γ_{10}.

Theorem (Kamada-Kawauchi-K.-Lee)

Let L and L' be immersed surface-links, and D and D' their marked graph diagrams, resp. If D and D' are related by a finite sequence of generalized Yoshikawa moves, then L and L' are equivalent.
Sketch of Proof. The moves Γ_9 (or Γ'_9) can be generated by Ω_9 (or Ω'_9) and Γ_2, resp.

We need to show that if two marked graphs are related by Ω_9, Ω'_9, and Γ_{10}, then their immersed surface-links are equivalent.
\(\Omega_9 : \)
\[
\begin{array}{c}
\text{(a)} \\
\text{(b)}
\end{array}
\]

\(\Omega'_9 : \)
\[
\begin{array}{c}
\text{(a)} \\
\text{(b)}
\end{array}
\]

\(\Gamma_{10} : \)
\[
\begin{array}{c}
\text{(a)} \\
\text{(b)}
\end{array}
\]
The following marked graph diagrams D and D' are related by a finite sequence of generalized Yoshikawa moves.
$L_+(D)$ $L_-(D)$ $L_+(D')$ $L_-(D')$

H-admissibility
$\Gamma_9 : \quad p \quad \rightarrow \quad$
Γ_4' :

\[\begin{array}{c}
\begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2}
\end{array}
\end{array} \]
$\Gamma_{10}: \quad \rightarrow \quad \rightarrow$
\[\Gamma_1 : \quad \begin{array}{c} \infty \\ \end{array} \rightarrow \quad \begin{array}{c} \cup \\ \end{array} \]
\[\Gamma_1 : \quad \longrightarrow \quad \longrightarrow \]
Γ_4:
\(\Gamma_4 : \) \hspace{1cm} \text{Diagram 1} \hspace{1cm} \rightarrow \hspace{1cm} \text{Diagram 2}
\[\Gamma'_9 : \quad \text{Diagram} \quad \rightarrow \quad \text{Diagram} \]
Well-definedness of the move Γ'_9:
Well-definedness of the move Γ'_9:
Contents

1. Marked graph diagrams of surface-links
2. Marked graph diagrams of immersed surface-links
3. Example
Definition

A **positive** (or **negative**) standard singular 2-knot, denoted by \(S(+) \) (or \(S(-) \)) is the immersed 2-knot of \(D \) (or \(D' \)), resp. An **unknotted immersed sphere** is defined to be the connected sum \(mS(+) \# nS(-) \) for \(m, n \in \mathbb{Z}_{\geq 0} \) with \(m + n > 0 \).

\[\begin{align*}
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{D}\quad \includegraphics[width=0.3\textwidth]{D'}
\end{array}
\end{align*} \]

Definition

A double point singularity \(p \) of an immersed 2-knot \(S \) is **inessential** if \(S \) is the connected sum of an immersed 2-knot and an unknotted immersed sphere such that \(p \) belongs to the unknotted immersed sphere. Otherwise, \(p \) is **essential**.
I answer the following question.

Question
For any integer $n \geq 1$, is there an immersed 2-knot with n double point singularities every of which is essential?
I answer the following question.

Question
For any integer $n \geq 1$, is there an immersed 2-knot with n double point singularities every of which is essential?

Yes. There are infinitely many immersed 2-knots with n double point singularities every of which is essential.
Example
Example

D
The knot group is \(< x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15} | x_1 = x_2^{-1} x_3 x_2, x_2 = x_3^{-1} x_5 x_3, x_1 = x_3^{-1} x_4 x_3, x_2 = x_1^{-1} x_3 x_1, x_6 = x_2^{-1} x_1 x_2, x_6 = x_1^{-1} x_7 x_1, x_1 = x_7^{-1} x_8 x_7, x_2 = x_7^{-1} x_9 x_7, x_{10} = x_2^{-1} x_7 x_2, x_{10} = x_1^{-1} x_{11} x_1, x_1 = x_{11}^{-1} x_{12} x_{11}, x_2 = x_{11}^{-1} x_{13} x_{11}, x_{14} = x_2^{-1} x_{11} x_2, x_{14} = x_1^{-1} x_2 x_1, x_1 = x_2^{-1} x_{15} x_2 > .\)

The first elementary ideal \(\varepsilon(D)\) is \(< 1 - 2t, 4 - 3t > \) and it is equivalent to the ideal \(< 2t - 1, 5 > \). Since \(< 2t - 1, 5 > \) is not equivalent to the ideal \(< t - 2, 5 > \), it is non-symmetric. (\(: \mathbb{Z}_5[t, t^{-1}]\) is a principal ideal domain.)
We have $\varepsilon(D_n) = < 2t - 1, n + 2 >$, $\varepsilon(D'_n) = < 2t - 1, n - 1 >$.
Denote the first Alexander module \(H_1(\tilde{E}(K)) \) of a 2-knot \(K \) by \(H(K) \). Let

\[
DH(K) = \{ x \in H(K) \mid \exists \{ \lambda_i \}_{1 \leq i \leq m} : \text{coprime (} m \geq 2 \text{) with } \lambda_i x = 0, \ \forall i \},
\]
called the annihilator \(\Lambda \)-submodule. The following lemma is used in our argument.

Lemma

If \(K \) is a 2-knot such that the dual \(\Lambda \)-module

\[
DH(K)^* = \text{hom}(DH(K), \mathbb{Q}/\mathbb{Z})
\]
is \(\Lambda \)-isomorphic to \(DH(K) \), then the first elementary ideal \(\varepsilon(K) \) is symmetric.
Lemma (Kawauchi-K.)

The following statements are equivalent:

1. The ideal \(< 2t - 1, m > \) is symmetric.
2. An integer \(m \) is \(\pm 2^r \) or \(\pm 2^r 3 \) for any integer \(r \geq 0 \).

Lemma (Kawauchi-K.)

There are infinitely many immersed 2-knots with one essential double point singularity.

Sketch of Proof. Let \(K_n \) and \(K'_n \) be immersed 2-knots represented by \(D_n \) and \(D'_n \), resp. Suppose that \(K_n = K \# S(\pm) \), where \(K \) is a 2-knot and \(S(\pm) = S(+) \) or \(S(-) \). Then the ideal \(\mathcal{E}(K_n) = < 2t - 1, n + 2 > \) is symmetric. There is a contradiction if \(n \) isn’t \(2^{r+2} - 2 \) nor \(2^r 3 - 2 \) \((r \geq 0)\). Hence \(K_n \) is an immersed 2-knot with essential singularity except that \(n \) is \(2^{r+2} - 2 \) or \(2^r 3 - 2 \) \((r \geq 0)\). So is \(K'_n \) except that \(n \) is 1, \(2^r + 1 \) or \(2^r 3 + 1 \) \((r \geq 0)\).
Theorem (Kawauchi-K.)

Let $K = nK_m^*$ be the connected sum of n copies of an immersed 2-knot K_m^* with one essential double point singularity whose first elementary ideal is $<2t-1,m>$ for any integer $m \geq 5$ without factors 2 and 3. Then K gives infinitely many immersed 2-knots with n double point singularities every of which is essential.
Thank you