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1 Crossing numbers of composite knots and spatial graphs

(Benjamin Bode)2

This section is a collection of problems that relate to the question of the additivity
of the crossing number under the connected sum operation, i.e., for two knots K1

and K2 is c(K1#K2) = c(K1) + c(K2)? This problem is extremely difficult, but
the related problems I am going to discuss could give some insights on the crossing
number of K1#K2 without us having to tackle the conjecture itself.

Malyutin [23] showed that if c(K1#K2) ≥ c(K1) for all knots K1, K2 or if
c(K1#K2) ≥ 2

3
(c(K1) + c(K2)) for all knots K1, K2, then hyperbolic knots are

not generic, meaning that the percentage of hyperbolic knots amongst all of the
prime knots of n or fewer crossings approaches 100 as n approaches infinity, a con-
jecture that was widely believed to be true until then. A positive answer to some of
the questions below would disprove this conjecture.

Let S ⊂ S3 be diffeomorphic to the standard 2-sphere S2 and denote the two
balls that are bounded by S by B1 and B2. Let A and B be distinct points on
S. For a fixed projection direction we are interested in the number of crossings of
a simple path from A to B that lies completely in one of the Bis. We say a path
γ : [0, 1] → Bi with γ(0) = A, γ(1) = B and γ(s) ̸= γ(t) for all s ̸= t ∈ [0, 1] is
minimal in Bi if c(γ) ≤ c(γ′) for all such paths γ′. A minimal path γi in Bi might
not be unique (not even up to isotopy). Figure 1a) shows an example of S and
minimal paths γi in Bi. We can see that one of them, γ2, is isotopic to a path in S.

a) b)

S
B1

B2

γ1 γ2
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Figure 1: a) The path γ1 is minimal in B1 with c(γ1) = 0. The path γ2 is minimal in B2 with
c(γ2) = 3. The path γ2 is isotopic to a path in S = ∂B2 = ∂B1, while γ1 is not. b) The path γ2 is
minimal in B2 with respect to α1 with c(γ2 ∪ α1) = 6 and is isotopic to a path in S.

Question 1.1 (B. Bode). Given S, A, B and a projection direction, is it always
true that there is an i ∈ {1, 2} and a path γi that is minimal in Bi and that is
isotopic (with fixed endpoints) to a path in S?

2Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan
ben.bode.2013@my.bristol.ac.uk
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This question becomes more relevant to the additivity of the crossing number if
we change the situation slightly.

In addition to S, A, B and the fixed projection direction we are now also given
two simple paths, αi : [0, 1] → Bi from A to B. We say a simple path γ : [0, 1] → Bi

from A to B is minimal in Bi with respect to αj, j ̸= i if c(γ ∪ αj) ≤ c(γ′ ∪ αj) for
all such paths γ′. An example is depicted in Figure 1b).

Question 1.2 (B. Bode). Given S, A, B, αi and a projection direction, is it always
true that there is an i ∈ {1, 2} and a path γi that is minimal in Bi with respect to
αj, j ̸= i and that is isotopic (with fixed endpoints) to a path in S?

A positive answer to this question would imply that c(K1#K2) ≥ min{c(K1), c(K2)}
and would therefore show that hyperbolic knots are not generic in the sense of [23].

a)
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b) c)x1
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Figure 2: a) The planar graph θ2. b) The spatial graph θ231,41 . c) An element of Ω2
31,41 , which is

not θ231,41 . Here the constituent knots are 31#41 and 31 (each twice).

The next question aims at connections between the crossing numbers of composite
knots and spatial graphs as in [4]. Let θ2 be the planar graph with two vertices that
are connected by four edges, shown in Figure 2a). We label the edges by x1, x2,
z1 and z2 in no particular order. Let θ2K1,K2

be the spatial graph that results from
tying the x-edges into the knot K1 and the z-edges into K2 as in Figure 2b). The
unions of any pair of distinct edges of this spatial graph form knots, the constituent
knots of the spatial graph, namely either K1#K2 (xi with zj), K1#K1 (xi with xj)
or K2#K2 (zi and zj). Let Ω

2
K1,K2

be the set of isotopy classes of embeddings of θ2

such that its constituent knots are as follows:

• xi ∪ zj = K1#K2 for all i, j = 1, 2,

• xi ∪ xj = K1#K1 and zi ∪ zj = K2#K2 or both are prime. (In particular, they
are not unknots.)

From this definition it is clear that θ2K1,K2
∈ Ω2

K1,K2
.

Question 1.3 (B. Bode). Is c(θK1,K2) ≤ c(Γ) for all Γ ∈ Ω2
K1,K2

?
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It follows from [4] that a positive answer to this question would imply that

c(K1#K2) ≥
1

4
(c(K1#K1) + c(K2#K2)). (1)

Note that we do not know c(θ2K1,K2
), since we do not know if the diagram in Figure

2b) is minimal.

a) b) c)

γ γ γ

P

Q

Q

Figure 3: a) For this choice of P and Q the black arc γ minimizes c(D′) because it does not add
any crossings to D. The constituent knots of this theta curve are 31#41, 31 and 41. b) For a
different choice of P and Q the black curve has to intersect D somewhere. The shown arc does so
the minimal number of times possible. The constituent knots of this theta curve are 31#41, 31 and
41. c) Changing the signs of crossings between the black arc and the diagram D does not change
the fact that γ minimzes c(D′) for this choice of endpoints P and Q. It can change the constituent
knots however. Here they are 31#41, 31 and the unknot.

Let D be a knot diagram of a composite knot K1#K2. Pick an arbitrary point
P on D. For any additional point Q on D any simple path γ from P to Q that does
not intersect K1#K2 turns the knot diagram into a diagram D′ = D∪γ of a spatial
graph (a theta-curve θ), one of whose constituent knots is K1#K2.

Let γ′ be a path that minimizes c(D′) among all simple paths from P to Q that
do not intersect K1#K2. Again this minimizer is usually not unique. An example
for two different choices of P and Q, where D is the minimal diagram of 31#41 is
given in Figure 3.

Question 1.4 (B. Bode). Given any diagram D of K1#K2, does there exist a choice
of P and Q such that there is a simple path γ′ from P to Q that does not intersect
K1#K2, that minimizes c(D′) and such that the constituent knots of θ are K1#K2,
K1 and K2?

A positive answer to this question would imply that c(K1#K2) >
2
3
(c(K1) + c(K2))

and therefore also show that the conjecture on the genericity of hyperbolic knots is
false [23].
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2 Correspondence between local moves and invariants of
virtual knots

(Shin Satoh3)

The set of welded knots is a quotient of the set of virtual knots, by the move
“overcrossings commute”. It is known (see [37]) that the set of classical knots is a
proper subset of the set of welded knots, and hence a proper subset of virtual knots.

Some invariants of classical knots correspond to some local moves in the sense
that two classical knots have the same invariant if and only if they are related by a
finite sequence of the local moves; see e.g. [34, Section 2.8]. For example, the Arf
invariant of a classical knot corresponds to pass moves [19, 20]. It is important to
study such correspondence because it reveals a relationship between algebraic and
geometric structures in classical knot theory.

From this point of view, there are many problems according to which family of
knots, which invariant of knots, and which local moves for knots we choose. For
example, the delta move, pass move, and sharp move are known to be unknotting
operations for welded knots [40], but not unknotting operations for virtual knots
[41].

�✁✂✄☎ ✆✝✞✁ ✟✠☎✡☛ ✆✝✞✁ ☛☎✟✟ ✆✝✞✁

Problem 2.1. Find invariants of a µ-component virtual link (µ ≥ 1) corresponding
to the delta move.

Problem 2.2. Find invariants of a µ-component virtual link (µ ≥ 1) corresponding
to the pass move.

Problem 2.3. Find invariants of a µ-component virtual link (µ ≥ 1) corresponding
to the sharp move.

Problem 2.4. Find invariants of a µ-component welded link (µ ≥ 2) corresponding
to the delta move.

Problem 2.5. Find invariants of a µ-component welded link (µ ≥ 2) corresponding
to the pass move.

Problem 2.6. Find invariants of a µ-component welded link (µ ≥ 2) corresponding
to the sharp move.

In virtual knot theory, there are several invariants such as the n-writhe (n ̸= 0),
the writhe polynomial, the odd writhe, the r-covering (r ≥ 0, r ̸= 1) [29], and the
Jones polynomial.

3Department of Mathematics, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
Email address: shin@math.kobe-u.ac.jp
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Problem 2.7. Find local moves for a virtual knot corresponding to the n-writhe
(n ̸= 0).

Problem 2.8. Find local moves for a virtual knot corresponding to the r-covering
(r ≥ 0, r ̸= 1).

Problem 2.9. Find local moves for a µ-component virtual link (µ ≥ 1) correspond-
ing to the Jones polynomial.

It is known that the odd writhe of a virtual knot corresponds to a local move
called the Ξ-move [41] and the writhe polynomial corresponds to a local move called
the shell move (given in our talk of this conference). We find several invariants
corresponding to the shell move in the case of a 2-component virtual link [30]. In
the figure, the real crossings with the same label have the same crossing information.

Ξ-move

Problem 2.10. Find invariants for a µ-component virtual link (µ ≥ 2) correspond-
ing to the Ξ-move.

Problem 2.11. Find invariants for a µ-component virtual link (µ ≥ 3) correspond-
ing to the shell move.

There is known no skein relation for the odd writhe and writhe polynomial of a
virtual knot.

Problem 2.12. Find a skein relation for the odd writhe of a virtual knot.

Problem 2.13. Find a skein relation for the writhe polynomial of a virtual knot.

3 Rectilinear spatial complete graphs

(Ryo Nikkuni)4

An embedding f of a finite graph G into R3 is called a spatial embedding of G,
and the image f(G) is called a spatial graph of G. We call a subgraph γ of G
homeomorphic to the circle a cycle of G, and also call a k-cycle if it contains exactly
k edges. We denote the set of all k-cycles of G by Γk(G), and the set of all pairs of
two disjoint cycles of G consisting of a k-cycle and an l-cycle by Γk,l(G). For a cycle
γ (resp. a pair of disjoint cycles λ) and a spatial embedding f of G, f(γ) (resp.
f(λ)) is none other than a knot (resp. a 2-component link) in f(G). For a cycle γ
of G containing all vertices of G, we call f(γ) a Hamiltonian knot in f(G).

4Department of Mathematics, School of Arts and Sciences, Tokyo Woman’s Christian University, 2-6-1 Zem-
pukuji, Suginami-ku, Tokyo 167-8585, Japan
Email: nick@lab.twcu.ac.jp
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Let Kn be the complete graph on n vertices, that is the graph consisting of n
vertices such that each pair of its distinct vertices is connected by exactly one edge.
A spatial embedding fr of Kn is said to be rectilinear if for any edge e of Kn, fr(e)
is a straight line segment in R3. Such an embedding can be constructed by taking n
vertices of Kn on the moment curve (t, t2, t3) in R3 and connecting every pair of two
distinct vertices by a straight line segment, see Figure 4 for n = 6, 7 (we say such a
rectilinear spatial graph of Kn is standard). As a consequence of generalizations of
the Conway-Gordon theorems [8], Morishita-Nikkuni showed the following formula.

Theorem ([26]). Let n ≥ 6 be an integer. For any rectilinear spatial embedding fr
of Kn, we have∑

γ∈Γn(Kn)

a2 (fr(γ)) =
(n− 5)!

2

( ∑
λ∈Γ3,3(Kn)

lk (fr(λ))
2 −

(
n− 1

5

))
,

where lk denotes the linking number, and a2 denotes the second coefficient of the
Conway polynomial.

1

2

3
4

5

6

f K6(    )r

7

1

2

3

4 5

6

f K7(    )r

Figure 4: Standard rectilinear spatial graphs of Kn (n = 6, 7)

Note that every polygonal 2-component link with exactly six sticks is either a
trivial link or a Hopf link. Thus

∑
λ∈Γ3,3(Kn)

lk (fr(λ))
2 coincides with the number

of “triangle-triangle” Hopf links in fr(Kn). The original Conway-Gordon theorem
for K6 implies that

∑
λ∈Γ3,3(Kn)

lk (fr(λ))
2 is greater than or equal to the number of

subgraphs of Kn isomorphic to K6, that is equal to
(
n
6

)
. On the other hand, it is

known that every rectilinear spatial graph of K6 contains at most three Hopf links
[17, 16, 31]. This implies that

∑
λ∈Γ3,3(Kn)

lk (fr(λ))
2 is less than or equal to 3

(
n
6

)
.

Thus by the theorem, we have the following evaluations of the “algebraic” number
of Hamiltonian knots in every rectilinear spatial graph of Kn.

Corollary ([26]). Let n ≥ 6 be an integer. For any rectilinear spatial embedding fr
of Kn, we have

(n− 5)(n− 6)(n− 1)!

2 · 6!
≤

∑
γ∈Γn(Kn)

a2 (fr(γ)) ≤
3(n− 2)(n− 5)(n− 1)!

2 · 6!
.
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The lower bound in the corollary is sharp for arbitrary n ≥ 6 [26]. Actually the
standard rectilinear spatial graph of Kn realizes the sharp lower bound. In the case
of n = 6, the upper bound 1 is also sharp. On the other hand, the upper bound in
the case of n = 7 is 15, but according to a computer search in [18], there seems to
be no rectilinear spatial embedding fr of K7 such that

∑
γ∈Γ7(K7)

a2 (fr(γ)) = 13, 15.
This strongly suggests that the upper bound in the corollary is not sharp.

Problem 3.1 (R. Nikkuni). Determine the sharp upper bound of
∑

γ∈Γn(Kn)
a2 (fr(γ))

for all rectilinear spatial embeddings fr of Kn for each n ≥ 7.

By the above mentioned theorem, Problem 3.1 is equivalent to the following
problem.

Problem 3.2 (R. Nikkuni). Determine the maximum number of triangle-triangle
Hopf links in fr(Kn) for all rectilinear spatial embeddings fr of Kn for each n ≥ 7.

4 Instanton Floer theory for 3-manifolds and the homology
cobordism group of integral homology 3-spheres

(Yuta Nozaki, Kouki Sato, Masaki Taniguchi)

Instanton Floer theory

The instanton Floer homology group I∗(Y ) is an invariant of an oriented integral
homology 3-sphere Y introduced by Floer [13]. The group I∗(Y ) is an analog of
infinite dimensional Morse homology with respect to the Chern-Simons functional.
We denote by Ω1(Y ) ⊗ su(2) the set of su(2)-valued 1-forms. The Chern-Simons
functional cs(a) is given by

cs(a) :=
1

8π2

∫
Y

Tr (a ∧ da+ 2

3
a ∧ a ∧ a).

If we fix a Riemann metric g on Y , one can consider the formal gradient of cs with
respect to an L2-metric. There is a large symmetry on Ω1(Y )⊗su(2) which is called
null-homotopic gauge symmetry defined by

GY :=
{
g ∈ Map(Y, SU (2))

∣∣ deg(g) = 0
}
,

where the degree is the mapping degree. The action is given by a·g := g−1dg+g−1ag.
One can see the map cs descends to the map

cs : BY :=
(
Ω1(Y )⊗ su(2)

)
/GY → R.

The set of solution to F (a) = 0 in BY is denoted byRY . Some parts of RY correspond
to critical values of cs . In a good situation, the chains are generated by some part
of RY . The differential is defined by counting the solution to the gradient flow of
cs . The gradient flows correspond to solutions to ASD-equation on Y × R.

Although the group I∗(Y ) is the first example of Floer homology groups for 3-
manifolds, even the following fundamental problem is still open.
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Problem 4.1. Construct a well-defined equivariant instanton Floer homology for
SU (2)-bundles on all 3-manifolds.

The main problems are to deal with the reducible solutions and the dependence
of perturbations. For example, the dependence of perturbations made in [2] is still
open. We also mention a problem related to Floer homotopy types introduced in [7].
It is known that several Floer theoretical invariants of 3 or 4-manifolds are obtained
as the singular homology of some topological objects, and the stable homotopy types
of the topological objects themselves are invariants of 3 or 4-manifolds. Thus, the
homotopy type is called the Floer homotopy type ([24, 22]). For the group I∗(Y ), its
Floer homotopy type has been unknown.

Problem 4.2. Construct a Floer homotopy type of I∗(Y ).

The main problems to define an instanton Floer homotopy type are related to the
bubble phenomena and the existence of structures of manifolds with corners on the
compactification of moduli spaces of trajectories and the framings. If the problem
is solved, we can apply a generalized cohomology theory and obtain a family of
invariants.

Homology cobordism group

Two oriented integral homology 3-spheres Y1, Y2 are homology cobordant if there
exists a cobordism W from Y1 to Y2 with H∗(W ;Z) ∼= H∗(S

3 × I;Z). This is an
equivalence relation on the set of oriented integral homology 3-spheres, and the
quotient set Θ3 equipped with the connected sum operation is an abelian group
called the homology cobordism group. It is known [12, 14] that Θ3 contains a Z∞

subgroup, which is generated by Seifert homology 3-spheres. The group Θ3 has
further been studied since various Floer theory for 3-manifolds were established,
while we still have several elementary open problems. For instance, the following
question is open.

Question 4.3. Denote by Θ3
S the subgroup of Θ3 generated by Seifert homology

3-spheres. Then, is the quotient group Θ3/Θ3
S non-trivial?

Here we mention that the above question is related to our invariant r+ : Θ
3 →

R≥0∪{∞}; for details of r+, see [32]. In fact, the value r+(Y ) is contained in cs(RY ),
and if Y is a linear combination of Seifert homology 3-spheres, then cs(RY ) ⊂ Q.
These imply that if a homology 3-sphere Y has irrational r+, then its homology
cobordism class [Y ] is not contained in Θ3

S. On the other hand, by Mathematica,
the authors estimated the value r+(S

3
1/2(5

∗
2)) with an error of at most 10−46, where

S3
1/2(5

∗
2) denotes the 3-manifold obtained by 1/2-surgery on the mirror of the knot

52, noting that S3
1/2(5

∗
2) is a hyperbolic 3-manifold (see [5]). The result seems to

imply that r+(S
3
1/2(5

∗
2)) is irrational. If the value r+(S

3
1/2(5

∗
2)) is truly irrational,

then we can conclude that [S3
1/2(5

∗
2)] /∈ Θ3

S.

Question 4.4 (Y. Nozaki, K. Sato, M. Taniguchi). Is the value r+(S
3
1/2(5

∗
2)) irra-

tional?
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The method of our computation is based on Kirk and Klassen’s formula of cs given
by the integration along a path in the space of irreducible SL(2,C)-representations.
To obtain the approximate value of r+, we use a description of the space of SL(2,C)-
representations of π1(S

3 \ 52), as in [36], in terms of a Riley polynomial ϕ(t, u) ∈
Z[t±1, u] with degu ϕ = 3. Then we can explicitly solve the equation ϕ(u, t) = 0
with respect to u and use the solutions to compute r+. However, Riley polynomials
ϕ(t, u) of 2-bridge knots K might be of degree larger than 4. In this case, one cannot
solve ϕ(t, u) = 0 in general.

Problem 4.5 (Y. Nozaki, K. Sato, M. Taniguchi). In the case degu ϕ > 4, give a
method to compute an approximate value of r+(S

3
1/n(K)).

Note that, in principle, we can compute approximate values by dividing a path into
shorter paths.

5 The AMU Conjecture for self-homeomorphisms of sur-
faces and the volume conjecture for 3-manifolds

(Tian Yang)

According to Nielsen-Thurston’s classification of the elements of the mapping
class group of surfaces, every irreducible orientation preserving self-homeomorphism
of a surface of finite type is either periodic (of finite order) or pseudo-Anosov (pre-
serving two transverse measure laminations). Here a self-homeomorphism being
irreducible means that it does not restrict of a proper subsurface. In [1], Andersen-
Masbaum-Ueno made the following

Conjecture 5.1 (J. E. Andersen, G. Masbaum, K. Ueno [1]). Let Σ be a orientable
surface of finite type, let ϕ be a pseudo-Anosov self-homeomorphism of Σ, and let
{ρr}r be the sequence of the Turaev-Viro representations of the mapping class group
of Σ. Then for r sufficiently large, ρr([ϕ]) is a linear transformation of infinite order.

Combined with the fact that the image of a finite order element under any group
representation is of finite order, the AMU Conjecture essentially claims that the
sequence of Turaev-Viro representations of the mapping class groups respects the
Nielsen-Thurston classification. The similar conjecture can be made for the Reshetikhin-
Turaev representations, which are a sequence of projective representations of map-
ping class group of surfaces. The AMU conjecture is known to be true for punctured
spheres [1, 11] and the once-punctured torus [38]. Recently, Marché-Santharoubane [25]
related the Turaev-Viro representations to representations of the fundamental group
of surfaces, and provide an efficient algorithm of determining whether an element of
the fundamental group can be represented by a simple closed curve on the surface,
assuming that the AMU Conjecture is true.

Observed by Santharoubane [39] (see also Detcherry-Kalfagianni [10]), the AMU
Conjecture is a consequence of the following a weaker version of the Volume Con-
jecture of Chen-Yang [6].
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Conjecture 5.2 (a weaker version of the volume conjecture of Q. Chen and T.
Yang [6]). Let M be a hyperbolic 3-manifold with finite volume, and let TVr(M ; q)
be its r-th Turaev-Viro invariant at the root of unity q. Then for r running over all
the odd integers,

lim inf
r 7→∞

1

r
lnTVr(M ; e

2πi
r ) > 0.

The relationship between the two conjectures mentioned above is given by the under-
lying TQFTs. Roughly speaking, the mapping cylinderMCϕ of ϕ can be considered
as a cobordism from Σ to itself. Hence for each r, the Turaev-Viro TQFT assigns
MCϕ a linear map, which is exactly ρr([ϕ]) by the construction of the Turaev-Viro
representation. By the TQFT axioms, the trace of ρr([ϕ]) equals to the Turaev-
Viro invariant TVr(Mϕ) of the mapping torus Mϕ of ϕ. Since ϕ is pseudo-Anosov,
Thurston’s result shows that Mϕ is hyperbolic. Then Conjecture 5.2 implies that
TVr(M) grows at least exponentially at particular roots of unity. On the other
hand, if ρr([ϕ]) was of finite order, the each of its eigenvalues should be a root of
unity. As a consequence, the trace of ρr([ϕ]) is at most the dimension of the TQFT
vector space of Σ, which by the Verlinde formula is only a polynomial in r. That is
a contradiction.

In a recent work [9], Detcherry-Kalfagianni showed that the behavior of the
Turaev-Viro invariant is “similar to” that of the hyperbolic volume, in the sense
that it does not increase under Dehn-fillings. Therefore, if one could prove Conjec-
ture 5.2 for a 3-manifold M, then Conjecture 5.2 is automatically true for all the
3-manifolds obtained from M by removing a link inside it. Recently, Ohtsuki [35]
and Belletti-Detcherry-Kalfagianni-Yang [3] proved the Volume Conjecture of Chen-
Yang for infinite families of 3-manifolds, including the closed hyperbolic ones ob-
tained by doing integral Dehn-fillings along the figure-8 knot and the fundamental
shadow link complements. Therefore, Conjecture 5.2 hold for all the 3-manifolds
obtained from the examples mentioned above by remove a link inside them, and the
AMU Conjecture holds for the fibered ones obtained from those examples by doing
the same operation. From the discussions above, one sees that a solution to the
follow problem will give a final solution to the AMU Conjecture, at least for all the
punctured surfaces.

Problem 5.3 (T. Yang). Find a family of 3-manifolds for which Conjecture 5.2
holds, and by removing links from which one gets all the pseudo-Anosov mapping
torus of all punctured surfaces.

6 The mapping class group of a surface and the quantum
invariants of integral homology 3-spheres

(Shunsuke Tsuji)

Let Σg,1 be a surface of genus 1 with a connected non-empty boundary. We con-
sider the lower central series {F nπ1(Σg,1, ∗)}n≥1 of π1(Σg,1, ∗) where ∗ ∈ ∂Σg,1, de-

fined by F 1π1(Σg,1, ∗)
def.
= π1(Σg,1, ∗) and F n+1π1(Σg,1, ∗)

def.
= [π1(Σg,1, ∗), F nπ1(Σg,1, ∗)].
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We denote by M(Σg,1) the mapping class group of Σg,1 and by I(Σg,1) the Torelli
group, which is the kernel of the action of M(Σg,1) on the homology group of
Σg,1. We can define two filtrations {I(n)(Σg,1)}n≥1 and {M(n)(Σg,1)}n≥1. The first

{I(n)(Σg,1)}n≥1 is the lower central series, defined by I(1)(Σg,1)
def.
= I(Σg,1) and

I(n+1)(Σg,1)
def.
= [I(Σg,1), I(n)(Σg,1)]. The second {M(n)(Σg,1)}n≥1 is the Johnson fil-

tration, satisfying M(n)(Σg,1) is the kernel of the action of M(Σg,1) on
F 1π1(Σ, ∗)/F n+1π1(Σ, ∗).

We denote by

zsl2(M) = 1 + zsl21 (M)(q − 1) + zsl22 (M)(q − 1)2 + · · ·

the invariant of an integral homology 3-sphereM defined by T. Ohtsuki [33]. We fix
a Heegaard splitting of S3 = H+

g ∪ιH−
g , whereH

+
g andH−

g are handle bodies of genus

g and ι is a diffeomorphism from ∂H+
g to ∂H−

g . We denote M(ψ)
def.
= H+

g ∪ψ◦ι H−
g

for ψ ∈ M(Σg,1), where we consider Σg,1 as a submanifold of ∂H+
g .

Then we obtain zsl2i (M(ψ)) = 0 if ψ ∈ I(2i+1)(Σg,1) for any i. In the case
of the Johnson filtration {M(n)(Σg,1)}n≥1, there exists ψ ∈ M(3)(Σg,1) satisfying

zsl21 (M(ψ)) ̸= 0. S. Morita [27] constructs the core of the Casson invariant d :
M(2)(Σg,1) → Z where zsl21 (M(ψ)) = 0 if ψ ∈ I(3)(Σg,1) ∩ ker d. In other words,

we can define zsl21 using the Johnson homomorphisms and the core of the Casson
invariant.

Conjecture 6.1 (S. Morita). For any i ∈ Z≥1, z
sl2
i (M(ψ)) = 0 if ψ ∈ M(2i+1)(Σg,1)∩

ker d.

By definition, if i = 1, the conjecture is true. Morita–Sakasai–Suzuki [28] prove that
the conjecture is true if i = 2, 3.

We can also define

zslN (M) = 1 + zslN1 (M)(q − 1) + zslN2 (M)(q − 1)2 + · · ·

using the slN -quantum group in [21].

Conjecture 6.2 (S. Morita, S. Tsuji). Fix an integer N larger than 2. For any

i ∈ Z≥1, z
slN
i (M(ψ)) = 0 if ψ ∈ M(2i+1)(Σg,1) ∩ ker d.

By definition, if i = 1, the conjecture is true. Morita-Sakasai-Suzuki [28] also prove
that the conjecture is true if i = 2, 3.

We introduce an approach of the conjectures using skein algebras. Let

{M(n)
Kauffman(Σg,1)}n≥1 be a filtration of the Torelli group defined using the Kauff-

man bracket skein algebra. For any i ∈ Z≥1, we have zsl2i (M(ψ)) = 0 if ψ ∈
M(2i+1)

Kauffman(Σg,1). If M(i)(Σg,1) ∩ ker d ⊂ M(i)
Kauffman(Σg,1) for any i, the first con-

jecture is true. Let {M(n)
HOMFLY−PT(Σg,1)}n≥1 be a filtration of the Torelli group

defined using the HOMFLY-PT skein algebra. For any N and any i ∈ Z≥1, we have

zslNi (M(ψ)) = 0 if ψ ∈ M(2i+1)
HOMFLY−PT(Σg,1). We remark that M(i)(Σg,1) ∩ ker d ⊃

M(i)
HOMFLY−PT(Σg,1). If M(i)(Σg,1)∩ker d = M(i)

HOMFLY−PT(Σg,1) for any i, the second
conjecture is true for any N .
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7 Positive flow-spines and contact 3-manifolds

(Ippei Ishii, Masaharu Ishikawa, Yuya Koda, Hironobu Naoe)

In this section, M always denotes a closed, oriented, smooth 3-manifold.
A (positive) contact structure on M is a transversely orientable 2-plane field

on M , given as the kernel of a 1-form (called a contact form) α on M , where α
satisfies α ∧ dα > 0. The pair (M, ξ) is called a contact 3-manifold. Two contact
structures ξ0 and ξ1 are said to be isotopic if there exists a 1-parameter family of
contact structures connecting them. For a contact form α, the Reeb vector field Rα

is defined by dα(Rα, ·) = 0 and α(Rα) = 1. We also call Rα a Reeb vector field of
the contact structure ξ = kerα. The flow generated by Rα is called the Reeb flow
of α (or a Reeb flow of ξ). A contact structure ξ is said to be overtwisted if there
exists a disk D embedded in M such that ∂D is everywhere tangent to ξ and the
framing of D along ∂D coincides with that of ξ. Otherwise ξ is said to be tight.

A 2-dimensional polyhedron P in M is called a flow-spine if

(1) P is a spine, that is, M \ P is an open 3-ball; and

(2) there exists a non-singular flow Φ = {φt}t∈R on M such that for each point
of P , there exists a positive chart (U ;x, y, z) of M around the point such that
(U,U ∩ P ) is diffeomorphic (by an orientation-preserving diffeomorphism) to
one of the four models shown in Figure 5, where the flow Φ on U is generated
by the vector field ∂/∂z.

Further, a flow-spine P is said to be positive if P has at least one point of the model
of Figure 5 (iii) and has no point of the model of Figure 5 (iv). In the above setting,
we say that the flow Φ is carried by P . A contact structure ξ on M is said to be
supported by a flow-spine P if a Reeb flow of ξ is carried by P .

(i) (ii) (iii) (iv)

x

y
z

Figure 5: The local models of a flow-spine.

Theorem (I. Ishii, M. Ishikawa, Y.Koda, H. Naoe). The map

{positive flow-spines of M}/isotopy → {contact structures on M}/isotopy

that takes a positive flow-spine P (up to isotopy) to a contact structure ξ (up to
isotopy) whose Reeb flow is carried by P is a well-defined surjective map.
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Problem 7.1 (I. Ishii, M. Ishikawa, Y.Koda, H. Naoe). Find moves for positive
flow-spines so that the map

{positive flow-spines of M}/moves → {contact structures on M}/isotopy

induced from the surjection in the theorem is a bijection.

Apparently, an answer to the above problem completes to give a counterpart of the
famous Giroux correspondence [15]. In the Giroux correspondence, it is known that
a contact 3-manifold (M, ξ) is Stein fillable if and only if (M, ξ) admits a supporting
open book decomposition whose monodromy is a product of right-handed Dehn
twists. In particular, ξ is tight in this case.

Problem 7.2 (I. Ishii, M. Ishikawa, Y.Koda, H. Naoe). Give a criterion for the
tightness or Stein fillability of contact structures in terms of supporting positive
flow-spines.

It is known that for any non-singular flow Φ on M , there exists a flow-spine
carrying Φ. Further, by the above mentioned theorem, a certain Reeb flow of any
contact manifold (M, ξ) is carried by a positive flow-spine.

Question 7.3 (I. Ishii, M. Ishikawa, Y.Koda, H. Naoe). Is any Reeb flow of any
contact manifold (M, ξ) carried by a positive flow-spine?

A point of a flow-spine P whose neighborhood is shaped on the model (iii) in
Figure 5 is called a vertex of P . The complexity c(M, ξ) of a contact 3-manifold
(M, ξ) is defined to be the minimum number of vertices of any positive flow-spine
supporting ξ. Note that c is finite-to-one. The classification of contact 3-manifolds
of complexity up to 3 is now in progress.

Problem 7.4 (I. Ishii, M. Ishikawa, Y.Koda, H. Naoe). Classify the contact 3-
manifolds of complexity 4.

In our classification, it seems that any positive flow-spine with at most 3 vertices sup-
ports a tight contact structure. On the other hand, there exists a positive flow-spine
of S3 with 5 vertices supporting an overtwisted contact structure. It is interesting
to determine whether there is a positive flow-spine with 4 vertices supporting an
overtwisted contact structure or not.
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