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1 Cyclotomic expansions of twist knots

(Wataru Yuasa)

The colored Jones polynomial Jn(K) ∈ Z[q± 1
2 ] is a quantum invariant of knot

K obtained from the (n+1)-dimensional irreducible representation of the quantum
group of sl2. Jn(K) is normalized such that Jn(U) = {n + 1}/{1} for 0-framed
unknot U and {m} = q

m
2 − q−

m
2 .

It is known, as Habiro’s cyclotomic expansion for the colored Jones polynomials
[12], that for any 0-framed knot K, Jn(K) can be presented in the form

Jn(K)

Jn(U)
=

n−1∑
k=0

hK,k(q)C(n, k),

for some hK,k(q) ∈ Z[q± 1
2 ], where

C(n, k) =
{n− k}{n− k + 1} · · · {n+ k − 1}{n+ k}

{n+ 1}

for 0 < k < n and C(n, 0) = 1.
Chen, Liu and Zhu [4] gave conjectural formula of the cyclotomic expansion for

the quantum slN invariant with one-row colorings. Let J slN
n (K) be the quantum slN

invariant obtained from the irreducible representation corresponding to the one-row
Young diagram of n boxes.

Conjecture 1.1 (cyclotomic expansion for the J slN
n (K) invariant [4]). For any 0-

framed knot K,

J slN
n (K)

J slN
n (U)

=
n−1∑
k=0

h
(N)
K,k(q)C

(N)(n, k),

for some h
(N)
K,k(q) ∈ Z[q± 1

2 ], where

C(N)(n, k) =
{n− k + 1}{n− k + 2} · · · {n+ k +N − 1}

{n+ 1}{n+ 2} · · · {n+N − 1}

for 0 < k < n and C(N)(n, 0) = 1.

Let Kp be the twist knot with p full twist. Masbaum [25] gave the cyclotomic
expansion {hKp,k(q)}k for Kp through the linear skein theory for Kauffman bracket.
More specifically, he used the m full twist formula and a special expansion of the
twist element ω for the Kauffman bracket skein module.

Problem 1.2 (W. Yuasa). Calculate {hK,k(q)}k explicitly for other knots K, for
example, knots with small crossing number, etc.

In [35, 36], we gave m full twist formula for the A2 web with one-row coloring.

Problem 1.3 (W. Yuasa). Give the cyclotomic expansion {h(3)
Kp,k

(q)}k by using the
full twist formula for one-row colored A2 webs and Masbaum’s method.
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In [4], the volume conjecture is also formulated. Other than these conjectures,
we can consider the slope conjecture for the quantum slN invariant. In general, a
computation of the quantum slN invariant for knot K is so hard (except for very
special knots and colorings). However, we can calculate {J sl3

n (K)}n explicitly for
some knots K by using formulas for A2 webs in [35, 36].

Problem 1.4 (W. Yuasa). Calculate {J sl3
n (K)}n for some knots and formulate the

slope conjecture for the quantum slN invariant with one-row colorings.

2 Johnson-type homomorphisms of mapping class groups,
and the LMO invariant

(Anderson Vera)

Let Σ be a compact connected oriented surface of genus g with exactly one
boundary component. Denote by M the mapping class group of Σ, that is the group
of isotopy classes of orientation-preserving homeomorphisms h : Σ → Σ which are
the identity on the boundary ∂Σ of Σ.

From the 3-dimensional point of view it is natural to consider Σ as being part
of the boundary of a handlebody V of genus g, that is, we consider an embedding
ι : Σ → V as shown in Figure 1.

Figure 1: Embedding ι : Σ → V . Here ∂V = Σ ∪D, where D ⊂ ∂V is an embedded disk.

Let ∗ ∈ ∂Σ and consider the following notations:

π = π1(Σ, ∗), π′ = π1(V, ∗), A = ker(π
ι#−→ π′),

A = ker(H
ι∗−→ H ′),

H = H1(Σ;Z), H ′ = H1(V ;Z) and K2 = ker(π
ι#−→ π′ ab′−→ H ′) = A · [π, π].

The group M acts naturally on H and π. The Torelli group, denoted by I,
consists of the elements ofM acting trivially onH, that is, I = {h ∈ M | h∗ = IdH}.
We also consider the following subgroups of M. The handlebody group

H = {h ∈ M | h#(A) ⊆ A},
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the Lagrangian mapping class group

L = {h ∈ M | h∗(A) ⊆ A},

the Lagrangian Torelli group

IL = {h ∈ L | h∗|A = IdA},

and finally, the alternative Torelli group

Ia =

 for x ∈ π : h#(x)x
−1 ∈ K2

h ∈ L and for y ∈ K2 :
h#(y)y

−1 ∈ [π, [π, π]] · [A, π] =: K3

 .

The group Ia can be defined as the subgroup of M, generated by Dehn twists tγ
about curves γ on Σ which are homologically trivial in V . The above subgroups play
an important role in the study of homology 3-spheres and the theory of finite-type
invariants.

It can be shown (for genus enough large) that the groups IL and Ia are finitely
generated (see [32, Remark 4.15]).

Problem 2.1 (A. Vera). Find an explicit set of generators for IL and Ia as it is
known for I.

From Johnson [17] and Morita [27] works we can consider a stepwise approxi-
mation of the action of M on π by considering the action of M on the nilpotent
quotients π/Γm+1π for m ≥ 1, where {Γmπ}m≥1 is the lower central series of π
(i.e. Γ1π = π and Γm+1π = [π,Γmπ] for m ≥ 1). This gives rise to the so-called
Johnson filtration

I = J1M ⊇ J2M ⊇ J3M· · ·
where JmM consists of the elements in M acting trivially on π/Γm+1π. Each one
of the terms JmM of the Johnson filtration comes equipped with a group homo-
morphism τm : JmM → Dm(H) such that ker(τm) = Jm+1M, and taking values in
a particular abelian group Dm(H) which can be described in terms of H.

Similar filtrations and homomorphisms were introduced for the groups IL and
Ia. We refer to them as Johnson-type filtrations and Johnson-type homomorphisms.
Let us review and state some problems about them.

Levine [23, 24] introduced a filtration for IL, which we call Johnson-Levine fil-
tration,

IL = JL
1 M ⊇ JL

2 M ⊇ JL
3 M· · ·

by using the lower central series {Γmπ
′}m≥1 of π′, more precisely we have

JL
mM = {h ∈ IL | ι#h#(A) ⊆ Γm+1π

′}

form ≥ 1. Levine also introduced a family of homomorphisms τLm : JL
mM → Dm(H

′)
such that ker(τLm) = JL

m+1M.
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Conjecture 2.2 (Levine [24]). For every m ≥ 1,we have JL
mM = JmM· (H∩IL).

Levine showed this conjecture for m ∈ {1, 2}.

Problem 2.3 (A. Vera). Prove or disprove that [JL
l M, JL

mM] ⊆ JL
l+mM for all

l,m ≥ 1.

In the case that this property holds, it would be interesting to study the so-called
Andreadakis problem for IL, that is, the comparison between the lower central of
IL and the Johnson-Levine filtration.

Besides, Habiro and Massuyeau [13] introduced a filtration for Ia, which we call
alternative Johnson filtration,

Ia = Ja
1M ⊇ Ja

2M ⊇ Ja
3M· · ·

by using a different decreasing sequence {Km}m≥1 of subgroups of π. This sequence
is defined by

K1 = π, K2 = [π, π] · A and Km = [K1, Km−1] · [K2, Km−1] for m ≥ 2.

The m-the term of the alternative Johnson filtration is given by

Ja
mM =

 for x ∈ π : h#(x)x
−1 ∈ K1+m

h ∈ L and for y ∈ K2 :
h#(y)y

−1 ∈ K2+m


for m ≥ 1. Habiro and Massuyeau also introduced the respective family of Johnson-
type homomorphisms τ am : Ja

mM → Dm(H
′, A) such that ker(τ am) = Ja

m+1M, to
which we refer as alternative Johnson homomorphisms. In this case the abelian
group Dm(H

′, A) can be described by using H ′ and A.

The alternative Johnson filtration satisfies [Ja
l M, Ja

mM] ⊆ Ja
l+mM for all l,m ≥

1.

Problem 2.4 (A. Vera). Compare between the lower central series of Ia and the
alternative Johnson filtration.

It is known that the first Johnson homomorphism τ1 appears in the computation
of H1(I;Z), in particular it gives all the non-torsion part [18]. This is also the case
for τL1 and H1(IL;Z), see [30].

Problem 2.5 (A. Vera). Determine H1(Ia;Z), or more particularly, determine
whether τ a1 gives the non-torsion part of H1(Ia;Z).

Morita refined the Johnson homomorphisms by defining the so-called Morita
homomorphisms [28]. Since the Johnson filtration and the alternative Johnson fil-
tration have similar properties, it seems plausible the existence of a refinement of the
alternative Johnson homomorphisms. The following problem consists in the defini-
tion of such “alternative” version of the Morita homomorphisms for the alternative
Johnson filtration.
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Problem 2.6 (A. Vera). If such homomorphisms exist, study their relation with the
functorial extension of the Le-Murakami-Ohtsuki invariant following the lines of the
previous works [5, 26, 31, 32].

3 Equivalence of some ribbon 2-knots with isomorphic knot
groups

(Taizo Kanenobu)2

This problem has already given in [22, Question 7.1]. Let Y43 and Y46 be ribbon
2-knots with handlebody presentations as in Figure 2, which are given in Yasuda
[34].

Problem 3.1 (T. Kanenobu, T. Sumi [22, Question 7.1]). Decide whether Y43 and
Y46 are equivalent or not.

D
1

D
1

D
3

D
3

D
2

D
2

Figure 2: Handlebody presentations of Y43 and Y46.

They have isomorphic knot groups. From Figure 2 we have

G(Y43) = ⟨ x, y, z | x(yx) = (yx)y, x(zy) = (zy)z ⟩,
G(Y46) = ⟨ x, y, z | x(yx) = (yx)y, x(z−1y−1) = (z−1y−1)z ⟩.

We can deform them into ribbon 2-knots of 1-fusion:

Y43 ≈ R(−1,−1, 1, 1, 1, 1,−1,−1),

Y46 ≈ R(1, 1, 1,−1,−1, 1, 1, 1),

which shows that they are positive-amphicheiral. So, from the mirror image of the
handlebody presentation of Y46 we obtain:

G(Y46) = G(Y46!) = ⟨ x, y, z | x(y−1x−1) = (y−1x−1)y, x(zy) = (zy)z ⟩.

The first relation is the same as xyx = yxy, and so G(Y43) = G(Y46).

2Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
kanenobu@sci.osaka-cu.ac.jp
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4 A geography problem for triangulated tori

(Tamás Kálmán)

In my talk I discuss “trinities” (vertex-three-colorable triangulations) and “Tutte
matchings” in two contexts, namely the sphere and the torus. Please refer to [15]
or to the talk for the precise definitions.

On the sphere, Tutte matchings generalize Kauffman states. With C. Hine, we
proved that Kauffman’s Clock Theorem also has a natural generalization. One
wonders if other related phenomena, such as the Duality Conjecture (later proved
by Gilmer and Litherland) and, of course, state polynomials, have analogues in the
context of trinities.

Since I do not have actual conjectures regarding the above, let me ask a concrete
question that has to do with toric trinities. For now this is just a combinatorial
problem with a topological flavor. On the torus, Tutte matchings are not always
related by “triangle moves.” In other words, the “state transition graph” is usually
disconnected. Its connected components come in two types, acyclic and cyclic. The
following question is open and my answer to it is just a guess.

Conjecture 4.1 (T. Kálmán). Every toric trinity has both cyclic and acyclic com-
ponents in its state transition graph.

For example, the simplest toric trinity, shown in Figure 3, has six states. Three
of them form a cyclic component of the state transition graph, and the other three
are isolated points, which count as acyclic components.

Figure 3

In fact, I suspect that a lot more can be said if we use the group H1(T
2) ∼= Z2

to establish more structure. For that, let us place a vertex w in each white triangle
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and represent our Tutte matchings σ by directing a segment from all w to the vertex
of the triangle that it is matched to. (I.e., we only keep the last one-third of each
arrow that we previously used to represent matches.) Let us denote this 1-chain
with Cσ.

Then, for any two Tutte matchings σ and τ , we have a 1-cycle Cσ − Cτ , whose
homology class is denoted with σ − τ ∈ H1(T

2). If two Tutte matchings differ by a
single triangle move, then their difference in H1(T

2) is 0. In particular, there exist
well-defined differences, as elements of H1(T

2), between connected components of
the state transition graph.

For instance, if we plot the four connected components of our example above,
we see (on the right side of Figure 3) that the isolated points form a triangle and
the cyclic component corresponds to the unique interior lattice point of the triangle.
From this and other examples, the following question emerges.

Question 4.2 (T. Kálmán). Is it true that for each toric trinity, there exists a con-
vex lattice polygon whose boundary lattice points correspond to acyclic components
of the state transition graph, while the interior lattice points correspond to cyclic
components?

If so, what does the area of the polygon represent? Do all lattice polygons arise
from toric trinites, or only some special ones? What can be said about the number
and size of the connected components that correspond to each lattice point — is
that related to the geometry of the polygon?

For a slightly larger example, the toric trinity shown in Figure 4 has 860 Tutte
matchings. It is not hard to find acyclic components (in fact, isolated points) at the
lattice points indicated in orange. I can also construct cyclic components at the two
purple lattice points shown. I have not yet determined whether components (and of
which type) exist at the remaining two interior lattice points, or at any other lattice
points of the plane.

?

?

Figure 4
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5 On quantum representation of knots via braided Hopf
algebra

(Jun Murakami)

This joint work with Roland van der Veen [29] is motivated by the work of Inoue-
Kabaya [16] which gives a way to get the complex volume of the knot complement
from the conjugate quandle corresponding to the PSL(2,C) representation of the
knot group. It is shown in [6] and [7] that the above Inoue-Kabaya theory relates
to the volume potential function of the Kashaev invariant and the colored Jones
invariant. The volume potential function is a kind of a limit of such quantum
invariants, which is obtained by replacing quantum factorial with the dilogarithm
function, and contains information about the A-polynomial.

We just constructed q-analogue of the quandle construction of PSL(2,C) repre-
sentation, and there are many problems to construct q-analogues of things relating
PSL(2,C) representations. Among them, I would like to propose the following prob-
lems.

Problem 5.1 (J. Murakami). Find some relation to the representations given by
Hikami-Inoue [14] which uses the quantum dilogarithm function, and then construct
a q-analogue of the volume potential function.

Problem 5.2 (J. Murakami). Here we constructed a q-analogue of the representa-
tion space. Refine it to a q-analogue of the character variety.

Problem 5.3 (J. Murakami). By introducing an element in the representation space
corresponding to the longitude, construct a q-analogue of the A-polynomial and in-
vestigate its relation to the AJ-conjecture [8].

If we can construct the above three objects, they must relate naturally.

6 On the Strong Slope Conjecture for knots

(Kimihiko Motegi)3

Jones slopes and Jones surfaces

Let K be a knot in the 3–sphere S3. The colored Jones function of K is a sequence

of Laurent polynomials JK,n(q) ∈ Z[q± 1
2 ] for n ∈ N, where J⃝,n(q) =

qn/2−q−n/2

q1/2−q−1/2 for

the unknot ⃝ and
JK,2(q)

J⃝,2(q)
is the ordinary Jones polynomial of K. Since the colored

Jones function is q–holonomic [11, Theorem 1], the degrees of its terms are given by
quadratic quasi-polynomials for suitably large n [10, Theorem 1.1 & Remark 1.1].
For the maximum degree d+[JK,n(q)], we set its quadratic quasi-polynomial to be

δK(n) = a(n)n2 + b(n)n+ c(n)
3Department of Mathematics, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156–8550, Japan
motegi.kimihiko@nihon-u.ac.jp
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for rational valued periodic functions a(n), b(n), c(n) with integral period, i.e.,
d+[JK,n(q)] = δK(n) when n ≥ n0 for some large integer n0. We call 4a(n) a Jones
slope. A number p/q ∈ Q ∪ {∞} is a boundary slope of a knot K if there exists
an essential surface in the knot exterior E(K) = S3 − intN(K) with a boundary
component representing p[µ] + q[λ] ∈ H1(∂E(K)) with respect to the standard
meridian µ and longitude λ. Garoufalidis conjectures

Conjecture 6.1 (Slope Conjecture [9]). For any knot K in S3, every Jones slope
is a boundary slope.

Garoufalidis’ Slope Conjecture concerns only the quadratic terms of δK(n). Kalfa-
gianni and Tran propose the Strong Slope Conjecture which subsumes the Slope
Conjecture and asserts that the topology of the surfaces whose boundary slopes are
Jones slopes may be predicted by the linear terms of δK(n).

Conjecture 6.2 (The Strong Slope Conjecture [21, 19]). Let K be a knot in
S3. For any Jones slope p/q there exists an essential surface Fn ⊂ E(K) such that

Fn has boundary slope p/q = 4a(n) and
χ(Fn)

|∂Fn|q
= 2b(n) for some n ∈ N.

We call Fn a Jones surface.

Question 6.3 (Selection principle).
(1) (Garoufalidis [9]) Which boundary slope can be a Jones slope?
(2) (Kalfagianni-Lee [20]) Which essential surface can be a Jones surface?

Previously known example has a single Jones slope. So it may be plausible to
ask

Question 6.4 ([20, Question 3.7]). Is a(n) constant?

The max-degree of colored Jones polynomials

In general d+[JK,n(q)] forms a quadratic quasi-polynomial δK(n) when n ≥ n0 for
some large integer n0. We call {n | n ≥ n0} the stable range of d+[JK,n(q)], and
{n | 1 ≤ n < n0} the unstable range of d+[JK,n(q)]. An existence of an unstable
range bothers us. In [2, Section 3.3] we construct concrete examples of cabled knots
K for which d+[JK,n(q)] has an unstable range. Moreover this unstable range can
be arbitrarily large.

Since our construction uses cabling, and noting that d+ = δ for torus knots, it is
natural to wonder if any hyperbolic knot exhibits this behavior.

Question 6.5 (K. L. Baker, K. Motegi, T. Takata). For every hyperbolic knot K,
does d+[JK,n(q)] = δK(n) for all integers n ≥ 1?

In our example, even when an unstable range exists, d+[JK,n(q)] forms another
quadratic (quasi-)polynomial in this unstable range. So we would like to ask

Question 6.6 (K. L. Baker, K. Motegi, T. Takata). Even when d+[JK,n(q)] = δK(n)
only for n ≥ n0, is d+[JK,n(q)] another quadratic quasi-polynomial for n < n0 as
well?
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Sign Condition

An existence of an unstable range of d+[JK,n(q)] causes a difficulty to determine the
maximum degree of the colored Jones polynomial of knots obtained by cablings and
Whitehead doubles.

To avoid this difficulty we introduced a rather strong condition, the Sign Condi-
tion, which requires that the sign εn(K) of the coefficient of the term of the maximum
degree of JK,n(q) satisfies εm(K) = εn(K) for m ≡ n mod 2.

In [1] we show that torus knots, B-adequate knots and knots obtained from
theses knots by cablings, Whitehead doublings and connected sums satisfy the Sign
Condition, and we asked if every knot satisfies the Sign Condition.

However, a computer experiments suggest that the knots 820, 943, and 944 do not
satisfy the Sign Condition. The following table gives the sign εn(K) for K = 820,
943, 944 and 1 ≤ n ≤ 6.

K ε1(K) ε2(K) ε3(K) ε4(K) ε5(K) ε6(K)

820 − − + − − +

943 − + + − + +

944 + − − − + +

We computed the colored Jones polynomials for these knots using Mathematica
package KnotTheory‘ and its program ColouredJones [3, 33] in order to determine
the signs εn(K). In the above examples all knots have δK(n) with period 3. It may
be reasonable to ask:

Question 6.7 (K. L. Baker, K. Motegi, T. Takata). Let K be a knot such that
δK(n) has period ≤ 2. Then does K satisfy the Sign Condition?
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