Global properties of solutions to the Einstein-Boltzmann system with Bianchi I symmetry

Ho Lee

Department of Mathematics Kyung Hee University, Seoul

Dynamical Systems in Mathematical Physics Seminar at the RIMS of Kyoto University, Kyoto

Overview

Matter is distributed in the universe, and the universe evolves in time.

▷ Einstein's equations.

The universe is assumed to be homogeneous, and let us consider the Bianchi I symmetry, which is a generalization of the RW model, which is a homogeneous and isotropic universe.

Matter also evolves in time, and we use a kinetic equation to describe it. A lot of progress for the Einstein-Vlasov case, i.e. collisionless Boltzmann case, but not much for the Einstein-Boltzmann case.

▷ The Einstein-Boltzmann system with Bianchi I symmetry.

Result: if the universe is almost isotropic initially and initial data for the Boltzmann equation is sufficiently small, then we obtain global existence and asymptotic behavior of solutions.

Known : Vlasov + Bianchi I, [Nungesser, 10]

- Known : Boltzmann + RW, [L, 13]
- Result : Boltzmann + Bianchi I

Introduction

Boltzmann equation

$$\partial_t f + v \cdot \nabla_x f + F \cdot \nabla_v f = Q(f, f)$$

- \triangleright Matter = collection of particles.
- \triangleright Distribution function, f = f(t, x, v), density of particles, f(t, x, v) dx dv.
- \triangleright Time t > 0, position $x \in \mathbb{R}^3$, velocity $v \in \mathbb{R}^3$.
- > Particles collide.
- \triangleright Two particles with velocities v and v_* :

$$(v, v_*) \leftrightarrow (v', v'_*).$$

Energy and momentum conservations

$$v' + v'_* = v + v_*, \quad |v'|^2 + |v'_*|^2 = |v|^2 + |v_*|^2.$$

One parametrization

$$v' = v - ((v - v_*) \cdot \omega) \omega, \quad v'_* = v_* + ((v - v_*) \cdot \omega) \omega, \quad \omega \in \mathbb{S}^2.$$

> Nonrelativistic case.

> Another representation

$$v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma, \quad v'_* = \frac{v + v_*}{2} - \frac{|v - v_*|}{2}\sigma, \quad \sigma \in \mathbb{S}^2.$$

Ho Lee (Kyung Hee University)

▷ Boltzmann equation:

$$\partial_t f + v \cdot \nabla_x f = Q(f, f)$$

=
$$\int_{\mathbb{R}^3} \int_{\mathbb{S}^2} B(|v - v_*|, \sigma) (f(v')f(v'_*) - f(v)f(v_*)) \, d\sigma \, dv_*.$$

 \triangleright Collision kernel *B* depends on physics.

Special relativity

> We want to consider fast moving particles.

> Space and time merge into the concept of spacetime,

$$(t, x, y, z) = (x^0, x^1, x^2, x^3) = x^{\alpha} \in M.$$

▷ A manifold with the Minkowski metric $\eta_{\alpha\beta} = \text{diag}(-1, 1, 1, 1)$. ▷ Four-dimensional vectors $v^{\alpha} \in T_x M$ are measured by

$$\eta_{\alpha\beta}v^{\alpha}v^{\beta} = v_{\alpha}v^{\alpha} = -(v^{0})^{2} + (v^{1})^{2} + (v^{2})^{2} + (v^{3})^{2}.$$

 \triangleright Speed of light c = 1.

CONSTRUCTION OF MINKOWSKI'S SPACETIME DIAGRAM

http://www.twow.net/ObjText/OtkCaLbStrB.htm

 \triangleright A worldline $x^{\alpha} = x^{\alpha}(\tau)$ with the proper time τ .

http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/spacetime/

Introduction

⊳ Four-velocity:

$$v^{\alpha} = \frac{dx^{\alpha}}{d\tau}, \quad v_{\alpha}v^{\alpha} = -1.$$

 \triangleright Four-momentum $p^{\alpha} = mv^{\alpha}$ (we assume m = 1, so $p^{\alpha} = v^{\alpha}$).

▷ Mass shell condition.

 \triangleright Four-momentum $p^{\alpha} \in P_x := T_x M \cap \{p_{\alpha} p^{\alpha} = -1\}.$

Special relativistic Boltzmann equation

 \triangleright Distribution function, $f(x^{\alpha}, p^{\alpha})$.

 \triangleright Spacetime variable $x^{\alpha} \in M$ and four-momentum $p^{\alpha} \in P_x$.

Mass shell condition implies

$$p^{0} = p^{0}(p) = \sqrt{1 + |p|^{2}}.$$

 \triangleright Distribution function, f = f(t, x, p).

 \triangleright Two colliding particles with momenta p^{α} and q^{α} :

$$(p^{\alpha}, q^{\alpha}) \leftrightarrow (p'^{\alpha}, q'^{\alpha}).$$

> Energy-momentum conservations and the mass shell conditions:

$$p'^{\alpha} + q'^{\alpha} = p^{\alpha} + q^{\alpha}, \quad p'_{\alpha}p'^{\alpha} = -1, \quad q'_{\alpha}q'^{\alpha} = -1.$$

▷ [Glassey-Strauss, 93], [Strain, 10], [Guo-Strain, 12], etc.

http://de.wikipedia.org/wiki/Hyperboloid

Einstein-Boltzmann with Bianchi I

Lorentzian metric

Black hole

http://plato.stanford.edu/entries/spacetime-singularities/

A cosmological model

Space-time diagram: normal distance & time

https: //telescoper.wordpress.com/2015/01/05/faster-than-the-speed-of-light/

Ho Lee (Kyung Hee University)

Expanding universe

http://www.physicsoftheuniverse.com/topics_bigbang_expanding.html

Vlasov equation with Bianchi symmetry

 \triangleright A metric ${}^{4}g = g_{\alpha\beta}dx^{\alpha}dx^{\beta}$ is given,

$$\frac{\partial f}{\partial t} - \Gamma^a{}_{\beta\gamma} \frac{p^\beta p^\gamma}{p^0} \frac{\partial f}{\partial p^a} = 0,$$

(cf. geodesic equations: $\dot{x}^{\alpha} = p^{\alpha}$ and $\dot{p}^{\alpha} = -\Gamma^{\alpha}{}_{\beta\gamma}p^{\beta}p^{\gamma}$). \triangleright Mass shell condition: $p_{\alpha}p^{\alpha} = -1$. \triangleright A basis $\{e_{a}\}$ is given such that $[e_{\alpha}, e_{\beta}] = \eta^{\gamma}{}_{\alpha\beta}e_{\gamma}$ and $\nabla_{e_{\beta}}e_{\alpha} = \Gamma^{\gamma}{}_{\alpha\beta}e_{\gamma}$,

$$\Gamma^{\alpha}{}_{\beta\gamma} = \frac{1}{2}g^{\alpha\xi} \Big(e_{\beta}(g_{\xi\gamma}) + e_{\gamma}(g_{\beta\xi}) - e_{\xi}(g_{\gamma\beta}) + \eta^{\delta}{}_{\gamma\beta}g_{\xi\delta} + \eta^{\delta}{}_{\xi\gamma}g_{\beta\delta} - \eta^{\delta}{}_{\beta\xi}g_{\gamma\delta} \Big),$$

which is called Koszul's formula.

 \triangleright A coordinate basis $\{\partial_{\alpha}\}$, i.e. $[\partial_{\alpha}, \partial_{\beta}] = 0$,

$$\Gamma^{\alpha}{}_{\beta\gamma} = \frac{1}{2}g^{\alpha\xi} \Big(\partial_{\beta}(g_{\xi\gamma}) + \partial_{\gamma}(g_{\beta\xi}) - \partial_{\xi}(g_{\gamma\beta})\Big),$$

which is the usual Chirstoffel symbols.

- \triangleright The metric is assumed to be ${}^4g = -dt^2 + g$ with $g = g_{ab}(t)dx^a dx^b$.
- \triangleright An n-dimensional manifold M is given.
- \triangleright Isometry group G_r of dimension r.
- \triangleright Transformation generated by a vector field V with $L_V g = 0$,

$$r \le \frac{1}{2}n(n+1).$$

- ▷ Isotropy group of dimension $d = r n \le \frac{1}{2}n(n-1)$, (cf. translations and rotations in \mathbb{R}^3).
- ▷ Bianchi spacetime: d = 0. ▷ Killing vector fields with basis $\{e_a\}$

$$[e_a, e_b] = C^c{}_{ab}e_c,$$

where $C^{c}{}_{ab}$ are called the structure constants.

The Vlasov equation with Bianchi symmetry:

$$\frac{\partial f}{\partial t} - g^{ad} \left((p^0)^{-1} C^e{}_{dc} p^c p_e + \dot{g}_{bd} p^b \right) \frac{\partial f}{\partial p^a} = 0.$$

 \triangleright In covariant momenta $p_a = g_{ab}p^b$,

$$\frac{\partial f}{\partial t} - (p^0)^{-1} C^e{}_{ac} p^c p_e \frac{\partial f}{\partial p_a} = 0.$$

▷ Energy-momentum tensor

$$T_{\alpha\beta} = \int_{\mathbb{R}^3} f(t,p) \frac{p_\alpha p_\beta}{-p_0} |\det {}^4g|^{\frac{1}{2}} dp.$$

▷ We only need

$$\rho := T^{00} = (\det g)^{-\frac{1}{2}} \int_{\mathbb{R}^3} f(t, p_*) (1 + g^{cd} p_c p_d)^{\frac{1}{2}} dp_*,$$

$$S_{ab} := T_{ab} = (\det g)^{-\frac{1}{2}} \int_{\mathbb{R}^3} f(t, p_*) p_a p_b (1 + g^{cd} p_c p_d)^{-\frac{1}{2}} dp_*,$$

where $p = (p^1, p^2, p^3)$ and $p_* = (p_1, p_2, p_3)$.

Einstein-Vlasov system with Bianchi symmetry

Einstein's equations in covariant form

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta}.$$

Einstein's equations in 3+1 form

$$\partial_t g_{ab} = -2k_{ab}, \partial_t k_{ab} = R_{ab} + (g^{cd}k_{cd})k_{ab} - 2(g^{cd}k_{bd})k_{ac} - 8\pi S_{ab} + 4\pi g_{ab}(S-\rho)$$

with constraint equations

$$R - k^{ij}k_{ij} + k^2 = 16\pi\rho,$$

$$\nabla^i k_{ij} = 8\pi T_{0j}.$$

▷ [Rendall, 94], [Hayoung Lee, 04], rotationally symmetry, reflection symmetry, [Nungesser, 10, 12], [Nungesser-Andersson-Bose-Coley, 14], [L, 13].

> The present work is a joint work with Nungesser.

Einstein-Vlasov with Bianchi I symmetry

▷ Bianchi I symmetry: the structure constants $C^c{}_{ab} = 0$. ▷ The Vlasov equation reduces to

$$\frac{\partial f}{\partial t} + 2k_b^a p^b \frac{\partial f}{\partial p^a} = 0 \quad \text{or} \quad \frac{\partial f}{\partial t} = 0.$$

The Einstein equations reduce to

$$\partial_t g_{ab} = -2k_{ab},$$

 $\partial_t k_{ab} = (g^{cd}k_{cd})k_{ab} - 2(g^{cd}k_{bd})k_{ac} - 8\pi S_{ab} + 4\pi g_{ab}(S-\rho).$

The matter terms

$$\rho = (\det g)^{-\frac{1}{2}} \int_{\mathbb{R}^3} f(t, p_*) (1 + g^{cd} p_c p_d)^{\frac{1}{2}} dp_*,$$

$$S_{ab} = (\det g)^{-\frac{1}{2}} \int_{\mathbb{R}^3} f(t, p_*) p_a p_b (1 + g^{cd} p_c p_d)^{-\frac{1}{2}} dp_*.$$

 \triangleright Solutions tend to the Einstein-de Sitter model, i.e. $-dt^2 + t^{\frac{4}{3}}(dx^2 + dy^2 + dz^2)$.

Einstein-Boltzmann with Bianchi I symmetry

> The Boltzmann equation will be

$$\frac{\partial f}{\partial t} + 2k^a_b p^b \frac{\partial f}{\partial p^a} = Q(f,f) \quad \text{or} \quad \frac{\partial f}{\partial t} = Q(f,f).$$

 \triangleright Representation of a momentum $p \in T_x M$:

$$p = p^a \mathbf{E}_a = \hat{p}^a \mathbf{e}_a,$$

where $\{\mathbf{E}_a\}$ is the given basis and $\{\mathbf{e}_a\}$ an orthonormal basis such that $g(\mathbf{E}_a, \mathbf{E}_b) = g_{ab}$ and $g(\mathbf{e}_a, \mathbf{e}_b) = \eta_{ab}$.

> The Boltzmann equation in an orthonormal frame

$$\frac{\partial \hat{f}}{\partial t} + \hat{k}^a_b \hat{p}^b \frac{\partial \hat{f}}{\partial \hat{p}^a} = Q(\hat{f}, \hat{f}),$$

where $\mathbf{e}_a = e_a^b \mathbf{E}_b$, $p^a = e_b^a \hat{p}^b$ and $\hat{k}_{ab} = e_a^c e_b^d k_{cd}$.

> Orthonormal frame

http://math.etsu.edu/multicalc/prealpha/Chap3/Chap3-6/part3.htm

Roughly speaking ..

http://astro.physics.sc.edu/selfpacedunits/Unit57.html

Ho Lee (Kyung Hee University)

> The Boltzmann equation: in Strain's framework [Strain, 10],

$$\frac{\partial f}{\partial t} = (\det g)^{-\frac{1}{2}} \iint v_M \sigma(h,\theta) \Big(f(p'_*) f(q'_*) - f(p_*) f(q_*) \Big) d\omega dq_*,$$

and parametrization of post-collision momenta

$$\begin{pmatrix} p'^0 \\ p'_i \end{pmatrix} = \begin{pmatrix} \frac{p^0 + q^0}{2} + \frac{h}{2} \frac{n_i e_j^i \omega^j}{\sqrt{s}} \\ \frac{p_i + q_i}{2} + \frac{h}{2} \left(g_{ij} e_k^j \omega^k + \left(\frac{n^0}{\sqrt{s}} - 1 \right) \frac{n_j e_k^j \omega^k n_i}{g^{ab} n_a n_b} \end{pmatrix} \end{pmatrix},$$

where $h^2 = (p_{\alpha} - q_{\alpha})(p^{\alpha} - q^{\alpha})$, $s = -n_{\alpha}n^{\alpha}$ and $n^{\alpha} = p^{\alpha} + q^{\alpha}$.

▷ The Boltzmann equation in the framework of [Glassey-Strauss, 93]:

$$\frac{\partial f}{\partial t} = (\det g)^{-\frac{1}{2}} \iint \frac{v_M \sqrt{s} (n^0)^2 \sigma(h, \theta)}{((n^0)^2 - (n_a e_b^a \xi^b)^2)^{3/2}} \Big(f(p'_*) f(q'_*) - f(p_*) f(q_*) \Big) d\xi dq_*,$$

and parametrization of post-collision momenta

$$\left(\begin{array}{c} p'^{0} \\ p'^{0} \\ p'_{i} \end{array} \right) = \left(\begin{array}{c} \frac{p^{0} + q^{0}}{2} + \frac{h}{2} \frac{n_{i}\xi_{j}^{i}\omega^{j}}{\sqrt{(n^{0})^{2} - (n_{i}e_{j}^{i}\xi^{j})^{2}}} \\ \frac{p_{i} + q_{i}}{2} + \frac{h}{2} \frac{n^{0}g_{ij}e_{k}^{j}\xi^{k}}{\sqrt{(n^{0})^{2} - (n_{i}e_{j}^{i}\xi^{j})^{2}}} \end{array} \right)$$

> Differentiability for the relativistic Boltzmann equation [Guo-Strain, 12].

> We have the Einstein-Boltzmann system with Bianchi I symmetry.

.

Results

Einstein's equations for given matter terms

Einstein's equations

$$\partial_t g_{ab} = -2k_{ab}, \partial_t k_{ab} = (g^{cd}k_{cd})k_{ab} - 2(g^{cd}k_{bd})k_{ac} - 8\pi S_{ab} + 4\pi g_{ab}(S-\rho).$$

- $\triangleright \text{ Assume that } f(t,p) = \hat{f}(t,\hat{p}) \leq \varepsilon \exp(t^{-\frac{5}{4}}|\hat{p}|^2) \text{ and } C^1.$
- ▷ Local existence by [Rendall, 94].
- ▷ Global-in-time existence by [Rendall, 94].
- > Asymptotic behavior by [Nungesser, 10] such that

$$g_{ab}(t) = t^{\frac{4}{3}} \bar{g}_{ab}(t)$$
 and $\bar{g}_{ab}(t) = G_{ab} + O(\varepsilon t^{-1}),$

assuming smallness and using bootstrap argument.

⊳ Decompose

$$k_{ab} = \sigma_{ab} - Hg_{ab}, \quad H = -\frac{1}{3}k, \quad k = g^{ab}k_{ab},$$

where *H* is called the Hubble variable and *k* the mean curvature. \triangleright Assume that σ_{ab} the trace free part is small in the sense that

$$F := \frac{1}{4H^2} \sigma_{ab} \sigma^{ab}.$$

▷ In the Robertson-Walker case, i.e. $g_{ab} = R^2(t)\eta_{ab}$, we have $\sigma_{ab} = 0$. ▷ Without smallness we have

$$\frac{1}{3t} \le H(t) \le \frac{2}{3t}.$$

Assuming smallness we have

$$\frac{2}{3t(1+\varepsilon t^{-1})} \le H(t) \le \frac{2}{3t}.$$

 \triangleright In the Robertson-Walker case, $H(t)=\frac{2}{3}t^{-1}.$

▷ Bootstrap argument: $F(t) \le \varepsilon (1+t)^{-\frac{3}{2}} \Longrightarrow F(t) \le \varepsilon (1+t)^{-2+\varepsilon}$. ▷ Equation for *F*:

$$\dot{F} = -3H\left(1 - \frac{2}{3}F - \frac{8\pi S}{9H^2} - \frac{4\pi S_{ab}\sigma^{ab}}{3H^3F}\right)F \sim -2t^{-1}F.$$

▷ We eventually obtain $F \sim \varepsilon t^{-2}$. ▷ Equation for \bar{q}_{ab} :

$$\dot{\bar{g}}_{ab} = 2\left(H - \frac{2}{3}t^{-1}\right)\bar{g}_{ab} - 2t^{-\frac{4}{3}}\sigma_{ab},$$

and note that $(H - \frac{2}{3}t^{-1})$ is integrable. \triangleright We eventually obtain $|\bar{g}_{ab}| \leq C$ and

$$g_{ab}(t) = t^{\frac{4}{3}} \left(G_{ab} + O(\varepsilon t^{-1}) \right),$$

together with $F(t) \leq CF(t_0)t^{-2}$ and $H(t) = \frac{2}{3}t^{-1}(1+O(\varepsilon t^{-1})).$

The Boltzmann equation in a given spacetime

The Boltzmann equation

$$\frac{\partial f}{\partial t} = (\det g)^{-\frac{1}{2}} \iint v_M \sigma(h,\theta) \Big(f(p'_*) f(q'_*) - f(p_*) f(q_*) \Big) d\omega dq_*,$$

▷ Consider first the Robertson-Walker case, i.e. $-dt^2 + R^2(dx^2 + dy^2 + dz^2)$. ▷ Take weight function $e^{|p_*|^2}$ and multiply this to the equation

$$\frac{\partial (e^{|p_*|^2} f(t, p_*))}{\partial t} = R^{-3} \iint \cdots$$
$$\cdots \left(e^{|p'_*|^2} f(p'_*) e^{|q'_*|^2} f(q'_*) - e^{|p_*|^2} f(p_*) e^{|q_*|^2} f(q_*) \right) e^{-|q_*|^2} d\omega dq_*,$$

if we have an identity $|p'_*|^2 + |q'_*|^2 = |p_*|^2 + |q_*|^2$. \triangleright In the end,

$$\frac{d}{dt}\|f(t)\| \leq CR^{-3}\|f(t)\|^2 \quad \text{and} \quad \|f(t)\| \leq \|f(0)\| + C\|f(t)\|^2,$$

if R^{-3} is integrable.

> The post-collision momentum:

$$\begin{split} p_i' &= \frac{p_i + q_i}{2} + \frac{h}{2} \frac{n^0 g_{ij} e_k^j \xi^k}{\sqrt{(n^0)^2 - (n_i e_j^i \xi^j)^2}} = \frac{p_i + q_i}{2} + \frac{Rh}{2} \frac{n^0 \xi_i}{\sqrt{(n^0)^2 - R^{-2} (n \cdot \xi)^2}},\\ Rh &= |p_* - q_*| \sqrt{1 - \frac{|p_* + q_*|^2 \cos^2 \theta_0}{R^2 (p^0 + q^0)^2}}. \end{split}$$

 $\triangleright \mbox{ If } \lim_{t \to \infty} R(t) = \infty,$ we have

$$p'_* \to \frac{p_* + q_*}{2} + \frac{|p_* - q_*|}{2} \xi \quad \text{and} \quad q'_* \to \frac{p_* + q_*}{2} - \frac{|p_* - q_*|}{2} \xi,$$

which is the parametrization of the nonrelativistic case. In other words, at late times the post-collision momenta with lower indices behave like in the nonrelativistic case. Hence, we will eventually have $|p'_*|^2 + |q'_*|^2 = |p_*|^2 + |q_*|^2$.

> We obtain a small solution such that

$$f(t,p_*) \leq \varepsilon \exp(-|p_*|^2) \quad \text{or} \quad \hat{f}(t,\hat{p}) \leq \varepsilon \exp(-R^2|\hat{p}|^2).$$

 \triangleright In the Bianchi I case we may choose $\exp(ar{g}^{ab}p_ap_b)$ to get

$$\hat{f}(t,\hat{p}) \leq \varepsilon \exp(-t^{\frac{4}{3}}|\hat{p}|^2) \Big(= \varepsilon \exp(-\bar{g}^{ab}p_a p_b) \Big).$$

 \triangleright For a small ε such that $\frac{d}{dt} \left[t^{-\varepsilon} \bar{g}^{ab}(t) \right] \leq 0$, we have

$$\hat{f}(t,\hat{p}) \le \varepsilon \exp(-t^{\frac{4}{3}-\varepsilon}|\hat{p}|^2) \Big(= \varepsilon \exp(-t^{-\varepsilon}\bar{g}^{ab}p_ap_b) \Big).$$

▷ Differentiability of solutions: [Guo-Strain, 12].

Thank you very much.