Global properties of solutions to the Einstein-Boltzmann system with Bianchi I symmetry

Ho Lee

Department of Mathematics
Kyung Hee University, Seoul

Dynamical Systems in Mathematical Physics
Seminar at the RIMS of Kyoto University, Kyoto
Overview
Matter is distributed in the universe, and the universe evolves in time.

- Einstein’s equations.

The universe is assumed to be homogeneous, and let us consider the Bianchi I symmetry, which is a generalization of the RW model, which is a homogeneous and isotropic universe.

Matter also evolves in time, and we use a kinetic equation to describe it. A lot of progress for the Einstein-Vlasov case, i.e. collisionless Boltzmann case, but not much for the Einstein-Boltzmann case.

- The Einstein-Boltzmann system with Bianchi I symmetry.

Result: if the universe is almost isotropic initially and initial data for the Boltzmann equation is sufficiently small, then we obtain global existence and asymptotic behavior of solutions.
Known: Vlasov + Bianchi I, [Nungesser, 10]
Known: Boltzmann + RW, [L, 13]
Result: Boltzmann + Bianchi I
Introduction
Boltzmann equation

\[\partial_t f + v \cdot \nabla_x f + F \cdot \nabla_v f = Q(f, f) \]

▷ Matter = collection of particles.
▷ Distribution function, \(f = f(t, x, v) \), density of particles, \(f(t, x, v) \, dx \, dv \).
▷ Time \(t > 0 \), position \(x \in \mathbb{R}^3 \), velocity \(v \in \mathbb{R}^3 \).
▷ Particles collide.
▷ Two particles with velocities \(v \) and \(v_* \):

\[(v, v_*) \leftrightarrow (v', v_*'). \]

▷ Energy and momentum conservations

\[v' + v_*' = v + v_*, \quad |v'|^2 + |v_*'|^2 = |v|^2 + |v_*|^2. \]

▷ One parametrization

\[v' = v - ((v - v_*) \cdot \omega) \omega, \quad v_*' = v_* + ((v - v_*) \cdot \omega) \omega, \quad \omega \in S^2. \]
Nonrelativistic case.

Another representation

\[
v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2} \sigma, \quad v'_* = \frac{v + v_*}{2} - \frac{|v - v_*|}{2} \sigma, \quad \sigma \in S^2.
\]
Boltzmann equation:

\[\partial_t f + v \cdot \nabla_x f = Q(f, f) = \int_{\mathbb{R}^3} \int_{S^2} B(|v - v_*|, \sigma)(f(v') f(v_*) - f(v) f(v_*)) \, d\sigma \, dv_* . \]

Collision kernel \(B \) depends on physics.

Special relativity

- We want to consider fast moving particles.
- Space and time merge into the concept of spacetime,

\[(t, x, y, z) = (x^0, x^1, x^2, x^3) = x^\alpha \in M. \]

- A manifold with the Minkowski metric \(\eta_{\alpha \beta} = \text{diag}(-1, 1, 1, 1) \).
- Four-dimensional vectors \(v^\alpha \in T_x M \) are measured by

\[\eta_{\alpha \beta} v^\alpha v^\beta = v_\alpha v^\alpha = -(v^0)^2 + (v^1)^2 + (v^2)^2 + (v^3)^2. \]
Speed of light $c = 1$.

http://www.twow.net/ObjText/OtkCaLbStrB.htm
A worldline \(x^\alpha = x^\alpha(\tau) \) with the proper time \(\tau \).

http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/spacetime/
Four-velocity:
\[v^\alpha = \frac{dx^\alpha}{d\tau}, \quad v_\alpha v^\alpha = -1. \]

Four-momentum \(p^\alpha = mv^\alpha \) (we assume \(m = 1 \), so \(p^\alpha = v^\alpha \)).

Mass shell condition.

Four-momentum \(p^\alpha \in P_x := T_x M \cap \{ p_\alpha p^\alpha = -1 \} \).

Special relativistic Boltzmann equation

- Distribution function, \(f(x^\alpha, p^\alpha) \).
- Spacetime variable \(x^\alpha \in M \) and four-momentum \(p^\alpha \in P_x \).
- Mass shell condition implies
 \[p^0 = p^0(p) = \sqrt{1 + |p|^2}. \]
- Distribution function, \(f = f(t, x, p) \).
Two colliding particles with momenta p^α and q^α:

$$(p^\alpha, q^\alpha) \leftrightarrow (p'^\alpha, q'^\alpha).$$

Energy-momentum conservations and the mass shell conditions:

$$p'^\alpha + q'^\alpha = p^\alpha + q^\alpha, \quad p'_\alpha p'^\alpha = -1, \quad q'_\alpha q'^\alpha = -1.$$

[Glassey-Strauss, 93], [Strain, 10], [Guo-Strain, 12], etc.

http://de.wikipedia.org/wiki/Hyperboloid
Einstein-Boltzmann with Bianchi I
Lorentzian metric

- Black hole

http://plato.stanford.edu/entries/spacetime-singularities/
The Einstein-Boltzmann system with Bianchi I symmetry

A cosmological model

Space-time diagram: normal distance & time

https://telescoper.wordpress.com/2015/01/05/faster-than-the-speed-of-light/

Ho Lee (Kyung Hee University)
Expanding universe

http://www.physicsoftheuniverse.com/topics_bigbang_expanding.html
Vlasov equation with Bianchi symmetry

- A metric $^4g = g_{\alpha\beta} dx^\alpha dx^\beta$ is given,

\[
\frac{\partial f}{\partial t} - \Gamma^\alpha_{\beta\gamma} \frac{p^\beta p^\gamma}{p^0} \frac{\partial f}{\partial p^\alpha} = 0,
\]

(cf. geodesic equations: $\dot{x}^\alpha = p^\alpha$ and $\dot{p}^\alpha = -\Gamma^\alpha_{\beta\gamma} p^\beta p^\gamma$).

- Mass shell condition: $p_\alpha p^\alpha = -1$.

- A basis $\{e_a\}$ is given such that $[e_\alpha, e_\beta] = \eta^\gamma_{\alpha\beta} e_\gamma$ and $\nabla_{e_\beta} e_\alpha = \Gamma^\gamma_{\alpha\beta} e_\gamma$,

\[
\Gamma^\alpha_{\beta\gamma} = \frac{1}{2} g^{\alpha\xi} \left(e_\beta (g_{\xi\gamma}) + e_\gamma (g_{\beta\xi}) - e_\xi (g_{\gamma\beta}) + \eta^\delta_{\gamma\beta} g_{\xi\delta} + \eta^\delta_{\xi\gamma} g_{\beta\delta} - \eta^\delta_{\beta\xi} g_{\gamma\delta} \right),
\]

which is called Koszul’s formula.

- A coordinate basis $\{\partial_\alpha\}$, i.e. $[\partial_\alpha, \partial_\beta] = 0$,

\[
\Gamma^\alpha_{\beta\gamma} = \frac{1}{2} g^{\alpha\xi} \left(\partial_\beta (g_{\xi\gamma}) + \partial_\gamma (g_{\beta\xi}) - \partial_\xi (g_{\gamma\beta}) \right),
\]

which is the usual Christoffel symbols.
The Einstein-Boltzmann system with Bianchi I symmetry

The metric is assumed to be $^4g = -dt^2 + g$ with $g = g_{ab}(t)dx^a dx^b$.

An n-dimensional manifold M is given.

Isometry group G_r of dimension r.

Transformation generated by a vector field V with $L_V g = 0$,

$$r \leq \frac{1}{2}n(n + 1).$$

Isotropy group of dimension $d = r - n \leq \frac{1}{2}n(n - 1)$,
(cf. translations and rotations in \mathbb{R}^3).

Bianchi spacetime: $d = 0$.

Killing vector fields with basis $\{e_a\}$

$$[e_a, e_b] = C^c_{ab}e_c,$$

where C^c_{ab} are called the structure constants.
The Vlasov equation with Bianchi symmetry:

\[\frac{\partial f}{\partial t} - g^{ad} \left((p^0)^{-1} C^e_{\, dc} p^c p_e + \dot{g}_{bd} p^b \right) \frac{\partial f}{\partial p^a} = 0. \]

In covariant momenta \(p_a = g_{ab} p^b \),

\[\frac{\partial f}{\partial t} - (p^0)^{-1} C^e_{\, ac} p^c p_e \frac{\partial f}{\partial p_a} = 0. \]

Energy-momentum tensor

\[T_{\alpha\beta} = \int_{\mathbb{R}^3} f(t, p) \frac{p^\alpha p^\beta}{-p_0} | \det g |^{\frac{1}{2}} \, dp. \]

We only need

\[\rho := T^{00} = (\det g)^{-\frac{1}{2}} \int_{\mathbb{R}^3} f(t, p_*) (1 + g^{cd} p_c p_d)^{\frac{1}{2}} \, dp_*, \]

\[S_{ab} := T_{ab} = (\det g)^{-\frac{1}{2}} \int_{\mathbb{R}^3} f(t, p_*) p_a p_b (1 + g^{cd} p_c p_d)^{-\frac{1}{2}} \, dp_*, \]

where \(p = (p^1, p^2, p^3) \) and \(p_* = (p_1, p_2, p_3) \).
Einstein-Vlasov system with Bianchi symmetry

▷ Einstein’s equations in covariant form

\[G_{\alpha\beta} = 8\pi T_{\alpha\beta}. \]

▷ Einstein’s equations in 3+1 form

\[\partial_t g_{ab} = -2k_{ab}, \]
\[\partial_t k_{ab} = R_{ab} + (g^{cd}k_{cd})k_{ab} - 2(g^{cd}k_{bd})k_{ac} - 8\pi S_{ab} + 4\pi g_{ab}(S - \rho) \]

with constraint equations

\[R - k^{ij}k_{ij} + k^2 = 16\pi \rho, \]
\[\nabla^i k_{ij} = 8\pi T_{0j}. \]

▷ [Rendall, 94], [Hayoung Lee, 04], rotationally symmetry, reflection symmetry, [Nungesser, 10, 12], [Nungesser-Andersson-Bose-Coley, 14], [L, 13].

▷ The present work is a joint work with Nungesser.
Einstein-Vlasov with Bianchi I symmetry

▷ Bianchi I symmetry: the structure constants $C^c_{ab} = 0$.

▷ The Vlasov equation reduces to

$$\frac{\partial f}{\partial t} + 2k^a_b p^b \frac{\partial f}{\partial p^a} = 0 \quad \text{or} \quad \frac{\partial f}{\partial t} = 0.$$

▷ The Einstein equations reduce to

$$\partial_t g_{ab} = -2k_{ab},$$

$$\partial_t k_{ab} = (g^{cd} k_{cd}) k_{ab} - 2(g^{cd} k_{bd}) k_{ac} - 8\pi S_{ab} + 4\pi g_{ab}(S - \rho).$$

▷ The matter terms

$$\rho = (\det g)^{-\frac{1}{2}} \int_{\mathbb{R}^3} f(t, p_*) (1 + g^{cd} p_c p_d)^{\frac{1}{2}} dp_*,$$

$$S_{ab} = (\det g)^{-\frac{1}{2}} \int_{\mathbb{R}^3} f(t, p_*) p_a p_b (1 + g^{cd} p_c p_d)^{-\frac{1}{2}} dp_*.$$

▷ Solutions tend to the Einstein-de Sitter model, i.e. $-dt^2 + t^\frac{4}{3} (dx^2 + dy^2 + dz^2)$.
Einstein-Boltzmann with Bianchi I symmetry

- The Boltzmann equation will be
 \[\frac{\partial f}{\partial t} + 2k_b^a p^b \frac{\partial f}{\partial p^a} = Q(f, f) \quad \text{or} \quad \frac{\partial f}{\partial t} = Q(f, f). \]

- Representation of a momentum \(p \in T_x M \):
 \[p = p^a E_a = \hat{p}^a e_a, \]
 where \(\{ E_a \} \) is the given basis and \(\{ e_a \} \) an orthonormal basis such that
 \(g(E_a, E_b) = g_{ab} \) and \(g(e_a, e_b) = \eta_{ab} \).

- The Boltzmann equation in an orthonormal frame
 \[\frac{\partial \hat{f}}{\partial t} + \hat{k}_b^a \hat{p}^b \frac{\partial \hat{f}}{\partial \hat{p}^a} = Q(\hat{f}, \hat{f}), \]
 where \(e_a = e_a^b E_b, p^a = e_b^a \hat{p}^b \) and \(\hat{k}_{ab} = e_c^a e_d^b k_{cd} \).
Orthonormal frame

Roughly speaking..

http://astro.physics.sc.edu/selfpacedunits/Unit57.html
The Boltzmann equation: in Strain’s framework [Strain, 10],

\[\frac{\partial f}{\partial t} = (\det g)^{-\frac{1}{2}} \int \int v_M \sigma(h, \theta) \left(f(p'_*) f(q'_*) - f(p_*) f(q_*) \right) d\omega dq_* , \]

and parametrization of post-collision momenta

\[
\begin{pmatrix} p'^0 \\ p'_i \end{pmatrix} = \begin{pmatrix} \frac{p^0 + q^0}{2} + \frac{h}{2} \frac{n_i e^i_j \omega^j}{\sqrt{s}} \\ \frac{p_i + q_i}{2} + \frac{h}{2} \left(g_{ij} e^j_k \omega^k + \left(\frac{n^0}{\sqrt{s}} - 1 \right) \frac{n_j e^j_k \omega^k n_i}{g^{ab} n_a n_b} \right) \end{pmatrix},
\]

where \(h^2 = (p^\alpha - q^\alpha)(p^\alpha - q^\alpha) \), \(s = -n_\alpha n^\alpha \) and \(n^\alpha = p^\alpha + q^\alpha \).
The Boltzmann equation in the framework of [Glassey-Strauss, 93]:

\[\frac{\partial f}{\partial t} = (\det g)^{-\frac{1}{2}} \int \int \frac{v_M \sqrt{s(n^0)^2} \sigma(h, \theta)}{((n^0)^2 - (n_a e^a_b \xi^b)^2)^{3/2}} \left(f(p^*_0) f(q^*_i) - f(p^*_i) f(q^*_*) \right) d\xi dq_*, \]

and parametrization of post-collision momenta

\[
\begin{pmatrix}
 p'^0_0 \\
p'^0_i
\end{pmatrix} = \begin{pmatrix}
 \frac{p^0 + q^0}{2} + \frac{h}{2} \frac{n_i \xi^i_j \omega^j}{\sqrt{(n^0)^2 - (n_i e^i_j \xi^j)^2}} \\
 \frac{p_i + q_i}{2} + \frac{h}{2} \frac{n^0 g_{ij} e^j_k \xi^k}{\sqrt{(n^0)^2 - (n_i e^i_j \xi^j)^2}}
\end{pmatrix}.
\]

Differentiability for the relativistic Boltzmann equation [Guo-Strain, 12].

We have the Einstein-Boltzmann system with Bianchi I symmetry.
Results
Einstein’s equations for given matter terms

- Einstein’s equations

\[\partial_t g_{ab} = -2k_{ab}, \]
\[\partial_t k_{ab} = (g^{cd}k_{cd})k_{ab} - 2(g^{cd}k_{bd})k_{ac} - 8\pi S_{ab} + 4\pi g_{ab}(S - \rho). \]

- Assume that \(f(t, p) = \hat{f}(t, \hat{p}) \leq \varepsilon \exp(t^{-\frac{5}{4}}|\hat{p}|^2) \) and \(C^1 \).
- Local existence by [Rendall, 94].
- Global-in-time existence by [Rendall, 94].
- Asymptotic behavior by [Nungesser, 10] such that

\[g_{ab}(t) = t^{\frac{4}{3}} \tilde{g}_{ab}(t) \quad \text{and} \quad \tilde{g}_{ab}(t) = G_{ab} + O(\varepsilon t^{-1}), \]

assuming smallness and using bootstrap argument.
Einstein’s equations for given matter terms

- Decompose

\[k_{ab} = \sigma_{ab} - H g_{ab}, \quad H = -\frac{1}{3} k, \quad k = g^{ab} k_{ab}, \]

where \(H \) is called the Hubble variable and \(k \) the mean curvature.

- Assume that \(\sigma_{ab} \) the trace free part is small in the sense that

\[F := \frac{1}{4H^2} \sigma_{ab} \sigma_{ab}. \]

- In the Robertson-Walker case, i.e. \(g_{ab} = R^2(t) \eta_{ab} \), we have \(\sigma_{ab} = 0 \).

- Without smallness we have

\[\frac{1}{3t} \leq H(t) \leq \frac{2}{3t}. \]

- Assuming smallness we have

\[\frac{2}{3t(1 + \varepsilon t^{-1})} \leq H(t) \leq \frac{2}{3t}. \]

- In the Robertson-Walker case, \(H(t) = \frac{2}{3} t^{-1} \).
Bootstrap argument: \(F(t) \leq \varepsilon(1 + t)^{-\frac{3}{2}} \implies F(t) \leq \varepsilon(1 + t)^{-2+\varepsilon} \).

Equation for \(F \):

\[
\dot{F} = -3H \left(1 - \frac{2}{3} F - \frac{8\pi S}{9H^2} - \frac{4\pi S_{ab}\sigma^{ab}}{3H^3 F} \right) F \sim -2t^{-1} F.
\]

We eventually obtain \(F \sim \varepsilon t^{-2} \).

Equation for \(\bar{g}_{ab} \):

\[
\dot{\bar{g}}_{ab} = 2 \left(H - \frac{2}{3} t^{-1} \right) \bar{g}_{ab} - 2t^{-\frac{4}{3}} \sigma_{ab},
\]

and note that \((H - \frac{2}{3} t^{-1}) \) is integrable.

We eventually obtain \(|\bar{g}_{ab}| \leq C \) and

\[
g_{ab}(t) = t^{\frac{4}{3}} \left(G_{ab} + O(\varepsilon t^{-1}) \right),
\]

together with \(F(t) \leq CF(t_0)t^{-2} \) and \(H(t) = \frac{2}{3} t^{-1} (1 + O(\varepsilon t^{-1})) \).
The Boltzmann equation in a given spacetime

The Boltzmann equation

\[\frac{\partial f}{\partial t} = (\det g)^{-\frac{1}{2}} \int \int v_M \sigma(h, \theta) \left(f(p') f(q') - f(p) f(q) \right) d\omega dq, \]

Consider first the Robertson-Walker case, i.e.

\[-dt^2 + R^2(dx^2 + dy^2 + dz^2). \]

Take weight function \(e^{\|p*\|^2} \) and multiply this to the equation

\[\frac{\partial(e^{\|p*\|^2} f(t, p*))}{\partial t} = R^{-3} \int \int \ldots \]

\[\ldots (e^{\|p*\|^2} f(p*) e^{\|q*\|^2} f(q*) - e^{\|p*\|^2} f(p*) e^{\|q*\|^2} f(q*)) e^{-\|q*\|^2} d\omega dq, \]

if we have an identity \(|p|^2 + |q|^2 = |p*|^2 + |q*|^2. \)

In the end,

\[\frac{d}{dt} \|f(t)\| \leq CR^{-3} \|f(t)\|^2 \quad \text{and} \quad \|f(t)\| \leq \|f(0)\| + C\|f(t)\|^2, \]

if \(R^{-3} \) is integrable.
The post-collision momentum:

\[p'_i = \frac{p_i + q_i}{2} + \frac{h}{2} \frac{n^0 g_{ij} e^j_k \xi^k}{\sqrt{(n^0)^2 - (n_i e^i_j \xi^j)^2}} = \frac{p_i + q_i}{2} + \frac{Rh}{2} \frac{n^0 \xi_i}{\sqrt{(n^0)^2 - R^{-2}(n \cdot \xi)^2}}, \]

\[Rh = |p_* - q_*| \sqrt{1 - \frac{|p_* + q_*|^2 \cos^2 \theta_0}{R^2(p^0 + q^0)^2}}. \]

If \(\lim_{t \to \infty} R(t) = \infty \), we have

\[p'_* \to \frac{p_* + q_*}{2} + \frac{|p_* - q_*|}{2} \xi \quad \text{and} \quad q'_* \to \frac{p_* + q_*}{2} - \frac{|p_* - q_*|}{2} \xi, \]

which is the parametrization of the nonrelativistic case. In other words, at late times the post-collision momenta with lower indices behave like in the nonrelativistic case. Hence, we will eventually have \(|p'_*|^2 + |q'_*|^2 = |p_*|^2 + |q_*|^2 \).

We obtain a small solution such that

\[f(t, p_*) \leq \varepsilon \exp(-|p_*|^2) \quad \text{or} \quad \hat{f}(t, \hat{p}) \leq \varepsilon \exp(-R^2|\hat{p}|^2). \]
In the Bianchi I case we may choose \(\exp(\bar{g}^{ab} p_a p_b) \) to get

\[
\hat{f}(t, \hat{p}) \leq \varepsilon \exp(-t^{4/3} |\hat{p}|^2) \left(= \varepsilon \exp(-\bar{g}^{ab} p_a p_b) \right).
\]

For a small \(\varepsilon \) such that \(\frac{d}{dt} [t^{-\varepsilon} \bar{g}^{ab}(t)] \leq 0 \), we have

\[
\hat{f}(t, \hat{p}) \leq \varepsilon \exp(-t^{4/3 - \varepsilon} |\hat{p}|^2) \left(= \varepsilon \exp(-t^{-\varepsilon} \bar{g}^{ab} p_a p_b) \right).
\]

Differentiability of solutions: [Guo-Strain, 12].
Thank you very much.