Global properties of solutions to the Einstein-Boltzmann system with Bianchi I symmetry

Ho Lee
Department of Mathematics
Kyung Hee University, Seoul

Dynamical Systems in Mathematical Physics
Seminar at the RIMS of Kyoto University, Kyoto

Overview

Matter is distributed in the universe, and the universe evolves in time.
\triangleright Einstein's equations.

The universe is assumed to be homogeneous, and let us consider the Bianchi I symmetry, which is a generalization of the RW model, which is a homogeneous and isotropic universe.

Matter also evolves in time, and we use a kinetic equation to describe it. A lot of progress for the Einstein-Vlasov case, i.e. collisionless Boltzmann case, but not much for the Einstein-Boltzmann case.
\triangleright The Einstein-Boltzmann system with Bianchi I symmetry.

Result: if the universe is almost isotropic initially and initial data for the Boltzmann equation is sufficiently small, then we obtain global existence and asymptotic behavior of solutions.

Known: Vlasov + Bianchi I, [Nungesser, 10]
 Known: Boltzmann + RW, [L, 13]
 Result: Boltzmann + Bianchil

Introduction

Boltzmann equation

$$
\partial_{t} f+v \cdot \nabla_{x} f+F \cdot \nabla_{v} f=Q(f, f)
$$

\triangleright Matter $=$ collection of particles.
\triangleright Distribution function, $f=f(t, x, v)$, density of particles, $f(t, x, v) d x d v$.
\triangleright Time $t>0$, position $x \in \mathbb{R}^{3}$, velocity $v \in \mathbb{R}^{3}$.
\triangleright Particles collide.
\triangleright Two particles with velocities v and v_{*} :

$$
\left(v, v_{*}\right) \leftrightarrow\left(v^{\prime}, v_{*}^{\prime}\right)
$$

\triangleright Energy and momentum conservations

$$
v^{\prime}+v_{*}^{\prime}=v+v_{*}, \quad\left|v^{\prime}\right|^{2}+\left|v_{*}^{\prime}\right|^{2}=|v|^{2}+\left|v_{*}\right|^{2}
$$

\triangleright One parametrization

$$
v^{\prime}=v-\left(\left(v-v_{*}\right) \cdot \omega\right) \omega, \quad v_{*}^{\prime}=v_{*}+\left(\left(v-v_{*}\right) \cdot \omega\right) \omega, \quad \omega \in \mathbb{S}^{2}
$$

\triangleright Nonrelativistic case.

\triangleright Another representation

$$
v^{\prime}=\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma, \quad v_{*}^{\prime}=\frac{v+v_{*}}{2}-\frac{\left|v-v_{*}\right|}{2} \sigma, \quad \sigma \in \mathbb{S}^{2} .
$$

\triangleright Boltzmann equation:

$$
\begin{aligned}
\partial_{t} f+v \cdot \nabla_{x} f & =Q(f, f) \\
& =\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} B\left(\left|v-v_{*}\right|, \sigma\right)\left(f\left(v^{\prime}\right) f\left(v_{*}^{\prime}\right)-f(v) f\left(v_{*}\right)\right) d \sigma d v_{*}
\end{aligned}
$$

Collision kernel B depends on physics.

Special relativity

\triangleright We want to consider fast moving particles.
\triangleright Space and time merge into the concept of spacetime,

$$
(t, x, y, z)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=x^{\alpha} \in M
$$

\triangleright A manifold with the Minkowski metric $\eta_{\alpha \beta}=\operatorname{diag}(-1,1,1,1)$.
\triangleright Four-dimensional vectors $v^{\alpha} \in T_{x} M$ are measured by

$$
\eta_{\alpha \beta} v^{\alpha} v^{\beta}=v_{\alpha} v^{\alpha}=-\left(v^{0}\right)^{2}+\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2} .
$$

\triangleright Speed of light $c=1$.

CONSTRUCTION OF MINKOWSKI'S SPACETIME DIAGRAM
http://www.twow.net/ObjText/OtkCaLbStrB.htm
\triangleright A worldline $x^{\alpha}=x^{\alpha}(\tau)$ with the proper time τ.

http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/spacetime/
\triangleright Four-velocity:

$$
v^{\alpha}=\frac{d x^{\alpha}}{d \tau}, \quad v_{\alpha} v^{\alpha}=-1
$$

\triangleright Four-momentum $p^{\alpha}=m v^{\alpha}$ (we assume $m=1$, so $p^{\alpha}=v^{\alpha}$).
\triangleright Mass shell condition.
\triangleright Four-momentum $p^{\alpha} \in P_{x}:=T_{x} M \cap\left\{p_{\alpha} p^{\alpha}=-1\right\}$.

Special relativistic Boltzmann equation

\triangleright Distribution function, $f\left(x^{\alpha}, p^{\alpha}\right)$.
\triangleright Spacetime variable $x^{\alpha} \in M$ and four-momentum $p^{\alpha} \in P_{x}$.
\triangleright Mass shell condition implies

$$
p^{0}=p^{0}(p)=\sqrt{1+|p|^{2}} .
$$

\triangleright Distribution function, $f=f(t, x, p)$.
\triangleright Two colliding particles with momenta p^{α} and q^{α} :

$$
\left(p^{\alpha}, q^{\alpha}\right) \leftrightarrow\left(p^{\prime \alpha}, q^{\prime \alpha}\right)
$$

\triangleright Energy-momentum conservations and the mass shell conditions:

$$
p^{\prime \alpha}+q^{\prime \alpha}=p^{\alpha}+q^{\alpha}, \quad p_{\alpha}^{\prime} p^{\prime \alpha}=-1, \quad q_{\alpha}^{\prime} q^{\prime \alpha}=-1 .
$$

\triangleright [Glassey-Strauss, 93], [Strain, 10], [Guo-Strain, 12], etc.

[^0]
Einstein-Boltzmann with Bianchi I

Lorentzian metric

 \triangleright Black hole
http://plato.stanford.edu/entries/spacetime-singularities/

\triangleright A cosmological model

Space-time diagram: normal distance \& time

https:
//telescoper.wordpress.com/2015/01/05/faster-than-the-speed-of-light/

\triangleright Expanding universe

http://www.physicsoftheuniverse.com/topics_bigbang_expanding.html

Vlasov equation with Bianchi symmetry

\triangleright A metric ${ }^{4} g=g_{\alpha \beta} d x^{\alpha} d x^{\beta}$ is given,

$$
\frac{\partial f}{\partial t}-\Gamma^{a}{ }_{\beta \gamma} \frac{p^{\beta} p^{\gamma}}{p^{0}} \frac{\partial f}{\partial p^{a}}=0
$$

(cf. geodesic equations: $\dot{x}^{\alpha}=p^{\alpha}$ and $\dot{p}^{\alpha}=-\Gamma^{\alpha}{ }_{\beta \gamma} p^{\beta} p^{\gamma}$).
\triangleright Mass shell condition: $p_{\alpha} p^{\alpha}=-1$.
$\triangleright \mathrm{A}$ basis $\left\{e_{a}\right\}$ is given such that $\left[e_{\alpha}, e_{\beta}\right]=\eta^{\gamma}{ }_{\alpha \beta} e_{\gamma}$ and $\nabla_{e_{\beta}} e_{\alpha}=\Gamma^{\gamma}{ }_{\alpha \beta} e_{\gamma}$,

$$
\Gamma^{\alpha}{ }_{\beta \gamma}=\frac{1}{2} g^{\alpha \xi}\left(e_{\beta}\left(g_{\xi \gamma}\right)+e_{\gamma}\left(g_{\beta \xi}\right)-e_{\xi}\left(g_{\gamma \beta}\right)+\eta_{\gamma \beta}^{\delta} g_{\xi \delta}+\eta_{\xi \gamma}^{\delta} g_{\beta \delta}-\eta_{\beta \xi}^{\delta} g_{\gamma \delta}\right),
$$

which is called Koszul's formula.
\triangleright A coordinate basis $\left\{\partial_{\alpha}\right\}$, i.e. $\left[\partial_{\alpha}, \partial_{\beta}\right]=0$,

$$
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \xi}\left(\partial_{\beta}\left(g_{\xi \gamma}\right)+\partial_{\gamma}\left(g_{\beta \xi}\right)-\partial_{\xi}\left(g_{\gamma \beta}\right)\right),
$$

which is the usual Chirstoffel symbols.
\triangleright The metric is assumed to be ${ }^{4} g=-d t^{2}+g$ with $g=g_{a b}(t) d x^{a} d x^{b}$.
\triangleright An n-dimensional manifold M is given.
\triangleright Isometry group G_{r} of dimension r.
\triangleright Transformation generated by a vector field V with $L_{V} g=0$,

$$
r \leq \frac{1}{2} n(n+1)
$$

\triangleright Isotropy group of dimension $d=r-n \leq \frac{1}{2} n(n-1)$, (cf. translations and rotations in \mathbb{R}^{3}).
\triangleright Bianchi spacetime: $d=0$.
\triangleright Killing vector fields with basis $\left\{e_{a}\right\}$

$$
\left[e_{a}, e_{b}\right]=C_{a b}^{c} e_{c},
$$

where $C^{c}{ }_{a b}$ are called the structure constants.

\triangleright The Vlasov equation with Bianchi symmetry:

$$
\frac{\partial f}{\partial t}-g^{a d}\left(\left(p^{0}\right)^{-1} C^{e}{ }_{d c} p^{c} p_{e}+\dot{g}_{b d} p^{b}\right) \frac{\partial f}{\partial p^{a}}=0 .
$$

\triangleright In covariant momenta $p_{a}=g_{a b} p^{b}$,

$$
\frac{\partial f}{\partial t}-\left(p^{0}\right)^{-1} C^{e}{ }_{a c} p^{c} p_{e} \frac{\partial f}{\partial p_{a}}=0 .
$$

\triangleright Energy-momentum tensor

$$
T_{\alpha \beta}=\int_{\mathbb{R}^{3}} f(t, p) \frac{p_{\alpha} p_{\beta}}{-p_{0}}\left|\operatorname{det}^{4} g\right|^{\frac{1}{2}} d p
$$

\triangleright We only need

$$
\begin{aligned}
& \rho:=T^{00}=(\operatorname{det} g)^{-\frac{1}{2}} \int_{\mathbb{R}^{3}} f\left(t, p_{*}\right)\left(1+g^{c d} p_{c} p_{d}\right)^{\frac{1}{2}} d p_{*}, \\
& S_{a b}:=T_{a b} \\
&=(\operatorname{det} g)^{-\frac{1}{2}} \int_{\mathbb{R}^{3}} f\left(t, p_{*}\right) p_{a} p_{b}\left(1+g^{c d} p_{c} p_{d}\right)^{-\frac{1}{2}} d p_{*},
\end{aligned}
$$

where $p=\left(p^{1}, p^{2}, p^{3}\right)$ and $p_{*}=\left(p_{1}, p_{2}, p_{3}\right)$.

Einstein-Vlasov system with Bianchi symmetry

\triangleright Einstein's equations in covariant form

$$
G_{\alpha \beta}=8 \pi T_{\alpha \beta}
$$

\triangleright Einstein's equations in 3+1 form

$$
\begin{aligned}
& \partial_{t} g_{a b}=-2 k_{a b}, \\
& \partial_{t} k_{a b}=R_{a b}+\left(g^{c d} k_{c d}\right) k_{a b}-2\left(g^{c d} k_{b d}\right) k_{a c}-8 \pi S_{a b}+4 \pi g_{a b}(S-\rho)
\end{aligned}
$$

with constraint equations

$$
\begin{aligned}
R-k^{i j} k_{i j}+k^{2} & =16 \pi \rho, \\
\nabla^{i} k_{i j} & =8 \pi T_{0 j} .
\end{aligned}
$$

\triangleright [Rendall, 94], [Hayoung Lee, 04], rotationally symmetry, reflection symmetry, [Nungesser, 10, 12], [Nungesser-Andersson-Bose-Coley, 14], [L, 13].
\triangleright The present work is a joint work with Nungesser.

Einstein-Vlasov with Bianchi I symmetry

\triangleright Bianchi I symmetry: the structure constants $C^{c}{ }_{a b}=0$.
\triangleright The Vlasov equation reduces to

$$
\frac{\partial f}{\partial t}+2 k_{b}^{a} p^{b} \frac{\partial f}{\partial p^{a}}=0 \quad \text { or } \quad \frac{\partial f}{\partial t}=0
$$

\triangleright The Einstein equations reduce to

$$
\begin{aligned}
& \partial_{t} g_{a b}=-2 k_{a b}, \\
& \partial_{t} k_{a b}=\left(g^{c d} k_{c d}\right) k_{a b}-2\left(g^{c d} k_{b d}\right) k_{a c}-8 \pi S_{a b}+4 \pi g_{a b}(S-\rho) .
\end{aligned}
$$

\triangleright The matter terms

$$
\begin{aligned}
\rho & =(\operatorname{det} g)^{-\frac{1}{2}} \int_{\mathbb{R}^{3}} f\left(t, p_{*}\right)\left(1+g^{c d} p_{c} p_{d}\right)^{\frac{1}{2}} d p_{*}, \\
S_{a b} & =(\operatorname{det} g)^{-\frac{1}{2}} \int_{\mathbb{R}^{3}} f\left(t, p_{*}\right) p_{a} p_{b}\left(1+g^{c d} p_{c} p_{d}\right)^{-\frac{1}{2}} d p_{*} .
\end{aligned}
$$

\triangleright Solutions tend to the Einstein-de Sitter model, i.e. $-d t^{2}+t^{\frac{4}{3}}\left(d x^{2}+d y^{2}+d z^{2}\right)$.

Einstein-Boltzmann with Bianchi I symmetry

\triangleright The Boltzmann equation will be

$$
\frac{\partial f}{\partial t}+2 k_{b}^{a} p^{b} \frac{\partial f}{\partial p^{a}}=Q(f, f) \quad \text { or } \quad \frac{\partial f}{\partial t}=Q(f, f)
$$

\triangleright Representation of a momentum $p \in T_{x} M$:

$$
p=p^{a} \mathbf{E}_{a}=\hat{p}^{a} \mathbf{e}_{a}
$$

where $\left\{\mathbf{E}_{a}\right\}$ is the given basis and $\left\{\mathbf{e}_{a}\right\}$ an orthonormal basis such that $g\left(\mathbf{E}_{a}, \mathbf{E}_{b}\right)=g_{a b}$ and $g\left(\mathbf{e}_{a}, \mathbf{e}_{b}\right)=\eta_{a b}$.
\triangleright The Boltzmann equation in an orthonormal frame

$$
\frac{\partial \hat{f}}{\partial t}+\hat{k}_{b}^{a} \hat{p}^{b} \frac{\partial \hat{f}}{\partial \hat{p}^{a}}=Q(\hat{f}, \hat{f})
$$

where $\mathbf{e}_{a}=e_{a}^{b} \mathbf{E}_{b}, p^{a}=e_{b}^{a} \hat{p}^{b}$ and $\hat{k}_{a b}=e_{a}^{c} e_{b}^{d} k_{c d}$.

\triangleright Orthonormal frame

http://math.etsu.edu/multicalc/prealpha/Chap3/Chap3-6/part3.htm

Roughly speaking..

http://astro.physics.sc.edu/selfpacedunits/Unit57.html
\triangleright The Boltzmann equation: in Strain's framework [Strain, 10],

$$
\frac{\partial f}{\partial t}=(\operatorname{det} g)^{-\frac{1}{2}} \iint v_{M} \sigma(h, \theta)\left(f\left(p_{*}^{\prime}\right) f\left(q_{*}^{\prime}\right)-f\left(p_{*}\right) f\left(q_{*}\right)\right) d \omega d q_{*},
$$

and parametrization of post-collision momenta

$$
\binom{p^{\prime 0}}{p_{i}^{\prime}}=\binom{\frac{p^{0}+q^{0}}{2}+\frac{h}{2} \frac{n_{i} e^{i} \omega^{j}}{\sqrt{s}}}{\frac{p_{i}+q_{i}}{2}+\frac{h}{2}\left(g_{i j} e_{k}^{j} \omega^{k}+\left(\frac{n^{0}}{\sqrt{s}}-1\right) \frac{n_{j} e_{k}^{j} \omega^{k} n_{i}}{g^{a b} n_{a} n_{b}}\right)},
$$

where $h^{2}=\left(p_{\alpha}-q_{\alpha}\right)\left(p^{\alpha}-q^{\alpha}\right), s=-n_{\alpha} n^{\alpha}$ and $n^{\alpha}=p^{\alpha}+q^{\alpha}$.
\triangleright The Boltzmann equation in the framework of [Glassey-Strauss, 93]:

$$
\frac{\partial f}{\partial t}=(\operatorname{det} g)^{-\frac{1}{2}} \iint \frac{v_{M} \sqrt{s}\left(n^{0}\right)^{2} \sigma(h, \theta)}{\left(\left(n^{0}\right)^{2}-\left(n_{a} e_{b}^{a} \xi^{b}\right)^{2}\right)^{3 / 2}}\left(f\left(p_{*}^{\prime}\right) f\left(q_{*}^{\prime}\right)-f\left(p_{*}\right) f\left(q_{*}\right)\right) d \xi d q_{*}
$$

and parametrization of post-collision momenta

$$
\binom{p^{0}}{p_{i}^{\prime}}=\binom{\frac{p^{0}+q^{0}}{2}+\frac{h}{2} \frac{n_{i} \xi_{j}^{i} \omega^{j}}{\sqrt{\left(n^{0}\right)^{2}-\left(n_{i} e_{j}^{i} \xi^{j}\right)^{2}}}}{\frac{p_{i}+q_{i}}{2}+\frac{h}{2} \frac{n^{0} g_{i j} e_{k}^{j} \xi^{k}}{\sqrt{\left(n^{0}\right)^{2}-\left(n_{i} e_{j}^{i} \xi^{j}\right)^{2}}}}
$$

\triangleright Differentiabiity for the relativistic Boltzmann equation [Guo-Strain, 12].
\triangleright We have the Einstein-Boltzmann system with Bianchi I symmetry.

Results

Einstein's equations for given matter terms

\triangleright Einstein's equations

$$
\begin{aligned}
& \partial_{t} g_{a b}=-2 k_{a b}, \\
& \partial_{t} k_{a b}=\left(g^{c d} k_{c d}\right) k_{a b}-2\left(g^{c d} k_{b d}\right) k_{a c}-8 \pi S_{a b}+4 \pi g_{a b}(S-\rho) .
\end{aligned}
$$

\triangleright Assume that $f(t, p)=\hat{f}(t, \hat{p}) \leq \varepsilon \exp \left(t^{-\frac{5}{4}}|\hat{p}|^{2}\right)$ and C^{1}.
\triangleright Local existence by [Rendall, 94].
\triangleright Global-in-time existence by [Rendall, 94].
\triangleright Asymptotic behavior by [Nungesser, 10] such that

$$
g_{a b}(t)=t^{\frac{4}{3}} \bar{g}_{a b}(t) \quad \text { and } \quad \bar{g}_{a b}(t)=G_{a b}+O\left(\varepsilon t^{-1}\right)
$$

assuming smallness and using bootstrap argument.
\triangleright Decompose

$$
k_{a b}=\sigma_{a b}-H g_{a b}, \quad H=-\frac{1}{3} k, \quad k=g^{a b} k_{a b}
$$

where H is called the Hubble variable and k the mean curvature.
\triangleright Assume that $\sigma_{a b}$ the trace free part is small in the sense that

$$
F:=\frac{1}{4 H^{2}} \sigma_{a b} \sigma^{a b}
$$

\triangleright In the Robertson-Walker case, i.e. $g_{a b}=R^{2}(t) \eta_{a b}$, we have $\sigma_{a b}=0$.
\triangleright Without smallness we have

$$
\frac{1}{3 t} \leq H(t) \leq \frac{2}{3 t}
$$

\triangleright Assuming smallness we have

$$
\frac{2}{3 t\left(1+\varepsilon t^{-1}\right)} \leq H(t) \leq \frac{2}{3 t}
$$

\triangleright In the Robertson-Walker case, $H(t)=\frac{2}{3} t^{-1}$.
\triangleright Bootstrap argument: $F(t) \leq \varepsilon(1+t)^{-\frac{3}{2}} \Longrightarrow F(t) \leq \varepsilon(1+t)^{-2+\varepsilon}$.
\triangleright Equation for F :

$$
\dot{F}=-3 H\left(1-\frac{2}{3} F-\frac{8 \pi S}{9 H^{2}}-\frac{4 \pi S_{a b} \sigma^{a b}}{3 H^{3} F}\right) F \sim-2 t^{-1} F .
$$

\triangleright We eventually obtain $F \sim \varepsilon t^{-2}$.
\triangleright Equation for $\bar{g}_{a b}$:

$$
\dot{\bar{g}}_{a b}=2\left(H-\frac{2}{3} t^{-1}\right) \bar{g}_{a b}-2 t^{-\frac{4}{3}} \sigma_{a b}
$$

and note that $\left(H-\frac{2}{3} t^{-1}\right)$ is integrable.
\triangleright We eventually obtain $\left|\bar{g}_{a b}\right| \leq C$ and

$$
g_{a b}(t)=t^{\frac{4}{3}}\left(G_{a b}+O\left(\varepsilon t^{-1}\right)\right)
$$

together with $F(t) \leq C F\left(t_{0}\right) t^{-2}$ and $H(t)=\frac{2}{3} t^{-1}\left(1+O\left(\varepsilon t^{-1}\right)\right)$.

The Boltzmann equation in a given spacetime

\triangleright The Boltzmann equation

$$
\frac{\partial f}{\partial t}=(\operatorname{det} g)^{-\frac{1}{2}} \iint v_{M} \sigma(h, \theta)\left(f\left(p_{*}^{\prime}\right) f\left(q_{*}^{\prime}\right)-f\left(p_{*}\right) f\left(q_{*}\right)\right) d \omega d q_{*},
$$

\triangleright Consider first the Robertson-Walker case, i.e. $-d t^{2}+R^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)$.
\triangleright Take weight function $e^{\left|p_{*}\right|^{2}}$ and multiply this to the equation

$$
\begin{aligned}
& \frac{\partial\left(e^{\left|p_{*}\right|^{2}} f\left(t, p_{*}\right)\right)}{\partial t}=R^{-3} \iint \cdots \\
& \quad \cdots\left(e^{\left|p_{*}^{\prime}\right|^{2}} f\left(p_{*}^{\prime}\right) e^{\left|q_{*}^{\prime}\right|^{2}} f\left(q_{*}^{\prime}\right)-e^{\left|p_{*}\right|^{2}} f\left(p_{*}\right) e^{\left|q_{*}\right|^{2}} f\left(q_{*}\right)\right) e^{-\left|q_{*}\right|^{2}} d \omega d q_{*},
\end{aligned}
$$

if we have an identity $\left|p_{*}^{\prime}\right|^{2}+\left|q_{*}^{\prime}\right|^{2}=\left|p_{*}\right|^{2}+\left|q_{*}\right|^{2}$.
\triangleright In the end,

$$
\frac{d}{d t}\|f(t)\| \leq C R^{-3}\|f(t)\|^{2} \quad \text { and } \quad\|f(t)\| \leq\|f(0)\|+C\|f(t)\|^{2},
$$

if R^{-3} is integrable.
\triangleright The post-collision momentum:

$$
\begin{gathered}
p_{i}^{\prime}=\frac{p_{i}+q_{i}}{2}+\frac{h}{2} \frac{n^{0} g_{i j} e_{k}^{j} \xi^{k}}{\sqrt{\left(n^{0}\right)^{2}-\left(n_{i} e_{j}^{i} \xi^{j}\right)^{2}}}=\frac{p_{i}+q_{i}}{2}+\frac{R h}{2} \frac{n^{0} \xi_{i}}{\sqrt{\left(n^{0}\right)^{2}-R^{-2}(n \cdot \xi)^{2}}}, \\
R h=\left|p_{*}-q_{*}\right| \sqrt{1-\frac{\left|p_{*}+q_{*}\right|^{2} \cos ^{2} \theta_{0}}{R^{2}\left(p^{0}+q^{0}\right)^{2}}}
\end{gathered}
$$

\triangleright If $\lim _{t \rightarrow \infty} R(t)=\infty$, we have

$$
p_{*}^{\prime} \rightarrow \frac{p_{*}+q_{*}}{2}+\frac{\left|p_{*}-q_{*}\right|}{2} \xi \quad \text { and } \quad q_{*}^{\prime} \rightarrow \frac{p_{*}+q_{*}}{2}-\frac{\left|p_{*}-q_{*}\right|}{2} \xi
$$

which is the parametrization of the nonrelativistic case. In other words, at late times the post-collision momenta with lower indices behave like in the nonrelativistic case. Hence, we will eventually have $\left|p_{*}^{\prime}\right|^{2}+\left|q_{*}^{\prime}\right|^{2}=\left|p_{*}\right|^{2}+\left|q_{*}\right|^{2}$.
\triangleright We obtain a small solution such that

$$
f\left(t, p_{*}\right) \leq \varepsilon \exp \left(-\left|p_{*}\right|^{2}\right) \quad \text { or } \quad \hat{f}(t, \hat{p}) \leq \varepsilon \exp \left(-R^{2}|\hat{p}|^{2}\right)
$$

\triangleright In the Bianchi I case we may choose $\exp \left(\bar{g}^{a b} p_{a} p_{b}\right)$ to get

$$
\hat{f}(t, \hat{p}) \leq \varepsilon \exp \left(-t^{\frac{4}{3}}|\hat{p}|^{2}\right)\left(=\varepsilon \exp \left(-\bar{g}^{a b} p_{a} p_{b}\right)\right) .
$$

\triangleright For a small ε such that $\frac{d}{d t}\left[t^{-\varepsilon} \bar{g}^{a b}(t)\right] \leq 0$, we have

$$
\hat{f}(t, \hat{p}) \leq \varepsilon \exp \left(-t^{\frac{4}{3}-\varepsilon}|\hat{p}|^{2}\right)\left(=\varepsilon \exp \left(-t^{-\varepsilon} \bar{g}^{a b} p_{a} p_{b}\right)\right) .
$$

\triangleright Differentiability of solutions: [Guo-Strain, 12].

Thank you very much.

[^0]: http://de.wikipedia.org/wiki/Hyperboloid

