Block Spin Transformation of 2D O(N) sigma model, Toward solving a Millennium Problem

K.R.Ito

Inst. for Fundamental Sciences Setsunan Univ.

2015 Feb 23, RIMS, Kyoto Univ.

From HomePage of Clay Institute

1. Construction of 4D YM Field Theory (Jaffe, Witten)
2. Solution of Navier-Stokes Equation (Feffermann)
3. Riemann Conjecture (Bombieri)

What kind of Analysis do we need in these problems ?

Difficulties in 4D LGT, 2D Sigma and NvS Eq

1. The system is non-linear. Difficult to find linear part (or Gaussian part)
2. There appear relevant terms (increasing coupling constats by BST)
3. Relevant term means non-gausian integral

History of 2D Spin Systems

2D O(N)Spin Model is simple, but hard to analyze.

1. 2 D Ising spin, existence of spontaneous magnetization, R.Peierls (1936), L.Onsager (1944)
2. Kosterlitz-Thouless Transition in 2D XY model, J.Fröhlich and T.Spencer (1982)
3. non-existence of phase transition in the Heisenberg model with large N (\sim quark confinement in YM_{4}) (this talk)

The Model

The 2D $O(N)$ Heisenberg model. Strong non-linearity:

$$
\begin{aligned}
& \langle\cdots\rangle=\int(\cdots) \exp \left[\sum_{n . n .} \phi_{x} \phi_{y}\right] \prod_{x} \delta\left(\phi^{2}(x)-N \beta\right) d^{N} \phi_{x} \\
& =\int(\cdots) \exp \left[\sum_{n . n .} \phi_{x} \phi_{y}+\frac{i}{\sqrt{N}}\left\langle: \phi^{2}:, \psi\right\rangle\right] \prod_{x \in \Lambda} \frac{d \psi(x)}{2 \pi} d^{N} \phi_{x}
\end{aligned}
$$

where x, y are lattice points $x, y \in \Lambda \subset Z^{2}$ and

$$
\left\langle: \phi^{2}:, \psi\right\rangle=\sum_{x}\left(\phi^{2}(x)-N \beta\right) \psi(x)
$$

(This technique turns out to be not so helpful.)

The Gibbs measure:

$$
\begin{aligned}
& \langle f(\phi)\rangle=\int f(\phi) \exp \left[-W_{0}(\phi, \psi)\right] \prod_{x} d^{N} \phi(x) d \psi(x) \\
& W_{0}=\frac{1}{2}\left\langle\phi,\left(-\Delta+m_{0}^{2}\right) \phi\right\rangle+\frac{g_{0}}{2 N}\left\langle: \phi^{2}:,: \phi^{2}:\right\rangle-\frac{i}{\sqrt{N}}\left\langle: \phi^{2}:, \psi\right\rangle \\
& : \phi^{2}:(x)=\sum_{i=1}^{N} \phi_{i}^{2}(x)-N G(0), \quad \beta=G(0)
\end{aligned}
$$

Here $(-\Delta)_{x y}=4 \delta_{x y}-\delta_{1, \mid x-y} \mid$ is the Lattice Laplacian on Z^{2}.
$G(0)=\beta$ means $m_{0}^{2} \sim 32 e^{-4 \pi \beta}$:

$$
G(x)=\frac{1}{-\Delta+m_{0}^{2}}(x)=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{e^{i p x}}{m_{0}^{2}+2 \sum\left(1-\cos p_{i}\right)} \prod \frac{d p_{i}}{2 \pi}
$$

W_{0} has two main Gaussian terms+(double well pot.):

$$
\begin{aligned}
& \exp \left[-\frac{1}{2}\left\langle\phi,\left(-\Delta+m_{0}^{2}\right) \phi\right\rangle-\frac{g_{0}}{2 N}\left\langle: \phi^{2}:,: \phi^{2}:\right\rangle\right] \\
& \exp \left[-\operatorname{Tr}(G \psi)^{2}\right]=\exp \left[-\left\langle\psi, G_{0}^{\circ 2} \psi\right\rangle\right]
\end{aligned}
$$

Here $g_{0} \geq 0$ can be chosen arbitrary. Here the second term is from the expansion of

$$
\operatorname{det}^{-N / 2}\left(1+\frac{2 i}{\sqrt{N}} G \psi\right) \exp \left[-\sum_{x} i \sqrt{N} \beta \psi(x)\right]
$$

RG is iterative integration over high p part of ϕ and ψ which keeps these Gaussian terms invariants.

Decompose $\left\langle\phi,\left(-\Delta+m_{0}^{2}\right) \phi\right\rangle$ into many Gaussians with covariances $\Gamma_{n}=Q^{+} G_{n}^{-1} Q$:

$$
\begin{aligned}
& \left\langle\phi,\left(-\Delta+m_{0}^{2}\right) \phi\right\rangle=\left\langle\phi, G_{0}^{-1} \phi\right\rangle \\
& =\left\langle\phi_{1}, G_{1}^{-1} \phi_{1}\right\rangle+\langle z_{0}, \underbrace{Q^{+} G_{0}^{-1} Q}_{\Gamma_{0}^{-1}} z_{0}\rangle
\end{aligned}
$$

and continue, where

$$
\begin{aligned}
\phi_{n}(x) & =\left(C \phi_{n}\right)(x)=\frac{1}{L^{2}} \sum_{\zeta \in \Delta_{0}} \phi_{n-1}(L x+\zeta) \\
G_{n}(x, y) & =\frac{1}{L^{4}} \sum_{\zeta, \xi \in \Delta_{0}} G_{n-1}(L x+\zeta, L y+\xi)
\end{aligned}
$$

and

$$
\begin{aligned}
\phi_{n}(x)= & A_{n+1} \phi_{n+1}+Q z_{n} \\
Q z_{n}= & Q \Gamma_{n}^{1 / 2} \xi_{n}=\text { block average zero fluctuations } \\
& \text { where } \xi_{n}=\mathrm{N}(1,0)
\end{aligned}
$$

Put $\Lambda_{n}=\left\{L^{-n} \wedge \cap Z^{2}\right\}$ and see boxes (of side length $\left.L, L^{2}, L^{3}, \cdots\right)$ where ξ_{k} lives on the lattice of width L^{k}

Fluctuations z_{n} constrained by Double-Wells

$\exp \left[-\frac{g}{N}\left(\left(\phi_{n+1}+z_{n}\right)^{2}-N \beta_{n}\right)^{2}\right]$, yields strong constraint on z_{n} :

Fluctuations $\xi_{n}(x)$ perpenficular to $\phi_{n+1}(x)$ have $N-1$ degrees of freedom of gaussian fields. They propagate along the bottom of the bottle

BST=Perturbation around the Gaussians:

C leaves the fundamental Gaussian measures invariant. They are left inv by C :

$$
\begin{aligned}
& G_{n}(x, y)=\left(C G_{n-1} C^{+}\right)(x, y) \sim G_{0}(x, y) \\
& \exp \left[-W_{n+1}\left(\left\{\phi_{n+1}\right\}\right)\right] \\
& \equiv \int \exp \left[-W_{n}\left(\left\{\phi_{n}\right\}\right)\right] \prod_{x \in \Lambda_{n+1}} \delta\left(\phi_{n+1}(x)-\left(C \phi_{n}\right)(x)\right) \\
& \times \prod_{\zeta \in \Lambda_{n}} d \phi_{n}(\zeta)
\end{aligned}
$$

We expect W_{n} keeps its main terms invariant

$$
\begin{aligned}
W_{n}\left(\phi_{n}, \psi_{n}\right)= & \frac{1}{2}\left\langle\phi_{n}, G_{n}^{-1} \phi_{n}\right\rangle+\frac{g_{n}}{2 N}\left\langle\phi_{n}^{2}: G_{n}, \phi_{n}^{2}: G_{n}\right\rangle \\
& + \text { correction } \\
G_{n}(0)= & \beta_{n} \sim \beta_{0}-\text { const.n }
\end{aligned}
$$

Problem: W_{n} keeps its form with small irrelevant corections ?
large or violent $\phi=$ Long Domain Walls + Short Domain walls

$$
D\left(\phi_{n}\right)=D_{w}\left(\phi_{n+1}\right) \cup R\left(z_{n}\right)
$$

Short Domain walls =fluctuations removed by BST(Trimming)

Block Spin=Trimming short waves

Fluctuations $\xi_{n}(x)$ perpenficular to $\phi_{n}(x)$ have $N-1$ degrees of freedom of gaussian fields.

RG=Contraction Map on Banach Space \mathcal{H}

Namely we consider of Flow of Space \mathcal{K}_{n} of Spin
Configurations

$$
\mathcal{K}_{1} \supset \mathcal{K}_{2} \supset \cdots \supset \mathcal{K}_{n}
$$

$\mathcal{K}_{n}=$ smoothly propagating spin waves on the surfaces of balls

1. no domain walls

$$
\begin{aligned}
& \left|\phi_{n}(x) \phi_{n}(y)-N \beta_{n}\right|<N^{1 / 2+\varepsilon} \exp [(c / 10)|x-y|] \\
& \forall x, y \in K
\end{aligned}
$$

2. $\left|\phi_{n}(x)^{2}-N \beta_{n}\right|<N^{1 / 2+\varepsilon}$
3. $\left|\nabla \phi_{n}(x)\right|<N^{1 / 2+\varepsilon}$

Block spin $\phi_{n}(x) \quad=$ Low Mom. spin +High Mom. spin $=$ Next order BS+ Zero Ave. Fluct.
$=\sum_{y} A_{n+1}(x, y) \phi_{n+1}(y)+\sum_{y}(Q)_{x y} \zeta_{y}$
Approximately, $A \in \operatorname{Mat}\left(L^{2}, 1\right), Q \in \operatorname{Mat}\left(L^{2}, L^{2}-1\right)$:

$$
A(x, y) \sim\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right), Q(x, y)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & -1 & -1 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Q^{+}acts as a differential operator.

$$
Q=U|Q|, \quad U U^{+}=E^{\perp}=\text { proj to } \mathcal{N}(C)
$$

Serious difficulty is

$$
\phi_{n}(x)=A_{n} \phi_{n+1}+Q \xi(x) \sim \phi_{n+1}([x / L])+Q \xi(x)
$$

Namely $\phi_{n}(x),|x|<L / 2$ contain L^{2} of $\phi_{n+1}([x / L])$. Thus

$$
\begin{gathered}
\sum_{x \in \Lambda_{n}} \phi_{n}^{2}(x) \sim L^{2} \sum_{x \in \Lambda_{n+1}} \phi_{n+1}^{2}(x) \\
\sum_{x \in \Lambda_{n}}\left(: \phi_{n}^{2}: G_{n}(x)\right)^{2} \sim L^{2} \sum_{x \in \Lambda_{n+1}}\left(: \phi_{n+1}^{2}(x): G_{n+1}\right)^{2}
\end{gathered}
$$

ϕ^{4} term increases exponentially in n, i.e. relevant term.

BUT THIS DOES NOT HAPPEN.

Theorem on the RG flow

The main part of W_{n} is represented by 3 terms and three parameters $\beta_{n}, g_{n}, \gamma_{n}$ and m_{n}^{2},

$$
\begin{aligned}
W_{n}\left(\phi_{n}, \psi_{n}\right)= & \frac{1}{2}\left\langle\phi_{n}, G_{n}^{-1} \phi_{n}+\frac{g_{n}}{2 N}\left\langle: \phi_{n}^{2}: G_{n},: \phi_{n}^{2}: G_{n}\right\rangle\right. \\
& \left.+\frac{1}{2} \gamma_{n}<\phi_{n}^{2}, E^{\perp} G_{n}^{-1} E^{\perp} \phi_{n}^{2}\right\rangle
\end{aligned}
$$

where

1. $G_{n}^{-1}=-\Delta+m_{n}^{2}, m_{n}^{2}=L^{2 n} m_{0}^{2}$
2. $\gamma_{n}=\left(N \beta_{n}\right)^{-1}$.
3. $g_{n}=g^{*}=O(1)>0$ (fixed point)
4. $E^{\perp}=$ projection to $\mathcal{N}(C)=\{f ; C f=0\}$

- the first two terms = marginal (main term)
- the last term is irrelevant. it fades e away.
- $\left(: \phi_{n}^{2}:\right)^{2}$ is relevant but g_{n} converges to a constant in the scaling region

All this means is that the system simple and is close to ϕ_{4}^{4} model (triviality model). The flow is described by three parameters

$$
\begin{aligned}
& m_{n}^{2}=L^{2 n} m_{0}^{2} \sim \exp [-4 \pi \beta+2 n \log L] \rightarrow O(1) \\
& \beta_{n}=\beta-\text { const. } n \rightarrow O(1) \\
& \gamma_{n}=O\left(\left(\beta_{n} N\right)^{-1}\right) \\
& g_{n}=O(1)
\end{aligned}
$$

Main Conclusion

This means that system goes to the single-well potential, and then absence of phase transitions follows.

Sketch of the Proof

Main Ideas and Theorems:

Set $\phi_{n}=A_{n+1} \phi_{n+1}+z_{n}, z_{n}=Q \xi_{n}$ so that

$$
\begin{aligned}
\left.<\phi_{n}, G_{n}^{-1} \phi_{n}\right\rangle & \left.=<\phi_{n+1}, G_{n+1}^{-1} \phi_{n+1}\right\rangle+\left\langle\xi_{n}, \Gamma_{n}^{-1} \xi_{n}\right\rangle, \\
\Gamma_{n}^{-1} & =Q^{+} G_{n}^{-1} \sim Q^{+}(-\Lambda) Q>O(1) \\
: \phi_{n}^{2}(x): G_{n} & =: \phi_{n+1}^{2}(x): G_{n+1}+q(x) \\
q(x) & =2 \phi_{n+1}(x) z_{n}(x)+: z(x)_{n}^{2}: \Gamma_{n}
\end{aligned}
$$

Calculate

$$
\begin{aligned}
P\left(\varphi_{n+1}, p\right) & =\int \exp \left[\frac{i}{\sqrt{N}}\langle(p-q), \lambda\rangle\right] d \mu(\xi) \prod d \lambda_{x} \\
d \mu(\xi) & =\exp \left[-\left\langle\xi, \Gamma_{n}^{-1} \xi\right\rangle\right] \prod d \xi_{x}
\end{aligned}
$$

the distribution function of $2 \phi_{n+1}(x) z_{n}(x)+: z(x)_{n}^{2}: \Gamma_{n}$ with respect to $d \mu(\xi)$

Thorem 1:

$$
\begin{aligned}
P(p, \varphi) & =\exp \left[-\frac{1}{4 N}\left\langle p, \frac{1}{M} p\right\rangle\right] \\
M & =\Gamma_{n}^{\circ 2}+2\left(\phi_{n} \phi_{n}\right) \Gamma_{n}
\end{aligned}
$$

This is approximately Gaussian which depends on the

domain wall $\phi_{n}(x) \phi_{n}(y)-N \beta_{n}$

Definition of Domain Wall

Domain walls are paved set such that

$$
\begin{gathered}
\left|\phi_{n}(x) \phi_{n}(y)-N \beta_{n}\right|>N^{1 / 2+\varepsilon} \exp [(c / 10)|x-y|] \\
\forall x \in D_{w}, \exists y \in D_{w}
\end{gathered}
$$

$1 / 2$ is the central limit theorem for $\sum: \xi_{i}^{2}$:. Outside of D_{w},

$$
\begin{gathered}
\left|\phi_{n}(x) \phi_{n}(y)-N \beta_{n}\right|<N^{1 / 2+\varepsilon} \exp [(c / 10)|x-y|] \\
\forall x \in D_{w}^{c}, \forall y \in D_{w}^{c}
\end{gathered}
$$

Thus

$$
\phi_{n}(x) \phi_{n}(y)=N G_{n}(x, y) \quad \text { on }\left(D_{w}\right)^{c}
$$

Theorem 2

Domain Wall region D_{w} has high energy:

$$
\int \exp \left[-\frac{1}{2}<\varphi_{n}, G_{0}^{-1} \varphi_{n}>_{D_{w}}\right] d \mu(\xi)<\exp \left[-N^{2 \varepsilon}\left|D_{w}\right|\right]
$$

Outside of D_{w}, we can can replace $\varphi \varphi$ by $N G_{n}$, and we have a Gaussian integral over p.

We integrate over ξ under the influence of long spin wave by p variables. Using : $\varphi_{n}^{2}:^{2}=\left(: \varphi_{n+1}^{2}:+p\right)^{2}$, we replace ξ^{4} by p^{2} : Theorem 3

$$
\begin{aligned}
& \int \exp \left[-\frac{g_{n}}{2 N}\left\langle: \varphi_{n}^{2}:,: \varphi_{n}^{2}:\right\rangle+(\ldots . .)\right] d \mu(\xi) \\
= & \int \exp \left[-\frac{g_{n}}{2 N}\left\langle: \varphi_{n+1}^{2}:+p,: \varphi_{n+1}^{2}:+p\right\rangle\right] P(p, \varphi) \prod d p \\
P(p)= & \exp \left[-\left\langle p, M^{-1} p\right\rangle / 4 N\right]
\end{aligned}
$$

This can be done by steepesr descent+pertuebation. Then $g_{n} \rightarrow g^{*}$ (convergence).

Final Step:

Though W_{n} contains relevant ϕ^{4} term, its strength g_{n} coverges to a constant $g^{*}=O(1)$, and the position of its bottom β_{n} cnverges to 0

Thank you very much for your attension and patience!

