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1. Motivations

Random matrix theory (RMT, or MM):
statistical mechanics with dynamical variable: matrices with rank N

1
7 — /dMij e—ﬁtrH(M), (O(M)) = ~ /dMij O (M) e —BtrH (M)
m large-N limit: 8 - ., N — oo with (8 — S.)N™: fixed
— critical phenomena (phase transition) (thermodynamic limit)

x. universal, but dynamical < difficult to fix in general

— formalism to extract universal quantities - RG approach of MM
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2. Review of large-N renormalization group

MN V; ) Brezin-Zinn-Justine ‘92

Begin with rank (N + 1) matrix: Mn41 = ( £y

i 8

among | dM;; , integrate only one column and row:
e—S;\T(MNag) — AN(Q) /d,vd,v*da e—SN+1(MNa'Ua’U*,Otag)

— result: regarded as rank N matrix model and read change of g
e.q.:

1
SN+1(MnNy1) = (N + 1)try4a (§M12\r+1 + %Mﬁrﬂ)
1 1
= (N +1) [trNJr1 (EMJZV + %Mﬁ,) + ’v*'v] + (N 4+ 1)g [v*MN'v + 5(fu*fu)2 + f(a)

1
— Sy(MnN) = (N +1) [trN (EM?V + %Mﬁ)] +gtrvMy +O(g°)



/ / ]‘ / g, / / ﬂ
1 .
g =g — N(g 4g*) : change of coupling under N » N — 1

0g
— B@ =1 =-9-49° — g =-1/4(-1/12), 7 =2(5/2)
0 (~)
Exact result (2D guantum gravity): David ‘89, Distler-Kawai ‘89

Zp—0 = A‘Ylf(ANz/ﬁh)a A=g.—g, 7 =25/2

string susceptibility
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m Advantages: simple one column & row calc. leads to large-N limit

N — oo & oo times one column & row RG < fixed pt. (universal)
universality of N - o cf. thermodynamic limit, continuum limit

m Drawbacks:

unclear notion of high/low energy modes (— locality of RG!)
Wilson-Kogut ‘74

space-time interpretation of matrices in string theory

— assign the notion of ‘energy’ to each matrix element naturally,
and then develop new large-N RG based on it

— expect nice correspondence to RG in usual field theory,
In particular, locality (in the space of matrices!)
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3. Review of fuzzy sphere

spin L SU(2) rep. (angular momentum operator) Ji, J,, J3:
[fi, fj] = l€;jk Jie N = (2L + 1)-dim. matrices
JE+J2+]5=L(L+1):eq. of S? — noncommutative (fuzzy sphere)

functions on S? N x N matrices
_ (m) 4, ie _ (fm) 7iq Tie
Yoo = E Ci iy " — Tom = E Cf,;l...q;EJ oo d
7:1)""7:2 ’1:1,"',7:2
‘e [ ]
© N X N matrix
¢ = SJ SJ Coem Yem § g ComTem (ZN 1 Z 1 — N2)
=0 m=—~¢ =0 m=—2~¢ £=0 m—=—2~¢ —

sp. of functions on S2 with £ < 2L =~ sp. of N x N Hermitian matrices
not closed closed! (alg. or ring)

(as vector. sp.)



m Laplacian & integration:

. 1 f
d? nm}fym/ = Ntr(TemTe,m,) — 5££’6mm'9

AYo, =L+ 1DYon — [Ty [Jis Tem]] = (€ + 1) Tom

m Regularization of field theory on S#:

field theory on S%: ¢(8,0) = X5 o Xt __ , GomYem (0, @)

matrix model: ¢ = SN0 B4 -, domTem
equivalence of action (change of basis):

S((00n)) = [ 029 (5 50(0.0)86(6.0) + 5-0(0.0)* + 5 5(6.)")

2

P 1 - - m2 2 g 4)
="trn s b, iy @] + — 6% +
- rN(zpqu[J Fodl + 750+ 40t)
with rotational symmetry! UR)TeUR)™ = ) TemRE,,. (R)

m’'=—~¢
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m Realization of the notion of angular momentum or energy
IN each matrix elements: ¢,

mN—1=2L:UV cutoff - N - o to recover C*(5%)

N?2q?
=—

[5(.'\1,5(.'\]] — iC(Eijij\k
noncommutativity

N2ma® =~ 4mp*: S? divided by N2 cells (cf. lattice a ~ «a)

we take N — oo with noncommutativity « fixed

— field theory on fuzzy sphere

m Moyal plane: [x, y] = i0 : o-dim. — inadequate for large-N RG
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4. Large-N RG on fuzzy sphere

Formulation:
Start by matrix model with N x N Hermitian matrix

b =YL Yo BomTom (2L = N —1):

2 2
Sn = p_NtrN ( P 9 [Jzaqb]] N I 9N¢4>

N 2 4

we integrate only cutoff modes ¢,; ., (im = —2L, -+, 2L)
—effective action:

2L
e=Sn —/ H dpor m €N, (Z 1=4L—|—1:2N—1=N2_(N_1)2)

m=—2L m=——2L

and rewrite Sy_,; as (N — 1)? matrix model — read (m%_4, gn—1)



=
m Integrate “highest energy” modes — expect “local” & nice RG

>kcompared BZ, only different basis we favor — important for locality
m Not only large-N RG as well as RG of field theory on fuzzy sphere

RG of noncommutativity, nonlocality
— understand nonlocal nature, scale dependence of QFT

m However, it seems (at least to me) that Sy_, can be again rewritten in
terms of standard operation among matrices with rank N — 1:

2L

e—SN—l({¢efm}) — / H d¢2Lm€_SN({¢£m})
/\ m=—2L

Qontrivial function of ¢ {,:m>

m \We compute RHS in perturbation theory with respect to gy
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5. Properties of large-N RG

1. multi trace operators are generated in general 4 3
AN (O Tor mTorme) trN(O° Tor e Tor m) >©<
1 2 3 4N

(2L mP2rm’) = B2ap(—1)"0mms, Aop = N(N —1) 4 pgm%

2

A 1 .
However, above eq.= N _2L1)N (tqub4 — ot (qbz [J [Ji,qbz]D +. )

cf. field theory case:  ¢° [ dz [ dy¢(2)*6(y)* Az —y)*  : bilocal field
A(x — y) : highly massive mode propagator
— short distance, rapidly damp as x — y : large
— derivative exp. Is good — local field with derivative expansion

above: derivative exp. in the space of matrices < locality of our RG
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2. nonplanar diagram generates nonlocal interactions
e.g.: mass correction

planar: > (¢2rme2rm) trn (9°Tor mTer m’)

gn
= (2N —1)Az1 Y ¢}, . em = N(2N — 1) Azptry(¢?)

£,m

nonplanar: .
Z (D2L m®2L m') trN (dTor, m@Tor m/) N -
1 0L +1) 1
- relw)

1

£,m

“antipode transformation” ¢ = Y, GemTem — ¢ = Lo (1) bomTom

%N(ZN —1)Agp [tPN (p" ) + %trN ([ji,qu][j,,;,gb]) + .. ]



W

antipode transf.. ¢ = %, demTem — ¢ = Zpm(— 1) bomTem
counterpart: Y,,, (6, @) — Yo, (mr — 0,0 + 1) = (—=1)*Y,,,,(6, )
matrix model “knows” most natural discrete transf. on S?2

Note: equality!

1
—trw (99%) = / dQ2 $(6, )b (m — 0, + )

nonlocal interaction

In the spirit of RG, it is natural to introduce terms with ¢4 from the
beginning
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We are led to start by action with antipodal interaction
Sn = SJ(\chin.) i SJ(\};ot.)

2 CN 2 "'2

; 1 1 . .
S = e (010 17 01 + PNTIN g2 SN A1, 7,y ) + PN g )

sPot) _ fl)jl:rftr ((0)¢4+ kD3 1+ (2a)¢2(¢A)2+R(25)(¢¢A)2)

(a) up to 1st nontrivial order

— RG of 6 parameters!

by pert. theory In

Note again that %ngg)twﬁ = k' [ d2¢(0, p)*
while NnE\,)trN (¢%9p2) = kS [ dQ29(0,9)3p(7 — 0, + )

nonlocal int.
> we can restrict ourself to the case with # of ¢4 < 2

(@) =, trn (¢1---dn) = trn (o - -+ 92)
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6. Fixed point analysis

(m%, Mm%, ;c ) - (Mm% _q, M5_4, ;c ) how to get universal quantities?
Scale transformation

block spin transf.: to recover the original a
scale transf. p » bp (a » b~ 1a)

present case: unique scale py — NC ai = p&/N? > -
RG N — N — 1 increases noncommutativity
— recover the original noncommutativity via py_4 1:/51 + 1/N)py )

N—1

— ay_1 = py—1/N = ay l.e. scale transf. by = =14+ —
1/pN N

scaling dimension: response to scale transtf.
— scaling dim. = d < eigenvalue of RG transf. near fp. = b¢ ~ 1+ d/N



Moyal plane limit (different large-N limit): Chu-Madore-Steinacker '92

: : . ~ ~\—1 A~axN—1a~
stereographic projection: x, = 2pnf+(on —J3) , x_=2pn(pon —J3) J-

N — oo with 8 = 2p% /N : fixed and restrict f; = —py + O(1/VN)
near “south pole”

— %1, %] = =10 (x4 = xq £ ixy)
- PN _ PR 1
Inthiscase, =2 === > py =1+ —
N N-1 2N

we can describe field theories on fuzzy sphere and Moyal plane
simultaneously and how to read scaling dimensions there is quite evident!!



RGE

11 1 i
my_; = by, [m?\r +2(2N — 1)Apn (n“’) + (— —~ —(—1)”)@3} + 5(1 — (—)N)«§ ))
—2(2N — 1)*AR by (%N) + ( = ()NM)RQ + (1= (—1)N)x (2“))
X (K9 — (—D)VRD + 12 4 nﬁﬁ))}

1 1 o 2
w1 = by [ N — 2(2N — AR AR ("‘353) + (Z - 5(—1)N)ﬁ:§\1r) + = ( — (= 1)N) < )) ]

m higher order terms are strongly suppressed: locality of our RG
Ay . highly suppressed « fuzzy sphere structure

m essentially same form as in field theory case <« nice similarity

m depend on whether N iIs even or odd (from CG coefficients)
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Schematically, RGE takes form

OO (wN e (6)) Z (3) ()+Zd(z)w%)x§v) (i,j,k =1,--+ ,6)
recursion relation
fixed pt. egs.: 2 =@ (2,...,2®) (6 quadratic egs.)
have different solutions for even/odd N — do not converge
However, If we construct two-step RG (i.e. keeping even/odd):
2 = g® (wgv>, . ,wgf;))

by using one-step RG twice, then they have the same fps.!
in spite of the fact that g(!)’s are different for even/odd N

# of fixed pts.: 4 (including the Gaussian fp.: xfi) = 0 for all i)
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Around each fixed pt., we linearize the RG transt.:
5z, = R;;620), 62) =2() — 2®

6 eigenvalues= bl = (1 + 1/N)% =~ 1 + d;/N — scaling dim.= d;
List:
@ Gaussian FP.: a2m? = a2/i? = a2k'® =0, d;, = 2 for all i

@ three nontrivial FPs (Wilson-Fisher type): canonical dimension

(afim?, af 2, afie.”, afis, afic*®, afl®)

(-0.50, 0.50, 0.42, —1.71, 0.21, 1.06)
b. (—0.23, 0.42, 0.23, —1.71, 0.46, 1.33)
(—0.48, 0.51, 0.06, 0.25, 0.12, 0.07)

consistent with
perturbation theory



" A
Scaling dimensions of operators around nontrivial fixed pts.:

a.
b.

C.

(—2.65,2.00,2.00,1.44 + 0.77i,1.44 — 0.77i,0.48)
(—2.34,2.00,2.00,1.38 + 0.711,1.38 — 0.71i,—0.55)
(—2.66,2.00,2.00,1.99,1.88,1.33)

Observations:

1.

all fixed pts. have two degenerate operators of dim. 2
— dm% & 6mi% (in fact, 86% for a, b and 99% for c in
eigenvec.)

complex scaling dimension??
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Essentially we are considering two linear differential egs.:
5:1'3(7') — R,,;jéaz(g), i,j — 1, 2

R;; has complex eigenvalues a * ifs

( Z’g; ) — e (cos Bt + i sin Bt) ( ;"Eg; )

S periodicity, a > 1: source — spiral source flow!

guite rare in RG flow

>< usually, in standard field theory case, we have independent
operators with different quantum numbers — they never mix

present case: ¢ & ¢ have exactly the same quantum no. — mix!
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8. Conclusions & discussions

m by use of fuzzy sphere structure, we bring the notion of energy in the
space of matrices, based on which we develop large-N RG

— local, similarity to the usual RG In field theory
m RG with rotational symmetry preserved
m honplanar diagrams generate antipode matrices

— we have to include them — RG with nonlocal interaction
m not only Gaussian, but nontrivial fixed pts. are found

— existence of field theory on fuzzy sphere with maximal nonlocal Int.
m Moyal plane limit: NO fixed points are found

(fixed pts.. disagree for N even/odd )

antipode transf. is not compatible with “near the south pole”



