CoOP IITH MATHPROGRAM

Rigorous numerics of global orbits for fast－slow systems

Kaname Matsue

－The Institute of Statistical Mathematics
Coop－with－Math Program（MEXT）
2015．2．23－2．24
Dynamical Systems in Mathematical Physics＠RIMS，Kyoto

The Institute of Statistical Mathematics

Fast-slow system

$(*)_{\epsilon}$

$$
\begin{aligned}
& \dot{x}=f(x, y, \epsilon) \\
& \dot{y}=\epsilon g(x, y, \epsilon), \quad 0 \leq \epsilon \ll 1 \\
& x \in \mathbb{R}^{n}: \text { fast, } y \in \mathbb{R}^{k}: \text { slow, } t \in \mathbb{R}: \text { time }
\end{aligned}
$$

ex. FitzHugh-Nagumo

$$
\begin{aligned}
& \text { ex. FItzHugn-Nagumo } \\
& u_{t}=\delta u_{x x}+f(u)-\lambda \\
& \lambda_{t}=\epsilon(u-\gamma \lambda) \\
& u(x, t) \mapsto u(x-\theta t)
\end{aligned}
$$

Multiscale Problems in e.g. Materials Science, Life Science.

Fast-slow system

ex. FitzHugh-Nagumo
$\dot{u}=v$
$\dot{v}=\delta^{-1}(\theta v-f(u)+\lambda)$
$\dot{\lambda}=\epsilon \theta^{-1} u$ f : cubic nonlinearity
$\varepsilon=0:\{(u, v, \lambda) \mid v=0, \theta v-f(u)+\lambda=0\}$ is a family of equilibria (nullcline)
$\varepsilon>0:(0,0,0)$ is the only equilibrium.
s.t. $f(0)=f(1)=0$

heteroclinic orbits and critical manifolds by nullclines

Fast dynamics

Slow dynamics
$\varepsilon>0$: Sufficiently Small
homoclinic orbits

Fast-slow system

ex. FitzHugh-Nagumo
$\dot{u}=v$
$\dot{v}=\delta^{-1}(\theta v-f(u)+\lambda)$
$\dot{\lambda}=\epsilon \theta^{-1} u$ f : cubic nonlinearity
$\varepsilon=0:\{(u, v, \lambda) \mid v=0, \theta v-f(u)+\lambda=0\}$ is a family of equilibria (nullcline)
s.t. $f(0)=f(1)=0$

heteroclinic orbits and critical manifolds by nullclines

$\varepsilon>0$: Given
homoclinic orbits?

Goal : Produce the validation method for the existence of global orbits for given ε as the continuation of singular limit orbits for fast-slow systems.

3.

Key : Solve each scaled problem independently and match them.

Preceding works (examples)

Connecting Orbits + Rigorous Numerics

D. Wilczak, Found. Comput. Math. (2006), 495--535.

Rigorous numerics of horseshoes, Shi'lnikov orbits and N-pulse solutions via covering relations
J. Mireles-James, J.P. Lessard, J.B. van der Berg and K.

Mischaikow, SIAM J. Math. Anal. 43(201 1), 1557--1594.
Rigorous numerics of connecting orbits via Radii Polynomials + Parametrization

Singular Perturbation + Rigorous Numerics

M. Gameiro, T. Gedeon, W. Kalies, H. Kokubu, K. Mischaikow and H. Oka, J., Dyn., Diff., Eq., 19 (2007), 623--654.

Singularly perturbed Conley index \rightarrow horseshoes in fast-slow systems
("sufficiently close ε ")
Examples of interval arithmetics libraries : INTLAB, PROFIL, CAPD

1. Slow Dynamics
2. Fast Dynamics
3. Matching : "Covering-Exchange"
4. m-cones
5. Towards Validation -- overview (FitzHugh-Nagumo)

1. Slow Dynamics

2. Fast Dynamics

Slow manifold

$\varepsilon=0$

$$
\begin{aligned}
\dot{x} & =f(x, y, 0) \\
\dot{y} & =0
\end{aligned}
$$

$M_{0} \subset\{f(x, y, 0)=0\}$
(invariant)

$$
\epsilon \in\left(0, \epsilon_{0}\right]
$$

$$
\begin{aligned}
& \dot{x}=f(x, y, \epsilon) \\
& \dot{y}=\epsilon g(x, y, \epsilon)
\end{aligned}
$$

(locally invariant)

Slow manifold

$$
\epsilon \in\left(0, \epsilon_{0}\right]
$$

$$
\begin{aligned}
& \dot{x}=f(x, y, \epsilon) \\
& \dot{y}=\epsilon g(x, y, \epsilon)
\end{aligned}
$$

Expression of Stable and Unstable Manifolds

$$
\begin{aligned}
\lim _{t \rightarrow-\infty} x(t ; \lambda) & =p \\
\lim _{t \rightarrow+\infty} & x(t ; \lambda)
\end{aligned}
$$

How can we verify the infinitetime behavior mathematically with finitely many memories ?

Where is the slow manifold ?
Is it really perturbed from M_{0} ?
Which is the direction of (un)stable manifolds ?

Validation of slow manifolds

Invariant Manifold Theorem [Fenichel, 1979]

If the critical manifold M_{0} is normally hyperbolic at $\varepsilon=0$, then for sufficiently small $\varepsilon, W^{u}\left(M_{\epsilon}\right)$ and $W^{s}\left(M_{\epsilon}\right)$ can be defined by graphs of smooth functions $b=h_{u}(a, y, \epsilon)$ and $a=h_{s}(b, y, \epsilon)$, respectively (a : fast unstable var., $\mathbf{b}:$ fast stable var.).

$$
\dot{a}=A a+F_{1}(a, b, y, \epsilon) \quad \operatorname{Spec}(A) \subset\{\operatorname{Re} \lambda>0\}, \operatorname{Spec}(B) \subset\{\operatorname{Re} \lambda<0\}
$$

Diagonalize at
$\dot{b}=B b+F_{2}(a, b, y, \epsilon) \quad F_{1}, F_{2}=o(|a|,|b|)$ a point

$$
\dot{y}=\epsilon g(a, b, y, \epsilon)
$$

$$
\begin{aligned}
& K \subset \mathbb{R}^{k}: \text { cpt, convex } \\
& B=B_{1} \times B_{2} \subset \mathbb{R}^{n}: \text { cpt, convex s.t. } \\
& f(x, y, \epsilon) \cdot \nu_{\partial B_{1}}>0 \text { on } \partial B_{1} \times B_{2} \times K \times\left[0, \epsilon_{0}\right], \\
& f(x, y, \epsilon) \cdot \nu_{\partial B_{2}}<0 \text { on } B_{1} \times \partial B_{2} \times K \times\left[0, \epsilon_{0}\right]
\end{aligned}
$$

(Fast-saddle-type Block. a : unstable coord., b : stable coord.)

Validation of slow manifolds

$K \subset \mathbb{R}^{k}:$ cpt, convex
$B=B_{1} \times B_{2} \subset \mathbb{R}^{n}:$ cpt, convex
Thm. [M. cf. Jones (1995) Theorem 4]

$$
\begin{aligned}
\dot{a} & =A a+F_{1}(a, b, y, \epsilon) \\
\dot{b} & =B b+F_{2}(a, b, y, \epsilon) \\
\dot{y} & =\epsilon g(a, b, y, \epsilon)
\end{aligned}
$$

Define Maximal Singular Values of matrices :

$$
\begin{aligned}
& \sigma_{\mathbb{A}_{1}}^{s}: \mathbb{A}_{1}(z)=\left(\frac{\partial F_{1}}{\partial a}(z)\right), \sigma_{\mathbb{A}_{2}}^{s}: \mathbb{A}_{2}(z)=\left(\begin{array}{lll}
\frac{\partial F_{1}}{\partial b}(z) & \frac{\partial F_{1}}{\partial y}(z) & \frac{\partial F_{1}}{\partial \eta}(z)
\end{array}\right), \\
& \sigma_{\mathbb{B}_{1}}^{s}: \mathbb{B}_{1}(z)=\left(\frac{\partial F_{2}}{\partial a}(z)\right), \sigma_{\mathbb{B}_{2}}^{s}: \mathbb{B}_{2}(z)=\left(\begin{array}{lll}
\frac{\partial F_{2}}{\partial b}(z) & \frac{\partial F_{2}}{\partial y}(z) & \frac{\partial F_{2}}{\partial \eta}(z)
\end{array}\right) \\
& \sigma_{g_{1}}^{s}: g_{1}(z)=\left(\frac{\partial g}{\partial a}(z)\right), \sigma_{g_{2}}^{s}: g_{2}(z)=\left(\begin{array}{ll}
\frac{\partial g}{\partial b}(z) & \frac{\partial g}{\partial y}(z) \\
\frac{\partial g}{\partial \eta}(z)
\end{array}\right)
\end{aligned}
$$

Assume the following inequalities (stable cone conditions) :

$$
\inf \operatorname{Spec}(A)-\left(\sup \sigma_{\mathbb{A}_{1}}^{s}+\sup \sigma_{\mathbb{A}_{2}}^{s}\right)>0,
$$

$\inf \operatorname{Spec}(A)+\inf |\operatorname{Spec}(B)|$

$$
-\left\{\sup \sigma_{\mathbb{A}_{1}}^{s}+\sup \sigma_{\mathbb{A}_{2}}^{s}+\sup \sigma_{\mathbb{B}_{1}}^{s}+\sup \sigma_{\mathbb{B}_{2}}^{s}+\epsilon_{0}\left(\sup \sigma_{g_{1}}^{s}+\sup \sigma_{g_{2}}^{s}\right)\right\}>0,
$$

Then for all $\epsilon \in\left[0, \epsilon_{0}\right] W^{s}\left(M_{\epsilon}\right) \cap(B \times K)$ can be represented by the graph of a Lipschitz function on $B_{2} \times K$. The similar statement holds for $W^{u}\left(M_{\epsilon}\right) \cap(B \times K)$. The slow manifold M_{ϵ} is the k-dimensional submanifold in $B \times K$ can be represented by their intersection. In particular, M_{0} is normally hyperbolic.

Validation of slow manifolds

Fast-saddle-type blocks :

Slow manifold exists somewhere in the block.
The size of this block corresponds to the rigorous error between approximate and rigorous slow manifolds.

Cone conditions :
(Un)stable manifolds of slow manifolds have graph representations on (un)stable coordinates in blocks.
Exit contains a point of unstable manifolds.
Entrance contains a point of stable manifolds.

Rigorous bound of manifolds can be explicitly estimated via rigorous numerics ! Requirements : inner product and singular values.

Towards rigorous numerics

Key. Fast-saddle-type block, Cone condition

Blocks: Zgliczynski-Mischaikow (FoCM, 2001)
Cone condition, construction of Lyapunov functions :
Ref. : Zgliczynski (2009), M. (NOLTA, 2013)
Lyapunov function + Implicit Function Theorem \rightarrow normal hyperbolicity

2. Fast Dynamics

3. MatchingCovering-モxchange"

Covering relations

Def. [h-sets, Zgliczynski-Gidea (2002)]

h -set is the 4-tuple of the following :
$N \subset \mathbb{R}^{n}$: A compact set
$u(N), s(N) \in \mathbb{Z}_{\geq 0}$ s.t. $u(N)+s(N)=n$
$c_{N}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{u(N)} \times \mathbb{R}^{s(N)}:$ A homeomorphism s.t.

$$
c_{N}(N)=\overline{B_{u(N)}} \times \overline{B_{s(N)}} .
$$

Ex. : $u(N)=1, s(N)=2$
$u(N)$-dim. unit closed ball centered at the origin, radius 1 \square
$N_{c}:=\overline{B_{u(N)}} \times \overline{B_{s(N)}}$,
$N_{c}^{-}:=\partial \overline{B_{u(N)}} \times \overline{B_{s(N)}}$,
$N_{c}^{+}:=\overline{B_{u(N)}} \times \partial \overline{B_{s(N)}}$,
$N^{-}:=c_{N}^{-1}\left(N_{c}^{-}\right), \quad N^{+}:=c_{N}^{-1}\left(N_{c}^{+}\right)$.

$E x .: u(N)=2, s(N)=1$

Covering relations

Def. [Covering Relation, Zgliczynski-Gidea (2002)]

$N, M: h$-sets, $f: N \rightarrow \mathbb{R}^{\operatorname{dim} M} \quad u(N)=u(M)$
Define $N \stackrel{f}{\Longrightarrow} M$ (\mathbf{N} f-covers \mathbf{M}) by

1. There is a homotopy $h:[0,1] \times N_{c} \rightarrow \mathbb{R}^{\operatorname{dim} M}$ such that $f(N)$

$$
\begin{aligned}
& h_{0}=f_{c}, \quad f_{c}:=c_{M} \circ f \circ c_{N}^{-1}, \\
& h\left([0,1], N_{c}^{-}\right) \cap M_{c}=\emptyset, \\
& h\left([0,1], N_{c}\right) \cap M_{c}^{+}=\emptyset,
\end{aligned}
$$

Ex. : u=1
2. There is a linear map $A: \mathbb{R}^{u} \rightarrow \mathbb{R}^{u}$ such that

$$
\begin{aligned}
& h_{1}(p, q)=(A(p), 0), \\
& A\left(\partial B_{u}(0,1)\right) \subset \mathbb{R}^{u} \backslash \overline{B_{u}}(0,1)
\end{aligned}
$$

\square $f(N)$
Ex. : u=2

Covering relations

Thm. [Zgliczynski-Gidea (2002), Wilczak (2006) etc.]
Let $\left\{M_{k}\right\}_{k=1}^{n}$: sequence of h -sets, $\quad u\left(M_{1}\right)=u\left(M_{2}\right)=\cdots=u\left(M_{k}\right)$ $f_{k}: M_{k} \rightarrow \mathbb{R}^{\operatorname{dim} M_{k+1}}:$ continuous
Assume $M_{1} \xrightarrow{f_{1}} M_{2} \xlongequal{f_{2}} \cdots \stackrel{f_{k-1}}{\Longrightarrow} M_{k}$.
Then

$$
\exists x \in M_{1} \text { s.t. } f_{i} \circ \cdots \circ f_{1}(x) \in \operatorname{int} M_{i+1}, \quad i=1, \cdots, k-1 .
$$

\square

Covering relations

Thm. [Zgliczynski-Gidea (2002), Wilczak (2006) etc.]
Let $\left\{M_{k}\right\}_{k=1}^{n}$: sequence of h-sets, $\quad u\left(M_{1}\right)=u\left(M_{2}\right)=\cdots=u\left(M_{k}\right)$ $f_{k}: M_{k} \rightarrow \mathbb{R}^{\operatorname{dim} M_{k+1}}:$ continuous
Assume $M_{1} \stackrel{f_{1}}{\Longrightarrow} M_{2} \xlongequal{f_{2}} \cdots \stackrel{f_{k-1}}{\Longrightarrow} M_{k}$.
Then

$$
\exists x \in M_{1} \text { s.t. } f_{i} \circ \cdots \circ f_{1}(x) \in \operatorname{int} M_{i+1}, \quad i=1, \cdots, k-1 .
$$

\square

"Matching"

Is there a point in a neighborhood of heteroclinic orbits, near slow manifolds and another fast jump ?

Mathematically known :
Exchange Lemma (Jones-Kopell 1994, etc.)

2. Fast Dynamics

3. Matching : "Covering-Exchange"

Covering-Exchange property

$(*)_{\epsilon}$

$$
\begin{aligned}
& \dot{x}=f(x, y, \epsilon) \\
& \dot{y}=\epsilon g(x, y, \epsilon), \quad 0 \leq \epsilon \ll 1 \\
& x \in \mathbb{R}^{n}: \text { fast, } y \in \mathbb{R}^{k}: \text { slow, } t \in \mathbb{R}: \text { time }
\end{aligned}
$$

From now on assume the following :
$\dot{y}=\epsilon g(x, y, \epsilon)$ can be represented by

$$
\begin{aligned}
y & =\left(w, \theta_{1}, \cdots, \theta_{k-1}\right) \in \mathbb{R}^{k}, \\
\dot{w} & =\epsilon g_{1}(x, y, \epsilon), \\
\dot{\theta}_{i} & =0 .
\end{aligned}
$$

Covering-Exchange property

Def. (Covering-Exchange)

$N \subset \mathbb{R}^{u+s+k}: h$-set, $M \subset \mathbb{R}^{u+s+k}:(u+s+k)$-dim. h-set
We say that N satisfies the covering-exchange property (CE) with respect to M for $(*)_{\epsilon}$ if

1. M is a fast-saddle-type block.
2. M satisfies stable and unstable cone conditions.
3. For $q \in\{ \pm 1\}$

$$
q \cdot g_{1}(x, y, \epsilon)>0 \text { in } M
$$

4. Letting φ_{ϵ} be the flow of $(*)_{\epsilon}$, for some $\mathrm{T}>0$

$$
N \stackrel{\varphi_{\epsilon}(T, \cdot)}{\Longrightarrow} M .
$$

We say the pair (N,M) a covering-exchange pair.

Covering-Exchange property

Dynamics of Covering-Exchange pairs

1. M is a fast-saddle-type block.
2. M satisfies stable and unstable cone conditions.
3. For $q \in\{ \pm 1\} q \cdot g_{1}(x, y, \epsilon)>0$ in M.
4. Letting φ_{ϵ} be the flow of $(*)_{\epsilon}$, for some $\mathrm{T}>0, N \xrightarrow{\varphi_{\epsilon}(T .)} M$.

Topologically describes orbits colored by red.

Fast-exit face and admissibility

Def. (Fast-exit face)

Define a fast-exit face of a fast-saddle-type block M by

$$
\begin{aligned}
M^{a} & :=c_{M}^{-1}\left(\{a\} \times \overline{B_{s}} \times\left(w^{-}, w^{+}\right) \times \prod_{i=2}^{k}[-1,1]\right), \quad a \in \partial B_{u} . \\
& \text { where } \quad M_{c}=\overline{B_{u}} \times \overline{B_{s}} \times[-1,1] \times \prod_{i=2}^{k}[-1,1]
\end{aligned}
$$

Def. (admissibility)

$\tilde{M} \subset M:$ h-set satisfying 1~3 of (CE) and $M_{0} \subset M:$ a fast-exit face are said to be admissible in M if
$M_{0} \cap \tilde{M}=\emptyset, \quad u\left(M_{0}\right)=u(\tilde{M})$,
The $u\left(M_{0}\right)$-component of M_{0} contains w-coordinate.
If $\mathrm{q}=+1, \inf \pi_{w}\left(M_{0}\right)_{c}-\sup \pi_{w}(\tilde{M})_{c}>0$.
If $\mathrm{q}=-1, \inf \pi_{w}(\tilde{M})_{c}-\sup \pi_{w}\left(M_{0}\right)_{c}>0$.

Singular limit connecting orbits and their continuation

Thm. [M. cf. Jones (1995)]
For the fast-slow system $(*)_{\epsilon}$ assume that, for given $\epsilon_{0}>0$ and $\rho \in \mathbb{N}$ there is an $\varepsilon\left(\in\left[0, \epsilon_{0}\right]\right)$-parameter family of the following sets :
$\mathcal{S}_{\epsilon}^{j}:(\mathrm{j}=0, \cdots, \rho)$ fast-saddle-type block which forms a coveringexchange pair with $\mathcal{F}_{\epsilon}^{j-1}\left(\mathcal{F}_{\epsilon}^{\rho}\right.$ if $\left.\mathrm{j}=0\right)$.
$\tilde{\mathcal{S}}_{\epsilon}^{j}:(\mathrm{j}=0, \cdots, \rho)$ fast-saddle-type block which forms a coveringexchange pair with $\mathcal{F}_{\epsilon}^{j-1}$ and the pair $\left(\tilde{\mathcal{S}}_{\epsilon}^{j}, \mathcal{F}_{\epsilon}^{j}\right)$ forms an admissible pair in $\mathcal{S}_{\epsilon}^{j}$.
$\mathcal{F}_{\epsilon}^{j}:(\mathrm{j}=0, \cdots, \rho)$ a fast-exit face of $\mathcal{S}_{\epsilon}^{j}$.

Then for all $\epsilon \in\left(0, \epsilon_{0}\right]$ there is a periodic orbit for $(*)_{\epsilon}$ which passes all $\mathcal{S}_{\epsilon}^{j}$.

Singular limit connecting orbits and their continuation

Thm. [M. cf. Jones (1995)]
For the fast-slow system $(*)_{\epsilon}$ assume that, for given $\epsilon_{0}>0$ and $\rho \in \mathbb{N}$ there is an $\varepsilon\left(\in\left[0, \epsilon_{0}\right]\right)$-parameter family of the following sets :
$\mathcal{S}_{\epsilon}^{j}:(\mathrm{j}=0, \cdots, \rho)$ fast-saddle-type block
($\mathrm{j}=1, \cdots, \rho-1$) fast-saddle-type block which forms a CE pair with $\mathcal{F}_{\epsilon}^{j-1}$.
($\mathrm{i}=0, \rho$) invariant sets $S_{\epsilon, u}, S_{\epsilon, s}$ are contained there, respectively.
$\tilde{\mathcal{S}}_{\epsilon}^{j}:(\mathrm{j}=0, \cdots, \rho)$ fast-saddle-type block
$(\mathrm{j}=1, \cdots, \rho)$ fast-saddle-type block which forms a CE pair with $\mathcal{F}_{\epsilon}^{j-1}$ and the pair $\left(\tilde{\mathcal{S}}_{\epsilon}^{j}, \mathcal{F}_{\epsilon}^{j}\right)$ forms an admissible pair in $\mathcal{S}_{\epsilon}^{j}$.
$\mathcal{F}_{\epsilon}^{j}:(j=0, \cdots, \rho-1)$ a fast-exit face of $\mathcal{S}_{\epsilon}^{j}$
(j=0) there is an intersection with $W^{u}\left(S_{\epsilon, u}\right)$.

Then for all $\epsilon \in\left(0, \epsilon_{0}\right]$ there is a heteroclinic orbit for $(*)_{\epsilon}$ connecting $S_{\epsilon, u}$ and $S_{\epsilon, s}$ which passes all $\mathcal{S}_{\epsilon}^{j}$.

Singular limit connecting orbits and their continuation

Idea of the proof (in the case of Periodic orbits)

$$
\begin{aligned}
\Pi & :=\left(\tilde{\mathcal{S}}_{\epsilon}^{0}\right)_{c} \times\left(\mathcal{F}_{\epsilon}^{0}\right)_{c} \times\left(\tilde{\mathcal{S}}_{\epsilon}^{1}\right)_{c} \times\left(\mathcal{F}_{\epsilon}^{1}\right)_{c} \times \cdots \times\left(\tilde{\mathcal{S}}_{\epsilon}^{\rho}\right)_{c} \times\left(\mathcal{F}_{\epsilon}^{\rho}\right)_{c} \\
& \subset \mathbb{R}^{d_{s}^{0}} \times \mathbb{R}^{d_{f}^{0}} \times \mathbb{R}^{d_{s}^{1}} \times \mathbb{R}^{d_{f}^{1}} \times \cdots \times \mathbb{R}^{d_{s}^{\rho}} \times \mathbb{R}^{d_{f}^{\rho}}
\end{aligned}
$$

\rightarrow Prove that the mapping degree $\operatorname{deg}\left(F_{\epsilon}, \Pi, 0\right)$ of the map below can be defined and is nonzero :
$F_{\epsilon}\left(\begin{array}{c}\left(p_{s}^{0}, q_{s}^{0}\right. \\ \left(p_{f}^{0}, q_{f}^{0}\right) \\ \left(p_{s}^{1}, q_{s}^{1}\right) \\ \left(p_{f}^{1}, q_{f}^{1}\right) \\ \vdots \\ \left(p_{s}^{\rho}, q_{s}^{\rho}\right) \\ \left(p_{f}^{\rho}, q_{f}^{\rho}\right)\end{array}\right):=\left(\begin{array}{c}\left(p_{f}^{0}, q_{f}^{0}\right)-\pi^{0} \circ\left(P_{\epsilon}^{0}\right)_{c}\left(p_{s}^{0}, q_{s}^{0}\right) \\ \left(p_{s}^{1}, q_{s}^{1}\right)-\left(\varphi_{\epsilon}\left(T^{0}, \cdot\right)\right)_{c}\left(p_{f}^{0}, q_{f}^{0},\left(\pi^{0}\right)^{c} \circ\left(P_{\epsilon}^{0}\right)_{c}\left(p_{s}^{0}, q_{s}^{0}\right)\right) \\ \left(p_{f}^{1}, q_{f}^{1}\right)-\pi^{1} \circ\left(P_{\epsilon}^{1}\right)_{c}\left(p_{s}^{1}, q_{s}^{1}\right) \\ \left(p_{s}^{2}, q_{s}^{2}\right)-\left(\varphi_{\epsilon}\left(T^{1}, \cdot\right)\right)_{c}\left(p_{f}^{1}, q_{f}^{1},\left(\pi^{1}\right)^{c} \circ\left(P_{\epsilon}^{1}\right)_{c}\left(p_{s}^{1}, q_{s}^{1}\right)\right) \\ \vdots \\ \left(p_{s}^{0}, q_{s}^{0}\right)-\left(\varphi_{\epsilon}\left(T^{\rho}, \cdot\right)\right)_{c}\left(p_{f}^{\rho}, q_{f}^{\rho},\left(\pi^{\rho}\right)^{c} \circ\left(P_{\epsilon}^{\rho}\right)_{c}\left(p_{s}^{\rho}, q_{s}^{\rho}\right)\right)\end{array}\right)$

Components involving (un)stable manifolds are added in the case of heteroclinic orbits.

Towards rigorous numerics

Key. Covering-Exchange

Blocks and Cone conditions : Already stated.
Covering Relation : Already stated.
Sign of vector fields : Easy !
Fast-exit face + Admissibility : Easy !
Nothing new for rigorous numerics!

Practical Computations

$$
\begin{aligned}
& \dot{u}=v \\
& \dot{v}=0.2(\theta v-f(u)+\lambda) \\
& \dot{\lambda}=\epsilon \theta^{-1} u \\
& f(u)=u(u-0.2)(1-u), \\
& \theta \in[0.947,0.948], \epsilon \in\left[0,10^{-5}\right] \\
& \lambda \in[-0.00242308,0.00242308] \\
& \text { fast-saddle-type block } \\
& \text { Total orbit : } \mathrm{dt}=0.001, \mathrm{t}=0 \sim 190 \\
& \text { - Blocks are chosen small in order to } \\
& \text { get a good estimate of manifolds. } \\
& \text { - Rigorous numerics encloses the } \\
& \text { error of global orbits in each step and } \\
& \text { become bigger and bigger! } \\
& \text { Left: Enclosure of orbits is already } \\
& \text { larger than the block! } \\
& \text { Validations without any ideas are so } \\
& \text { crazy! }
\end{aligned}
$$

2. Fast Dynamics
3. Matching :"Covering-
4. m-cones
5. Towaras Validation -- Overview

m-cones

Extend (un)stable manifolds making sharp cones.

cone: $|x|>|y|$

Isolating blocks

- Very small in general.
- Where the unstable manifold
extends ? (cone : orange domain)
- Flow moves very slowly near fixed points
\rightarrow increase of computation costs.

Cones, m-cones

- Unstable manifold is contained in cones
\rightarrow Be cones sharper and raise the accuracy of the unstable manifold.
- Away from equilibria.
- isolation is preserved.

m-cones

Cone condition for fast-slow system.

Thm. [M. cf. Jones (1995) Theorem 4]
Define Maximal Singular Values of matrices :

$$
\left.\begin{array}{l}
\sigma_{\mathbb{A}_{1}}^{s}: \mathbb{A}_{1}(z)=\left(\frac{\partial F_{1}}{\partial a}(z)\right.
\end{array}\right), \sigma_{\mathbb{A}_{2}}^{s}: \mathbb{A}_{2}(z)=\left(\begin{array}{lll}
\frac{\partial F_{1}}{\partial b}(z) & \frac{\partial F_{1}}{\partial y}(z) & \frac{\partial F_{1}}{\partial \eta}(z)
\end{array}\right), ~ 子, ~\left(\frac{\partial F_{2}}{\partial a}(z)\right), \sigma_{\mathbb{B}_{2}}^{s}: \mathbb{B}_{2}(z)=\left(\begin{array}{ll}
\frac{\partial F_{2}}{\partial b}(z) & \frac{\partial F_{2}}{\partial y}(z) \\
\frac{\partial F_{2}}{\partial \eta}(z)
\end{array}\right),
$$

Assume the following inequalities (stable cone conditions) :

$$
\inf \operatorname{Spec}(A)-\left(\sup \sigma_{\mathbb{A}_{1}}^{s}+\sup \sigma_{\mathbb{A}_{2}}^{s}\right)>0,
$$

$\inf \operatorname{Spec}(A)+\inf |\operatorname{Spec}(B)|$

$$
-\left\{\sup \sigma_{\mathbb{A}_{1}}^{s}+\sup \sigma_{\mathbb{A}_{2}}^{s}+\sup \sigma_{\mathbb{B}_{1}}^{s}+\sup \sigma_{\mathbb{B}_{2}}^{s}+\epsilon_{0}\left(\sup \sigma_{g_{1}}^{s}+\sup \sigma_{g_{2}}^{s}\right)\right\}>0,
$$

Then for all $\epsilon \in\left[0, \epsilon_{0}\right] W^{s}\left(M_{\epsilon}\right) \cap(B \times K)$ can be represented by the graph of a Lipschitz function on $B_{2} \times K$. The similar statement holds for $W^{u}\left(M_{\epsilon}\right) \cap(B \times K)$. The slow manifold M_{ϵ} is the k-dimensional submanifold in $B \times K$ can be represented by their intersection. In particular, M_{0} is normally hyperbolic.

m-cones

Stable m-cone condition for fast-slow system. Thm. [M., cf. M.-Yamamoto]

Let B, K as above.
Define Maximal Singular Values of matrices :

$$
\begin{aligned}
& \sigma_{\mathbb{A}_{1}}^{s, m}: \mathbb{A}_{1}(z)=\left(\frac{\partial F_{1}}{\partial a}(z)\right), \sigma_{\mathbb{A}_{2}}^{s, m}: \mathbb{A}_{2}(z)=\underline{m^{-1}}\left(\begin{array}{lll}
\frac{\partial F_{1}}{\partial b}(z) & \frac{\partial F_{1}}{\partial y}(z) & \frac{\partial F_{1}}{\partial \eta}(z)
\end{array}\right), \\
& \sigma_{\mathbb{B}_{1}}^{s, m}: \mathbb{B}_{1}(z)=\underline{m}\left(\frac{\partial F_{2}}{\partial a}(z)\right), \sigma_{\mathbb{B}_{2}}^{s, m}: \mathbb{B}_{2}(z)=\left(\begin{array}{lll}
\frac{\partial F_{2}}{\partial b}(z) & \frac{\partial F_{2}}{\partial y}(z) & \frac{\partial F_{2}}{\partial \eta}(z)
\end{array}\right), \\
& \sigma_{g_{1}}^{s, m}: g_{1}(z)=\underline{m}\left(\frac{\partial g}{\partial a}(z)\right), \sigma_{g_{2}}^{s, m}: g_{2}(z)=\left(\begin{array}{lll}
\frac{\partial g}{\partial b}(z) & \frac{\partial g}{\partial y}(z) & \frac{\partial g}{\partial \eta}(z)
\end{array}\right) .
\end{aligned}
$$

Assume the following inequalities (stable m-cone conditions) : $\inf \operatorname{Spec}(A)-\left(\sup \sigma_{\mathrm{A}_{1}}^{s, m}+\sup \sigma_{\mathrm{A}_{2}}^{s, m}\right)>0$, $\inf \operatorname{Spec}(A)+\inf |\operatorname{Spec}(B)|$

$$
-\left\{\sup \sigma_{\mathbb{A}_{1}}^{s, m}+\sup \sigma_{\mathbb{A}_{2}}^{s, m}+\sup \sigma_{\mathbb{B}_{1}}^{s, m}+\sup \sigma_{\mathbb{B}_{2}}^{s, m}+\sigma\left(\sup \sigma_{g_{1}}^{s, m}+\sup \sigma_{g_{2}}^{s, m}\right)\right\}>0
$$

Then the function $M(t):=|\Delta a(t)|^{2}-m^{2}|\Delta \zeta(t)|^{2}(\zeta=(b, y))$ satisfies :
$M^{\prime}(t)>0$. holds on the set $M(t)=0$ as long as orbits stay $\mathrm{B} \times \mathrm{K}$.

with m-cones ...

5. Towards Validation -- overview (FitzHugh-Nagumo)

Homoclinic orbits of the FitzHugh-Nagumo system -- overview

$\dot{u}=v$
$\dot{v}=0.2(\theta v-f(u)+\lambda)$
$\dot{\lambda}=\epsilon \theta^{-1} u \quad f(u)=u(u-0.2)(1-u)$,

$$
\theta \in[0.947,0.948], \quad \epsilon \in\left[0,10^{-5}\right]
$$

Computation environment
Library : CAPD (http://capd.ii.uj.edu.pl) 3.0
CPU : 1.6GHz Intel Core i5 (Macbook Air 2011 model) Memory : 4GB 1333 MHz DDR3

1. 1st branch

We can construct fast-saddle-type blocks satisfying cone conditions for $\lambda \in[-0.0005,0.1]$ around green branch.
2. 3rd branch

We can construct fast-saddle-type blocks satisfying cone conditions for $\lambda \in[-0.0005,0.1]$ around blue branch.

Homoclinic orbits of the FitzHugh-Nagumo system -- overview

$$
\begin{aligned}
& \dot{u}=v \\
& \dot{v}=0.2(\theta v-f(u)+\lambda) \\
& \dot{\lambda}=\epsilon \theta^{-1} u \quad f(u)=u(u-0.2)(1-u), \\
& \\
& \\
& \quad \theta \in[0.947,0.948], \quad \epsilon \in\left[0,10^{-5}\right]
\end{aligned}
$$

Total orbit : $\mathrm{dt}=0.001, \mathrm{t}=0 \sim 190$
3. Fast trajectory from $(u, v, \lambda) \approx(0,0,0)$

$\lambda \in[-0.00242308,0.00242308] \quad \lambda=-0.00242308$

$\lambda=+0.00242308$

Homoclinic orbits of the FitzHugh-Nagumo system -- overview

$$
\begin{aligned}
& \dot{u}=v \\
& \dot{v}=0.2(\theta v-f(u)+\lambda) \\
& \dot{\lambda}=\epsilon \theta^{-1} u \quad \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Total orbit : $\mathrm{dt}=0.001, \mathrm{t}=0 \sim 190$
4. Fast trajectory from $(u, v, \lambda) \approx(0.8,0,0.0955)$

$\lambda \in[0.0929167,0.0980833]$

$\lambda=0.0929167$

$\lambda=0.0980833$

Homoclinic orbits of the FitzHugh-Nagumo system -- overview

$$
\begin{aligned}
& \dot{u}=v \\
& \dot{v}=0.2(\theta v-f(u)+\lambda) \\
& \dot{\lambda}=\epsilon \theta^{-1} u \quad \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Computer Assisted Result [M.]

There exist the following trajectories of the FitzHughNagumo system :

1. $\epsilon=0:$ A singular homoclinic orbit consisting of two components of nullcline and two heteroclinic orbits connecting them.
2. $\epsilon \in\left(0,10^{-5}\right]$: homoclinic orbit of $(u, v, \lambda)=(0,0,0)$ as the continuation of the singular orbit obtained in 1.

Conclusion

- Slow Dynamics : proposed a sufficient condition for validating slow manifolds and dynamics around them.
- Matching : topologically described the matching of dynamics in different time scales.
\rightarrow Sample validation of singular perturbation problem.
Periodic, Heteroclinic : computing.

Further directions :

- Other examples (multi-slow variables)

- Slow manifolds containing non-hyperbolic points like fold points
- Transversality (via Exterior Algebra)

Ex. : Double-pulse in the FitzHugh-Nagumo sys. Guchenheimer-Kuehn, SIADS(2009) \rightarrow

