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Integrable Hamiltonian system
• Hamiltonian system :

dqj

dt
=

∂H

∂pj
(q, p),

dpj

dt
= −∂H

∂qj
(q, p) (j = 1, . . . , k) (1)

where q = (q1, . . . , qk), p = (p1, . . . , pk), H : R2k → R.

• Hamiltonian system (1) is integrable ⇐⇒ there are k first integrals

F1(= H), F2, . . . , Fk such that dF1, . . . , dFk are linearly indepen-

dent a.e. and that {Fi, Fj} = 0 for any i, j = 1, . . . , k.

• Loosely speaking, the Liouville-Arnold theorem states that for an

integrable Hamiltonian system, there are canonical variables (called

action-angle variables)

(θ, I) ∈ Tk × U(⊂ Rk) 7→ (q, p) ∈ R2k

such that the Hamiltonian depends only on I.
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Integrable Hamiltonian system

Let H(I)((θ, I) ∈ Tk × U(⊂ Rk)) be an integrable Hamiltonian. The

canonical equations are

dθ

dt
=

∂H

∂I
,

dI

dt
= −∂H

∂θ
.

Since ∂H
∂θ = 0, I is a constant along any solution: I ≡ I0. Therefore

θ =
∂H

∂I
(I0)t + θ0.
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Perturbed system

Perturbed system:

Hε(I, θ) = h0(I) + εh1(I, θ; ε).

Twist condition:
det(Hess(h0(I))) 6= 0.

KAM theory: under the twist condition, if ω = (ω1, . . . , ωk) = ∂h0
∂I (I0)

is Diophantine:

∃τ > 0, ∃γ > k − 1,∀(l1, . . . , lk) ∈ Zk\{0}∣∣∣∣∣∣
k∑

j=1

ljωj

∣∣∣∣∣∣ ≥ γ(|l1| + · · · + |lk|)−τ ,

the invariant torus with the frequency ω survives for small ε > 0.
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Example (Isosceles three-body problem)

図 1 The isosceles 3-body problem

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−1.5

−1

−0.5

0

0.5

1

1.5

図 2 The Poincaré map

Ref: M. Shibayama, RIMS Kôkyûroku Bessatsu, B13 (2009), 141-155.

5



Example (Kepler-type problem)

Kepler-type problem:

H0 =
1
2
|p|2 − 1

|q|α
(q, p ∈ Rd).

(The original Kepler problem is the case α = 1.)

This Hamiltonian is integrable.

For α 6= 1 and d = 2, the twist condition is safisfied and hence KAM

theorem can be applied. For the perturbed system Hε, there are quasi-

periodic solutions with Diophantine frequency.

In the case α = 1, the Hamiltonian can be represented

H = − 1
2I2

1

.

So the twist condition is not satisfied.
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Example(Solar system)

Traditional problem is to show that almost all of quasi-periodic solutuions

in the solar system survive. Its Hamiltonian is

Hε(θ, I) = −
n∑

k=1

µk

2I2
1k

+ εf(θ, I; ε)

where I = (I11, . . . , Idn) ∈ Rdn, θ = (θ11, . . . , θdn) ∈ Tdn. This does

not satisfies the twist condition (very degenerate !). Arnold (1963) solved

it for the case d = 2, n = 2. J. Féjoz (2004, Ergod. Th. & Dynam. Sys.)

solved it for the case d = 3, n ≥ 2.
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Our problem

Consider a Hamiltonian

H(q, p) =
1
2
|p|2 + V (q) (p, q ∈ RN )

where V ∈ C2(RN\{0}, R) (V ∼ − 1
|q|α ).

Fix the energy H(q, p) = h.

We call q(t) a generalized periodic solution with period T if

1. q ∈ C(R, RN ) and T -periodic,

2. D = {t ∈ R | q(t) = 0} has zero measure,

3. q ∈ C2(R\D, RN ) satisfies the canonical equations and the energy

relation in R\D

Our goal is to show the existence of periodic solutions with prescribed

energy for a perturabed system of Kepler-type problem.
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Theorem
Let N ≥ 2 and V ∈ C2(RN\{0}, R). Assume that there are 0 < a1 < a2, 0 <

α1 < α < α2 < 2 such that

a1

|q|α ≤ −V (q) ≤ a2

|q|α , −α1V (q) ≤ ∇V (q) · q ≤ −α2V (q)

∇V (q) → 0 (|q| → ∞), |q|3∇V (q), |q|4∇2V (q) → 0 (q → 0)

Then for any h < 0, there is a generalized periodic solution with energy h. Let

T > 0 be the minimal period. The number of collision is estimated as follows:

#{t ∈ [0, T ) | q(t) = 0} ≤ f(a1, a2, α, α1, α2).

Here

f(a1, a2, α, α1, α2) =
πa

1
α
2 α

3
2 (2 − α)

2
α (2 + α2)

2+α
2α

2
1
α a

1
α
1 α1(2 + α)

2+α
2α (2 − α2)

2−α
2α B

`

1
2
, 2+α

2α

´

and B is the Beta function.
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Corollary

Assume the same properties as in the theorem. For any α ∈ (1, 2), there

is δ > 0 satisfying the following: if a1 ≤ a2 < (1 + δ)a1, 0 < α2 − α1 <

δ, then the obtained solution has no collision, and hence is a classical

solution.
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図 3 Graph of f(1, 1, α, α, α).
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History of the prescribed-energy problem
The existence problem of a periodic solution on the energy surface:

Sh = {(q, p) | H = h}.

• Weinstein(1978): Sh is compact and convex

• Rabinowitz (1978): Sh is compact and star-shaped

• Viterbo(1987): Sh is a compact contact manifold (variational

proof)

• Hofer & Zehnder(1987): Sh is a compact contact manifold (geo-

metric proof)

• Hofer(1993): Sh is diffeomorphic to S3.

• Tanaka (1993): natural Hamiltonian H = 1
2 |p|

2+V (q) with singu-

lar potential like 1
|q|α for 4

3 < α < 2(N = 3), 1 < α < 2(N ≥ 4).

• Our result extends his resut to the case 1 < α < 2(N ≥ 2).
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Proof
The prescribed-energy problem is represented by the variational problem

with respect to the functional

I(u) =
1
2

∫ 1

0

∣∣∣∣du

dτ

∣∣∣∣2 dτ

∫ 1

0

h − V (u(τ))dτ.

By letting

T =

√√√√ 1
2

∫ 1

0

∣∣du
dτ

∣∣2 dτ∫ 1

0
h − V (u)dτ

for a critical point u(τ) of I, q(t) = u(t/T ) is a solution with energy h.

The domain Λ of I is defined by

E = {u(τ) ∈ H1
loc(R, RN ); u(τ + 1) = u(τ)}

Λ = {u(τ) ∈ E; u(τ) 6= 0 for all τ}.
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Proof
Consider the case of N = 2. We take ρR(τ) defined by

ρR(τ) = R(cos 2πτ, sin 2πτ).

Take small R0 > 0 and large R1. Let

Q = {η ∈ C([R0, R1], Λ) | η(R0) = ρR0 , η(R1) = ρR1}.

We can get a generalized solution attaining

c = inf
η∈Q

max
R∈[R0,R1]

I(η(R)).
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Proof (estimate of the minimax value)

From the inequality

− a2

|q|α ≤ V (q),

we get

I(ρR) =
1

2

Z 1

0

˛

˛

˛

˛

dρR

dτ

˛

˛

˛

˛

2

dτ

Z 1

0

h − V (ρR)dτ

≤ 1

2

Z 1

0

˛

˛

˛

˛

dρR

dτ

˛

˛

˛

˛

2

dτ

Z 1

0

h +
a2

|ρR|α
dτ

= 2π2(hR2 + a2R
2−α).

The maximum of 2π2(hR2 + a2R
2−α) on R ∈ [R0, R1] is π2αa

2
α
2 ( 2−α

−2h
)

2−α
α .

Therefore the minimax values is no more than this value:

c ≤ π2αa
2
α
2 (

2 − α

−2h
)

2−α
α . (2)
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Proof (estimate of collision paths)

Assume γ(t) is a generalized solution with collisions at 0 ≤ τ1 < τ2 < · · · < τk < 1.

We can assume τ1 = 0. Let T be the period. Let 0 = T1 < T2 < · · · < Tk < T be

the collision times, i. e. Ti = τiT , and let Tk+1 = T .

I(γ) =
1

2

Z 1

0

˛

˛

˛

˛

dγ

dτ

˛

˛

˛

˛

2

dτ

Z 1

0
h − V (γ)dτ

=
1

2

Z T

0

˛

˛

˛

˛

dγ

dt

˛

˛

˛

˛

2

dt

Z T

0
h − V (γ)dt

=

 

1

2

k
X

i=1

Z Ti+1

Ti

˛

˛

˛

˛

dγ

dt

˛

˛

˛

˛

2

dt

! 

k
X

i=1

Z Ti+1

Ti

h − V (γ)dt

!

For the obtained generalized solution, we get

1

2

Z T0

0

˛

˛

˛

˛

dγ

dt

˛

˛

˛

˛

2

dt =

Z T0

0
h − V (γ)dt ≥

α1

2 + α2
AT0 .

Here AT0 is the Lagrangian action functional for the Kepler-type problem:

AT0 =

Z T0

0

1

2
|q̇|2 +

a1

|a|α
dt.
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Proof (estimate of collision paths)

For generalized solutions, the energy value is related to the period as follow:

−hT0 ≥ −
2 − α2

2

Z T0

0
V (γ)dt ≥

2 − α2

2 + α2
AT0 .

We know the exact value of the minimizer for the collision paths:

inf AT0 =
2 + α

2 − α

2
α

α+2 a
2

α+2
1

α
2α

α+2
(B(

1

2
,
1

α
+

1

2
))

2α
α+2 T0

2−α
2+α .

By putting them together, we can estimate the value for the collision path:

I ≥
α2

1

(2 + α2)2
(
2 − α2

2 + α2
)
2−α

α (
2 + α

2 − α
)
2+α

α
2a

2
α
1

α2
(B(

1

2
,
1

α
+

1

2
))2(−h)−

2−α
α k2 (3)

From (2) and (3), we estimate the number of collisions:

k ≤ f(a1, a2, α, α1, α2).

This completes the proof.
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Thank you very much.
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