Perturbation Theory in Celestical Mechanics

Mitsuru SHIBAYAMA (Osaka University, JAPAN)

E-mail: shibayama@sigmath.es.osaka-u.ac.jp
URL: http://www.sigmath.es.osaka-u.ac.jp/~shibayama

- Hamiltonian system :

$$
\begin{equation*}
\frac{d q_{j}}{d t}=\frac{\partial H}{\partial p_{j}}(q, p), \quad \frac{d p_{j}}{d t}=-\frac{\partial H}{\partial q_{j}}(q, p) \quad(j=1, \ldots, k) \tag{1}
\end{equation*}
$$

where $q=\left(q_{1}, \ldots, q_{k}\right), p=\left(p_{1}, \ldots, p_{k}\right), H: \mathbb{R}^{2 k} \rightarrow \mathbb{R}$.

- Hamiltonian system (I) is integrable \Longleftrightarrow there are k first integrals $F_{1}(=H), F_{2}, \ldots, F_{k}$ such that $d F_{1}, \ldots, d F_{k}$ are linearly independent a.e. and that $\left\{F_{i}, F_{j}\right\}=0$ for any $i, j=1, \ldots, k$.
- Loosely speaking, the Liouville-Arnold theorem states that for an integrable Hamiltonian system, there are canonical variables (called action-angle variables)

$$
(\theta, I) \in \mathbb{T}^{k} \times U\left(\subset \mathbb{R}^{k}\right) \mapsto(q, p) \in \mathbb{R}^{2 k}
$$

such that the Hamiltonian depends only on I.

Integrable Hamiltonian system
Let $H(I)\left((\theta, I) \in \mathbb{T}^{k} \times U\left(\subset \mathbb{R}^{k}\right)\right)$ be an integrable Hamiltonian. The canonical equations are

$$
\frac{d \theta}{d t}=\frac{\partial H}{\partial I}, \quad \frac{d I}{d t}=-\frac{\partial H}{\partial \theta} .
$$

Since $\frac{\partial H}{\partial \theta}=0, I$ is a constant along any solution: $I \equiv I_{0}$. Therefore

$$
\theta=\frac{\partial H}{\partial I}\left(I_{0}\right) t+\theta_{0} .
$$

Perturbed system

Perturbed system:

$$
H_{\varepsilon}(I, \theta)=h_{0}(I)+\varepsilon h_{1}(I, \theta ; \varepsilon) .
$$

Twist condition:

$$
\operatorname{det}\left(\operatorname{Hess}\left(h_{0}(I)\right)\right) \neq 0
$$

KAM theory: under the twist condition, if $\omega=\left(\omega_{1}, \ldots, \omega_{k}\right)=\frac{\partial h_{0}}{\partial I}\left(I_{0}\right)$ is Diophantine:

$$
\begin{aligned}
& \exists \tau>0, \exists \gamma>k-1, \forall\left(l_{1}, \ldots, l_{k}\right) \in \mathbb{Z}^{k} \backslash\{0\} \\
& \left|\sum_{j=1}^{k} l_{j} \omega_{j}\right| \geq \gamma\left(\left|l_{1}\right|+\cdots+\left|l_{k}\right|\right)^{-\tau},
\end{aligned}
$$

the invariant torus with the frequency ω survives for small $\varepsilon>0$.

Example (Isosceles three-body problem)

図 1 The isosceles 3-body problem
図 2 The Poincaré map

Ref: M. Shibayama, RIMS Kôkyûroku Bessatsu, B13 (2009), 141-155.

Example (Kepler-type problem)

Kepler-type problem:

$$
H_{0}=\frac{1}{2}|p|^{2}-\frac{1}{|q|^{\alpha}} \quad\left(q, p \in \mathbb{R}^{d}\right)
$$

(The original Kepler problem is the case $\alpha=1$.)
This Hamiltonian is integrable.
For $\alpha \neq 1$ and $d=2$, the twist condition is safisfied and hence KAM theorem can be applied. For the perturbed system H_{ε}, there are quasiperiodic solutions with Diophantine frequency.
In the case $\alpha=1$, the Hamiltonian can be represented

$$
H=-\frac{1}{2 I_{1}^{2}}
$$

So the twist condition is not satisfied.

Example(Solar system)

Traditional problem is to show that almost all of quasi-periodic solutuions in the solar system survive. Its Hamiltonian is

$$
H_{\varepsilon}(\theta, I)=-\sum_{k=1}^{n} \frac{\mu_{k}}{2 I_{1 k}^{2}}+\varepsilon f(\theta, I ; \varepsilon)
$$

where $I=\left(I_{11}, \ldots, I_{d n}\right) \in \mathbb{R}^{d n}, \theta=\left(\theta_{11}, \ldots, \theta_{d n}\right) \in \mathbb{T}^{d n}$. This does not satisfies the twist condition (very degenerate !). Arnold (1963) solved it for the case $d=2, n=2$. J. Féjoz (2004, Ergod. Th. \& Dynam. Sys.) solved it for the case $d=3, n \geq 2$.

Our problem

Consider a Hamiltonian

$$
H(q, p)=\frac{1}{2}|p|^{2}+V(q) \quad\left(p, q \in \mathbb{R}^{N}\right)
$$

where $V \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}, \mathbb{R}\right) \quad\left(V \sim-\frac{1}{|q|^{\alpha}}\right)$.
Fix the energy $H(q, p)=h$.
We call $q(t)$ a generalized periodic solution with period T if

1. $q \in C\left(\mathbb{R}, \mathbb{R}^{N}\right)$ and T-periodic,
2. $D=\{t \in \mathbb{R} \mid q(t)=0\}$ has zero measure,
3. $q \in C^{2}\left(\mathbb{R} \backslash D, \mathbb{R}^{N}\right)$ satisfies the canonical equations and the energy relation in $\mathbb{R} \backslash D$

Our goal is to show the existence of periodic solutions with prescribed energy for a perturabed system of Kepler-type problem.

Theorem

Let $N \geq 2$ and $V \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}, \mathbb{R}\right)$. Assume that there are $0<a_{1}<a_{2}, 0<$ $\alpha_{1}<\alpha<\alpha_{2}<2$ such that

$$
\begin{array}{ll}
\frac{a_{1}}{|q|^{\alpha}} \leq-V(q) \leq \frac{a_{2}}{|q|^{\alpha}}, & -\alpha_{1} V(q) \leq \nabla V(q) \cdot q \leq-\alpha_{2} V(q) \\
\nabla V(q) \rightarrow 0(|q| \rightarrow \infty), & |q|^{3} \nabla V(q),|q|^{4} \nabla^{2} V(q) \rightarrow 0(q \rightarrow 0)
\end{array}
$$

Then for any $h<0$, there is a generalized periodic solution with energy h. Let $T>0$ be the minimal period. The number of collision is estimated as follows:

$$
\#\{t \in[0, T) \mid q(t)=0\} \leq f\left(a_{1}, a_{2}, \alpha, \alpha_{1}, \alpha_{2}\right)
$$

Here

$$
f\left(a_{1}, a_{2}, \alpha, \alpha_{1}, \alpha_{2}\right)=\frac{\pi a_{2}^{\frac{1}{\alpha}} \alpha^{\frac{3}{2}}(2-\alpha)^{\frac{2}{\alpha}}\left(2+\alpha_{2}\right)^{\frac{2+\alpha}{2 \alpha}}}{2^{\frac{1}{\alpha}} a_{1}^{\frac{1}{\alpha}} \alpha_{1}(2+\alpha)^{\frac{2+\alpha}{2 \alpha}}\left(2-\alpha_{2}\right)^{\frac{2-\alpha}{2 \alpha}} B\left(\frac{1}{2}, \frac{2+\alpha}{2 \alpha}\right)}
$$

and B is the Beta function.

Corollary

Assume the same properties as in the theorem. For any $\alpha \in(1,2)$, there is $\delta>0$ satisfying the following: if $a_{1} \leq a_{2}<(1+\delta) a_{1}, 0<\alpha_{2}-\alpha_{1}<$ δ, then the obtained solution has no collision, and hence is a classical solution.

図 3 Graph of $f(1,1, \alpha, \alpha, \alpha)$.

History of the prescribed-energy problem

The existence problem of a periodic solution on the energy surface:

$$
S_{h}=\{(q, p) \mid H=h\} .
$$

- Weinstein(1978): S_{h} is compact and convex
- Rabinowitz (1978): S_{h} is compact and star-shaped
- Viterbo(1987): S_{h} is a compact contact manifold (variational proof)
- Hofer \& Zehnder(1987): S_{h} is a compact contact manifold (geometric proof)
- Hofer(1993): S_{h} is diffeomorphic to \mathbb{S}^{3}.
- Tanaka (1993): natural Hamiltonian $H=\frac{1}{2}|p|^{2}+V(q)$ with singular potential like $\frac{1}{|q|^{\alpha}}$ for $\frac{4}{3}<\alpha<2(N=3), \quad 1<\alpha<2(N \geq 4)$.
- Our result extends his resut to the case $1<\alpha<2(N \geq 2)$.

Proof

The prescribed-energy problem is represented by the variational problem with respect to the functional

$$
I(u)=\frac{1}{2} \int_{0}^{1}\left|\frac{d u}{d \tau}\right|^{2} d \tau \int_{0}^{1} h-V(u(\tau)) d \tau
$$

By letting

$$
T=\sqrt{\frac{\frac{1}{2} \int_{0}^{1}\left|\frac{d u}{d \tau}\right|^{2} d \tau}{\int_{0}^{1} h-V(u) d \tau}}
$$

for a critical point $u(\tau)$ of $I, q(t)=u(t / T)$ is a solution with energy h.
The domain Λ of I is defined by

$$
\begin{aligned}
& E=\left\{u(\tau) \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right) ; u(\tau+1)=u(\tau)\right\} \\
& \Lambda=\{u(\tau) \in E ; u(\tau) \neq 0 \text { for all } \tau\}
\end{aligned}
$$

Proof

Consider the case of $N=2$. We take $\rho_{R}(\tau)$ defined by

$$
\rho_{R}(\tau)=R(\cos 2 \pi \tau, \sin 2 \pi \tau) .
$$

Take small $R_{0}>0$ and large R_{1}. Let

$$
Q=\left\{\eta \in C\left(\left[R_{0}, R_{1}\right], \Lambda\right) \mid \eta\left(R_{0}\right)=\rho_{R_{0}}, \eta\left(R_{1}\right)=\rho_{R_{1}}\right\} .
$$

We can get a generalized solution attaining

$$
c=\inf _{\eta \in Q} \max _{R \in\left[R_{0}, R_{1}\right]} I(\eta(R)) .
$$

Proof (estimate of the minimax value)

From the inequality

$$
-\frac{a_{2}}{|q|^{\alpha}} \leq V(q)
$$

we get

$$
\begin{aligned}
I\left(\rho_{R}\right) & =\frac{1}{2} \int_{0}^{1}\left|\frac{d \rho_{R}}{d \tau}\right|^{2} d \tau \int_{0}^{1} h-V\left(\rho_{R}\right) d \tau \\
& \leq \frac{1}{2} \int_{0}^{1}\left|\frac{d \rho_{R}}{d \tau}\right|^{2} d \tau \int_{0}^{1} h+\frac{a_{2}}{\left|\rho_{R}\right|^{\alpha}} d \tau \\
& =2 \pi^{2}\left(h R^{2}+a_{2} R^{2-\alpha}\right)
\end{aligned}
$$

The maximum of $2 \pi^{2}\left(h R^{2}+a_{2} R^{2-\alpha}\right)$ on $R \in\left[R_{0}, R_{1}\right]$ is $\pi^{2} \alpha a_{2}^{\frac{2}{\alpha}}\left(\frac{2-\alpha}{-2 h}\right)^{\frac{2-\alpha}{\alpha}}$.
Therefore the minimax values is no more than this value:

$$
\begin{equation*}
c \leq \pi^{2} \alpha a_{2}^{\frac{2}{\alpha}}\left(\frac{2-\alpha}{-2 h}\right)^{\frac{2-\alpha}{\alpha}} . \tag{2}
\end{equation*}
$$

Proof (estimate of collision paths)

Assume $\gamma(t)$ is a generalized solution with collisions at $0 \leq \tau_{1}<\tau_{2}<\cdots<\tau_{k}<1$. We can assume $\tau_{1}=0$. Let T be the period. Let $0=T_{1}<T_{2}<\cdots<T_{k}<T$ be the collision times, i. e. $T_{i}=\tau_{i} T$, and let $T_{k+1}=T$.

$$
\begin{aligned}
I(\gamma) & =\frac{1}{2} \int_{0}^{1}\left|\frac{d \gamma}{d \tau}\right|^{2} d \tau \int_{0}^{1} h-V(\gamma) d \tau \\
& =\frac{1}{2} \int_{0}^{T}\left|\frac{d \gamma}{d t}\right|^{2} d t \int_{0}^{T} h-V(\gamma) d t \\
& =\left(\frac{1}{2} \sum_{i=1}^{k} \int_{T_{i}}^{T_{i+1}}\left|\frac{d \gamma}{d t}\right|^{2} d t\right)\left(\sum_{i=1}^{k} \int_{T_{i}}^{T_{i+1}} h-V(\gamma) d t\right)
\end{aligned}
$$

For the obtained generalized solution, we get

$$
\frac{1}{2} \int_{0}^{T_{0}}\left|\frac{d \gamma}{d t}\right|^{2} d t=\int_{0}^{T_{0}} h-V(\gamma) d t \geq \frac{\alpha_{1}}{2+\alpha_{2}} \mathcal{A}_{T_{0}}
$$

Here $\mathcal{A}_{T_{0}}$ is the Lagrangian action functional for the Kepler-type problem:

$$
\mathcal{A}_{T_{0}}=\int_{0}^{T_{0}} \frac{1}{2}|\dot{q}|^{2}+\frac{a_{1}}{|a|^{\alpha}} d t
$$

Proof (estimate of collision paths)

For generalized solutions, the energy value is related to the period as follow:

$$
-h T_{0} \geq-\frac{2-\alpha_{2}}{2} \int_{0}^{T_{0}} V(\gamma) d t \geq \frac{2-\alpha_{2}}{2+\alpha_{2}} \mathcal{A}_{T_{0}}
$$

We know the exact value of the minimizer for the collision paths:

$$
\inf \mathcal{A}_{T_{0}}=\frac{2+\alpha}{2-\alpha} \frac{2^{\frac{\alpha}{\alpha+2}} a_{1}^{\frac{2}{\alpha+2}}}{\alpha^{\frac{2 \alpha}{\alpha+2}}}\left(B\left(\frac{1}{2}, \frac{1}{\alpha}+\frac{1}{2}\right)\right)^{\frac{2 \alpha}{\alpha+2}} T_{0}^{\frac{2-\alpha}{2+\alpha}}
$$

By putting them together, we can estimate the value for the collision path:

$$
\begin{equation*}
I \geq \frac{\alpha_{1}^{2}}{\left(2+\alpha_{2}\right)^{2}}\left(\frac{2-\alpha_{2}}{2+\alpha_{2}}\right)^{\frac{2-\alpha}{\alpha}}\left(\frac{2+\alpha}{2-\alpha}\right)^{\frac{2+\alpha}{\alpha}} \frac{2 a_{1}^{\frac{2}{\alpha}}}{\alpha^{2}}\left(B\left(\frac{1}{2}, \frac{1}{\alpha}+\frac{1}{2}\right)\right)^{2}(-h)^{-\frac{2-\alpha}{\alpha}} k^{2} \tag{3}
\end{equation*}
$$

From (2) and (3), we estimate the number of collisions:

$$
k \leq f\left(a_{1}, a_{2}, \alpha, \alpha_{1}, \alpha_{2}\right)
$$

This completes the proof.

Thank you very much.

