Stochastic Characterization of Numerical Viscosity

Kohei Soga (Keio University)

Dynamical Systems in Mathematical Physics RIMS, Kyoto 2015/2/24

Introduction

Consider initial problems of Hamilton-Jacobi equations

$$(\mathsf{HJ}) \begin{cases} v_t + H(x, t, v_x) = h & \text{in } \mathbb{R}^d \times (0, T] \\ v(x, 0) = v^0(x) & \text{on } \mathbb{R}^d & (v^0 \in Lip). \end{cases}$$
(h: const.),

Hamilton-Jacobi equations are closely related to

- 1. Classical mechanics (v is a generating function of a symplectic transform);
- 2. Optimal control theory (v is a cost function);
- 3. Inviscid fluids (v_x is an entropy solution);
- 4. Hamiltonian systems (a characteristic curve γ^* of v is an orbit and graph (v_x) is an invariant set);
- 5. Classical KAM theory, weak KAM theory;

:

(HJ) must be considered in the class of weak sol. "viscosity solutions".

Aim. Obtain approximation techniques for the viscosity sol. of (HJ) by which we can approximate all of v, v_x, γ^* .

Two Approximation techniques:

- the vanishing viscosity method (VVM), i.e., add νvxx and ν→0+,
 the finite difference method (FDM), i.e., f'(x) ~ f(x+Δx)-f(x)/Δx.
- \rightarrow Stochastic approach to VVM. (Fleming '69) Numerically inaccessible
- \rightarrow Stochastic approach to FDM under hyperbolic scaling. (Soga [1]-[5]) Numerically accessible

Why "stochastic" in FDM? \rightarrow "Numerical viscosity"

Stochastic approach is different from the standard frameworks, yielding new results.

- [1] Soga ('14), Nonlinear Analysis.
- [2] Soga ('14), Mathematics of Computation.
- [3] Soga, submitted.
- [4] Soga, submitted.
- [5] Soga, preprint.

Assumptions for H(x,t,p):

(H1) $H(x,t,p) : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}, C^2, H_{pp} > 0$, superlinear w.r.t. p. (H2) The Legendre transf. L of H w.r.t. p satisfies $|L_{rj}| \le \alpha(|L|+1)$.

$$L(x,t,\xi) = \sup_{p \in \mathbb{R}^d} \{ p \cdot \xi - H(x,t,p) \}.$$

(H3) All the derivatives of H up to the second order are bdd. on $\mathbb{R}^d \times \mathbb{R} \times K$ for each $K \subset \mathbb{R}^d$.

Under (H1)-(H3)

Convergence & error estimate for v, v_x, γ^* in FDM are not trivial, where the standard framework seems hopeless.

Hyperbolic PDE

$$\begin{cases} u_t(x,t) + au_x(x,t) = 0, \\ u(x,0) = u_0(x) \text{ on } \mathbb{R}. \\ \Rightarrow \quad u(x,t) = u_0(x-at). \end{cases}$$

Add a parabolic term

$$\begin{cases} u_t^{\nu}(x,t) + au_x^{\nu}(x,t) = \nu^2 u_{xx}^{\nu}(x,t), \\ u^{\nu}(x,0) = u_0(x) \text{ on } \mathbb{R}. \end{cases}$$

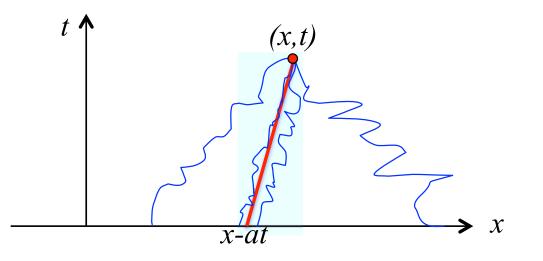
$$\Rightarrow \qquad u^{\nu}(x,t) = \int_{\mathbb{R}} \frac{1}{2\nu\sqrt{\pi t}} e^{-\frac{(x-at-y)^2}{4\nu^2 t}} u_0(y) dy \\ = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{y^2}{2t}} u_0(x-at+\sqrt{2}\nu y) dy. \end{cases}$$

 $u^{\nu} \rightarrow u$ as $\nu \rightarrow 0$ (vanishing viscosity method).

Stochastic interpretation

$$u(x,t) = u_0(\gamma(0))$$
, where
 $\gamma(s) = x - a(t-s)$: characteristic curve solving ODE
 $d\gamma(s) = a \, ds$, $\gamma(t) = x$.

 $u^{\nu}(x,t) = E[u_0(\gamma^{\nu}(0))], \text{ where}$ $\gamma^{\nu}(s) = x - a(t-s) + \sqrt{2\nu}B(t-s): \text{ stochastic process solving SDE}$ $d\gamma^{\nu}(s) = a \, ds - \sqrt{2\nu}dB(t-s), \ \gamma^{\nu}(t) = x.$ $\gamma^{\nu} \to \gamma \text{ and } u^{\nu} \to u \text{ as } \nu \to 0 \text{ (law of large numbers).}$



Finite difference method from stochastic viewpoint

$$\frac{u_{m+1}^{k+1} - \frac{u_m^k + u_{m+2}^k}{2}}{\Delta t} + a \frac{u_{m+2}^k - u_m^k}{2\Delta x} = 0, \quad u_m^0 = u_0(x_m).$$

$$u_{m+1}^{k+1} = (\frac{1}{2} + \frac{a}{2}\lambda)u_m^k + (\frac{1}{2} - \frac{a}{2}\lambda)u_{m+2}^k \quad (\lambda := \Delta t/\Delta x)$$

$$= (\frac{1}{2} + \frac{a}{2}\lambda)^2 u_{m-1}^{k-1} + 2(\frac{1}{2} + \frac{a}{2}\lambda)(\frac{1}{2} - \frac{a}{2}\lambda)u_m^{k-1} + (\frac{1}{2} - \frac{a}{2}\lambda)^2 u_{m+2}^{k-1}$$

$$= \cdots = \sum_n P(x_n)u_0(x_n) = \sum_{\gamma} \mu(\gamma)u_0(\gamma^0),$$

P: binomial distribution on $(2\Delta x)\mathbb{Z}$, if $|a\lambda| < 1$, with

average = $x_{m+1} - at_{k+1}$, variance = $(1 - a^2\lambda^2)t_{l+1}\frac{\Delta x^2}{\Delta t}$, $\mu(\gamma)$: prob. density of sample path γ of the corresponding random walk.

By hyperbolic scaling limit $\Delta x, \Delta t \rightarrow 0, \lambda = \Delta t / \Delta x = O(1)$

 $P \rightarrow \delta(x - at), \ \gamma \rightarrow \gamma(s) = x - a(t - s)$ (law of large numbers). Thus $u_m^k \rightarrow u(x, t)$ as $\Delta x, \Delta t \rightarrow 0$ with $\lambda = O(1)$.

Preliminaries

Representation formulas for v and v_x :

$$v(x,t) = \inf_{\gamma \in AC, \gamma(t)=x} \left[\int_0^t L(\gamma(s), s, \gamma'(s)) ds + v^0(\gamma(0)) \right] + ht.$$

If (x,t): regular point of v (i.e. $\exists v_x(x,t)$) and γ^* : minimizer,

(1)
$$v_x(x,t) = \int_0^t L_x(\gamma^*(s), s, \gamma^{*'}(s)) ds + v_x^0(\gamma^*(0)).$$

Each minimizer γ^{*} is a backward characteristic curve.

Even grid, odd grid and discretization:

$$\begin{split} \Delta x, \Delta t > 0: \text{ discretization parameters.} \\ G_{even} &:= \{m\Delta x \mid m \in \mathbb{Z}, m = even\}, \ G_{odd} := \{m\Delta x \mid m \in \mathbb{Z}, m = odd\}. \\ \mathcal{G} &:= \bigcup_{k \geq 0} \{((G_{even})^d \times \{t_{2k}\}) \cup ((G_{odd})^d \times \{t_{2k+1}\})\}, \ t_k := k\Delta t, \\ \tilde{\mathcal{G}} &:= \bigcup_{k \geq 0} \{((G_{odd})^d \times \{t_{2k}\}) \cup ((G_{even})^d \times \{t_{2k+1}\})\}. \\ (x_m, t_k) &= (x_{m_1}^1, \dots, x_{m_d}^d, t_k) \in \mathcal{G}, \tilde{\mathcal{G}}. \\ (x_m, t_k), (x_{m+1}, t_{k+1}) \text{ for points of } \mathcal{G}, \\ (x_{m+1}, t_k), (x_m, t_{k+1}) \text{ for points of } \tilde{\mathcal{G}} \text{ with } 1 := (1, \dots, 1) \in \mathbb{Z}^d. \\ \text{Consider the sets with the standard basis } e_1, \dots, e_d \text{ of } \mathbb{R}^d, \\ B_+^i &:= \{\sigma_1 e_1 + \dots + \sigma_d e_d \mid \sigma_i = -1, \sigma_j = \pm 1, \ j = 1, \dots, d, \ j \neq i\}, \\ B_-^i &:= \{\sigma_1 e_1 + \dots + \sigma_d e_d \mid \sigma_j = \pm 1, \ j = 1, \dots, d\} = B_+^i \cup B_-^i, \\ b &:= \# B = 2^d, \ \bar{b} := \# B_i^{\pm} = 2^{d-1}. \end{split}$$

For each $x_m \in (G_{even})^d$, $\{x_{m+\omega}\}_{\omega \in B} \subset (G_{odd})^d \text{ forms the d-cube } \mathcal{C}_m \text{ with the centre } x_m, \\ \{x_{m+\omega}\}_{\omega \in B^i_+} \subset (G_{odd})^d \text{ form the two sides of } \mathcal{C}_m, \text{ facing each other } \}$ and orthogonal to e_i . The same for each $x_m \in (G_{odd})^d$. Let $v = v_{m+1}^k$ denote a function $v : \tilde{\mathcal{G}} \ni (x_{m+1}, t_k) \mapsto v_{m+1}^k \in \mathbb{R}$. Define spatial difference derivatives of v_{m+1}^k on ${\mathcal G}$ as $(D_x^i v^k)_m := \left\{ \left(\overline{b}^{-1} \sum_{\omega \in B_+^i} v_{m+\omega}^k \right) - \left(\overline{b}^{-1} \sum_{\omega \in B_-^i} v_{m+\omega}^k \right) \right\} \frac{1}{2\Delta x}, \ i = 1, \dots, d,$ $(D_x v^k)_m := ((D_x^1 v^k)_m, \dots, (D_x^d v^k)_m).$ Define time difference derivatives of v_{m+1}^k as

$$D_t v_m^{k+1} := \left\{ v_m^{k+1} - b^{-1} \sum_{\omega \in B} v_{m+\omega}^k \right\} \frac{1}{\Delta t}$$

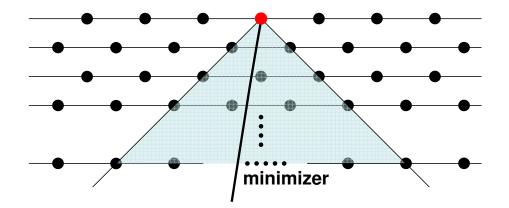
Our discretization of (HJ) is

$$(\mathrm{HJ})_{\Delta} \begin{cases} D_t v_m^{k+1} + H(x_m, t_k, (D_x v^k)_m) = h & \text{in } \tilde{\mathcal{G}}, \\ v_{m+1}^0 = v^0(x_{m+1}). \end{cases}$$

Note that v_m^{k+1} is unknown and is determined by $\{v_{m+\omega}^k\}_{\omega \in B}.$

The diffusion effect of $(HJ)_{\Delta}$ at each grid point within Δt is characterized by C_m .

Under hyperbolic scaling $0 < \lambda_0 \leq \Delta t / \Delta x$, the propagation speed is finite.



Inhomogeneous controlled random walks in $\tilde{\mathcal{G}}$:

Consider backward random walks γ within $[0, t_{l+1}]$ which start from x_n at t_{l+1} and move by $\omega \Delta x$, $\omega \in B$ in each backward time step Δt :

$$\gamma = \{\gamma^k\}_{k=l',\cdots,l+1}, \quad \gamma^{l+1} = x_n, \quad \gamma^k = \gamma^{k+1} + \omega \Delta x.$$

More precisely, we set the following for each $(x_n, t_{l+1}) \in \tilde{\mathcal{G}}$ and $0 \leq l$:

$$X_{k+1}^{l+1,n} := \{ x_m \mid (x_m, t_{k+1}) \in \tilde{\mathcal{G}}, \| x_m - x_n \| \le \| 1 \| (l-k)\Delta x \}, k \le l, \\ G = G^{l+1,n} := \bigcup_{0 \le k \le l} (X_{k+1}^{l+1,n} \times \{ t_{k+1} \}) \subset \tilde{\mathcal{G}},$$

$$\xi: G \ni (x_m, t_{k+1}) \mapsto \xi_m^{k+1} \in ([-(d\lambda)^{-1}, (d\lambda)^{-1}])^d, \quad \lambda = \Delta t / \Delta x, \\ \rho: G \times B \ni (x_m, t_{k+1}; \omega) \mapsto \rho_m^{k+1}(\omega) := b^{-1}(1 - \lambda(\omega \cdot \xi_m^{k+1})) \in [0, 1], \\ \gamma: \{0, 1, \dots, l+1\} \ni k \mapsto \gamma^k \in X_{k+1}^{l+1, n}, \ \gamma^k = \gamma^{k+1} + \omega \Delta x, \ \omega \in B,$$

 Ω_n^{l+1} : the family of these γ .

 $\{\rho_m^{k+1}(\omega)\}_{\omega\in B}$: a transition probability from (x_m, t_{k+1}) to points belonging to $\{(x_m + \omega \Delta x, t_k)\}_{\omega\in B}$.

 ξ : control of γ (\leftrightarrow drift term in SDE).

Define the density of each path $\gamma \in \Omega_n^{l+1}$ as

$$\mu(\gamma) := \prod_{0 \le k \le l} \rho_{m(\gamma^{k+1})}^{k+1}(\omega^{k+1}),$$

where $\omega^{k+1} := (\gamma^k - \gamma^{k+1})/2\Delta x$.

The density $\mu(\cdot) = \mu(\cdot; \xi)$ yields a probability measure of Ω , namely $prob(A) = \sum_{\gamma \in A} \mu(\gamma; \xi)$ for $A \subset \Omega_n^{l+1}$.

The expectation with respect to this probability measure is denoted by $E_{\mu(\cdot;\xi)}$, i.e., for a random variable $f: \Omega^{l+1,l'} \to \mathbb{R}$

$$E_{\mu(\cdot;\xi)}[f(\gamma)] := \sum_{\gamma \in \Omega^{l+1,l'}} \mu(\gamma;\xi) f(\gamma).$$

Asymptotics of the probability measure of Ω for $\Delta \rightarrow 0$ under hyperbolic scaling is studied in Soga [1], [5].

Main Results [5]

Consider the stochastic action functional for each (x_n, t_{l+1})

$$E_n^{l+1}(\xi) := E_{\mu(\cdot;\xi)} \Big[\sum_{0 < k \le l+1} L(\gamma^k, t_{k-1}, \xi_{m(\gamma^k)}^k) \Delta t + v^0(\gamma^0) \Big] + ht_{l+1}.$$

Thm. For each
$$T > 0$$
, $\exists \lambda_1 > 0$ s.t. if $\lambda = \Delta t / \Delta x < \lambda_1$ then
1. $v_n^{l+1} = \inf_{\xi} E_n^{l+1}(\xi)$.
2. "inf" is attained by ξ^* which is bounded by $(d\lambda_1)^{-1}$.
3. $\xi^*{}_m^{k+1} = H_p(x_m, t_k, c + (D_x v^k)_m)$.
In particular, $(D_x v^k)_m = L_{\xi}(x_m, t_k, \xi^*{}_m^{k+1})$ and this is bounded.

- Let $\Delta x, \Delta t \to 0$ under hyperbolic scaling $0 < \lambda_0 \leq \lambda = \Delta t / \Delta x < \lambda_1$. v_Δ : linear interpolation of v_{m+1}^k ,
- u_{Δ} : step function given by $(D_x v^k)_m$,
- γ_{Δ} : linear interpolation of the minimizing random walk starting at (x_n, t_{l+1}) next to a point (x, t).

Thm. For
$$\Delta = (\Delta x, \Delta t) \to 0$$
,
1. $v_{\Delta}(x,t) \to v(x,t) = \inf_{\gamma} \left[\int_{0}^{t} \{L(\gamma(s), s, \gamma'(s))\} ds + v^{0}(\gamma(0)) \right] + ht$.
2. $|v_{\Delta}(x,t) - v(x,t)| \leq \beta_{1} \sqrt{\Delta x}$ on $\mathbb{T} \times [0,T]$.
3. $\gamma_{\Delta} \to \gamma^{*}$ unif. in probability for each regular point (x,t) .
4. If v^{0} is semiconcave, then
 $u_{\Delta}(x,t) \to v_{x}(x,t) = \int_{0}^{t} L_{x}(\gamma^{*}(s), s, \gamma^{*'}(s)) ds + v_{x}^{0}(\gamma^{*}(0))$.
5. Except any "small" nbhd. of shocks (non-regular points of v),
 $u_{\Delta} \to v_{x}$ uniformly.

* Semiconcavity assumption can be removed for d = 1.

Applications

d = 1 with the periodic setting [3], [4]:

- Time global stability of v_{m+1}^k and $(D_x v^k)_m$ with fixed $\Delta x, \Delta t$.
- Long time behaviors of v_{m+1}^k and $(D_x v^k)_m$ for $k \to \infty$.
- Existence of periodic sol. \bar{v}_{m+1}^k and $(D_x \bar{v}^k)_m$ as well as the effective Hamiltonian \bar{h}_{Δ} .
- Numerical methods of classical & weak KAM theory.
- Selection problems of \mathbb{Z}^2 -periodic viscosity solutions and entropy solutions.

Future works

- Similar results to [3], [4] for d > 1.
- Diffusive scaling limit, i.e., $\Delta x, \Delta t \to 0$ with $\Delta x^2 / \Delta t = O(1)$.
- Toward system of equations.