
Recursive modules for programming

(Extended abstract)

Keiko Nakata1 Jacques Garrigue2

1 Kyoto University Research Institute for Mathematical Sciences
2 Graduate School of Mathematics, Nagoya University

Abstract

The ML module system enables flexible development of large software
systems by its support of nested structures, functors and signatures. In
spite of this flexibility, however, recursion between modules is prohibited,
since dependencies between modules must accord with the order of defini-
tions. As a result of this constraint, programmers may have to consolidate
conceptually separate components into a single module, intruding on mod-
ular programming. Recently much work has been devoted to extending
the module system with recursion, and developing a type system for recur-
sive modules has been one of the main subjects of study. Since recursion
is an essential mechanism, one faces several issues to be considered for
designing a practical type system.

Our goal is to make recursive modules an ordinary construct for ML
programmers. We want to use them easily in everyday programming,
possibly combining with other constructs of the core and the module lan-
guages. With this goal, we are to develop a type system for recursive
modules, which is practical and useful from the programmer’s perspec-
tive. We recognize difficulties involved in type checking recursive modules
and address these difficulties by confining ourselves to first-order functors.
The type system is provably decidable and sound for a call-by-value op-
erational semantics. The technical development of the type system and a
soundness proof are somewhat involved. In this paper, we present our de-
sign of a language for recursive modules and give several examples; one of
the examples expresses a variation on the expression problem in support
of our design choice.

1 Introduction

When building a large software system, it is useful to decompose the system
into smaller parts and to reuse them in different contexts. Module systems
play an important role in facilitating such factoring of programs. Many modern
programming languages provide some forms of module systems.

The family of ML programming languages, which includes SML[18] and Ob-
jective Caml [16], provides a powerful module system [17, 15]. Nested structures

of modules allow hierarchical decomposition of programs. Functors can be used
to express advanced forms of parameterization, which ease code reuse. Abstrac-
tion can be controlled by signatures with transparent, opaque or translucent
types [10, 13]. Despite the flexibility of the module language, however, mutual
recursion between modules is prohibited, since dependencies between modules
must accord with the order of definitions. As a result of this constraint, pro-
grammers may have to consolidate conceptually separate components into a
single module, intruding on modular programming.

Much work has been devoted to extending the ML module system with
recursion. There are at least two important issues involved in recursive modules,
namely initialization and type checking.

Initialization: Suppose that we can freely refer to value components in struc-
tures forward and backward. Then we might carelessly define value components
cyclically like val l = m val m = l. Initialization of modules having such
cyclic value definitions would either raise runtime errors or cause meaningless
infinite computation. Boudol [1], Hirschowitz and Leroy [12], and Dreyer [3]
examined type systems which ensure safe initialization of recursive modules.
Their type systems ensure that the initialization does not attempt to access un-
defined recursive variables. The above cyclic definitions will be rejected because
initialization of the value component l requires an access to itself. This path is
not the main focus of this paper.

Type checking: Designing a type system for recursive modules is another
important and non-trivial issue; this is the main focus of this paper. Suppose
that we can layout modules in any order regardless of their dependencies. Then,
it might happen that a function returns a value whose type is not yet defined
at the point where the function is defined. To type check the function, a type
system should somehow know about the type, which is going to be defined in
the following part of the program.

1.1 Type checking recursive modules

To type check recursive modules, existing type systems [2, 25, 24, 5, 4, 16] rely
on annotations; programmers have to assist the type checker by writing enough
type information by themselves so that recursive modules do not burden the
type checker with forward references.

The amount of required annotations varies in each proposal and depends
on whether type abstraction is enforced inside the recursion or outside, that is,
whether recursive modules do not know exact implementations of each other, or
they do but the rest of the program does not. In all proposals, one has to write
signatures twice for the same module to enforce type abstraction outside; one of
the signatures is solely for assisting the type checker and does not affect the re-
sulting signature of the module. Moreover, the annotation requirement disables
programmers from using type inference of the core language in the presence of
recursive modules. This would be unfortunate since a lot of useful inference
algorithms have been and will be developed to support smooth development of

programs.

Even if we write annotations for recursive modules, this still leaves two subtle
issues to be considered.

1.2 Cyclic type specifications in signatures

To annotate recursive modules with signatures, existing type systems provide
recursive signatures, in which components of signatures can refer to each other
recursively. To develop a practical algorithm for judging type equality, one may
want to ensure that transparent type specifications in recursive signatures do
not declare cyclic types. For instance, one may want to forbid programmers
from writing the recursive signature sig type t = s type s = t end.

Detection of cyclic type specifications is not a trivial task when the module
language supports both recursive signatures and applicative functors [14]. Ap-
plicative functors give us more flexibility in expressing type sharing constraint
between modules; at the same time, it is possible to specify cyclic types in
such a way that a straightforward check cannot detect, by combining applica-
tive functors and recursive signatures. One pathological example of cyclic type
specifications is:

module type F = functor(X : sig type t end) → sig type t = F(F(X)).t end

Compare the above recursive signature to the recursive signature below.
module type G = functor(X : sig type t end) → sig type t = G(X).t end

On the one hand, a type system would easily detect the latter cycle, since the
unrolling of the type G(X).t would be G(X).t itself. On the other hand, it
might not be easy to detect the former cycle, since the unrolling of the type
F(F(X)).t could yield the following infinite rewriting sequence.

F(F(X)).t →F(F(F(X))).t →F(F(F(F(X)))).t →...

Observe that this sequence does not contain the syntactically same object, but
produces arbitrary large objects.

The situation could become harder, when we want to allow the recursive
signature:
module type H = functor(X : sig type t type s end) →

sig type t = H’(H’(X)).t type s = X.s → X.s end
and H’ = functor(X : sig type t type s end) →

sig type t = X.t ∗ X.t type s = H(H(X)).s end

Although H and H’ may seem to define more complex types than F, this last
recursive signature does not contain cycles.

The three recursive signatures we have seen here are simple. Hence one may
easily distinguish between them, judging that only the last one is legal. When
recursive signatures specify more complex types, however, this issue becomes
subtle to address.

1.3 Potential existence of cyclic type definitions

Another subtle issue is how to account for the potential of cyclic type definitions
in structures, when opaque signatures hide their implementations. For instance,
should the type checker reject the program below?

module M = struct type t = N.t end : sig type t end
and N = struct type t = M.t end : sig type t end

On the one hand, one could argue that this is unacceptable since the underlying
implementations of the types M.t and N.t make a cycle. On the other hand,
one could argue that this is acceptable since, according to their signatures, the
types M.t and N.t are nothing more than abstract types. Thus the modules M
and N need not be accused of defining cyclic types. At least, one could argue
that potential cycles are acceptable, if the type system is sound and decidable
and this choice has merits over the other choice.

Existing type systems take different stands on this issue.
In Russo’s system [25], programmers have to write forward declarations for

recursive modules, in which implementations of types other than datatypes can-
not be hidden. Thus there is no potential that cyclic type definitions are hidden
by opaque signatures. At the same time, programmers cannot enforce type
abstraction inside recursive modules.

Dreyer’s work [4] focuses on type abstraction inside recursive modules. He
requires the absence of cyclic type definitions whether or not they are hidden
by opaque signatures. To ensure the absence of cycles without peeking inside
signatures, he puts restriction on types whose implementation can be hidden.
As a consequence, the use of structural types is restricted. For instance, his type
system would reject the following program, which uses polymorphic variants [6]
and a list to represent trees and forests. (Here we use polymorphic variants,
which are supported only in the Objective Caml variant of ML, since the core
language we want to support is that of O’Caml. Yet, similar restrictions could
arise in the context of SML, when one attempts to use records to represent
trees.)

module Tree = (struct
type t = [‘Leaf of int | ‘Node of int * Forest.t]

end : sig type t end)
and Forest = (struct type t = Tree.t list end : sig type t end)

By replacing polymorphic variants with usual datatypes, we could make this
program typed in his system. Polymorphic variants, however, have their own
merits that datatypes do not have.

The path Objective Caml [16] chose is a more liberal one. It does not care
whether cyclic type definitions are hidden inside opaque signatures or not, as
long as the signatures themselves do not specify cycles. The type checker com-
plains when recursive signatures contain cyclic type specifications whenever it
terminates. (Recall that applicative functors make it difficult to detect cycles in
a terminating way.) On the one hand, O’Caml supports a highly expressive core
language, including structural types such as objects and polymorphic variants.
On the other hand, the path it chose keeps flexibility in using these types and

in abstracting them away by opaque signatures. Only that there is no formal
proof for the soundness of this path and that the soundness might not be proven
by a translation into an explicit type-passing system. When we make opaque
signatures transparent, we may reveal cyclic type definitions which were hidden
inside signatures. If a type is defined cyclically, there is no concrete type to be
passed explicitly.

1.4 Our proposal of a type system for recursive modules

Our goal is to make recursive modules an ordinary construct of the module
language for ML programmers. We want to use them easily in everyday pro-
gramming, possibly combining with other constructs of the core and the module
languages. With this goal, we are to develop a practical type system for recur-
sive modules, which overcomes as much of the difficulties discussed above as
possible. Concretely, we follow the path O’Caml chose but are to extend it by
1) enabling type inference; 2) ensuring that signatures of recursive modules do
not specify cyclic types, while keeping applicative functors; 3) proving soundness
of the type system formally, but allowing potential cyclic type definitions to be
hidden by opaque signatures, thus keeping flexibility in using structural types.
At the current development, we confine ourselves to first-order functors. We
defer it to future stage to accommodate higher-order functors by presumably
adapting existing approaches.

Our technical developments and proofs are somewhat involved. We obtain
ideas from term rewriting theory for enabling type inference and detecting cyclic
type specifications. We use a technique in labeled transition systems for the
soundness proof.

In this paper, we do not give the formalization of our developments nor
proofs. It is hard for us to describe then in this limitation of the space. There
are papers [20, 19] devoted to their explanations. In this paper, we present
our design of a language, named Remonade, for recursive modules, and give
several examples; one of the examples expresses a variation on the expression
problem [26] in support of our design choice.

2 Example

In this section, we review two examples to illustrate two possible uses of recursive
modules and to present the main features of Remonade1.

The first example appears in Figure 1. The top-level module TreeForest
contains two modules Tree and Forest: Tree represents a module for trees
whose leaves and nodes are labeled with integers; Forest represents a module
for unordered sets of those integer trees.

1In examples, we shall allow ourselves to use some usual core language constructions, such
as let and if expressions and list constructors, even though they are not part of the formal
development given in Section 3.

module TreeForest = struct (TF)
module Tree = (struct
datatype t = Leaf of int | Node of int * TF.Forest.t
val max = λx.case x of Leaf i ⇒ i

| Node (i, f) ⇒ let j = TF.Forest.max f in if i > j then i else j
val mk tree = λx.let i = TF.Forest.max x in Node(i, x)
end : sig type t val max : t → int val mk tree : TF.Forest.t → t end)
module Forest = (struct
type t = TF.Tree.t list
val max = λx.case x of [] ⇒ 0

| hd :: tl ⇒ let i = TF.Tree.max hd in let j = max tl in
if i > j then i else j

val combine = λx.λy.TF.Tree.mk tree ([x;y] : t :: TF.Forest.t)
end : sig
type t val max : t → int
val combine : TF.Tree.t → TF.Tree.t → TF.Tree.t end)

end

Figure 1: Modules for trees and forest

The modules Tree and Forest refer to each other in a mutually recursive
way. Their type components Tree.t and Forest.t refer to each other, as do
their value components Tree.max and Forest.max. These functions calculate
the maximum integers a tree and a forest contain, respectively.

We defer explanations of functions Tree.mk tree and Forest.combine to
Section 3.

To enable forward references, we extend structures and signatures with self
variables. Components of structures and signatures can refer to each other re-
cursively using the self variables. For instance, TreeForest has a self variable
named TF, which is used inside Tree and Forest to refer to each other recur-
sively. We keep the usual ML scoping rules for backward references. Thus
Tree.max can refer to the Leaf and Node constructors without going through
a self variable. Tree might also be used without prefix inside Forest, but the
explicit notation seems clearer.

This first example illustrates a possible use of recursive modules, where they
respect each other’s privacy, that is, they are sealed with opaque signatures
individually, enforcing type abstraction inside the recursion.

The second example appears in Figure 2. Now TreeForest is a functor,
parameterized by the type of labels of trees. We assume that an applicative
functor MakeSet is given in a library for making sets of comparable elements.

The modules Tree and Forest define the same recursive types as the first
example, except that the argument types of the value constructors Leaf and
Node are parameterized. The module abbreviation module F = TF.Forest in-
side Tree enables us to use an abbreviation F for TF.Forest inside Tree. Sim-
ilarly, the type s in Tree is an abbreviation which expands into TF.Forest.t.
Although we can dispense with abbreviations by replacing them with their def-
initions altogether, they are useful in practice [22].

module TreeForest = functor(X : sig type t val compare : t → t → int end) →
(struct (TF)
module S = MakeSet(X)
module Tree = struct
module F = TF.Forest
type s = F.t
datatype t = Leaf of X.t | Node of X.t * s
val split = λx.case x of Leaf i ⇒ [Leaf i]

| Node (i, f) ⇒ (Leaf i) :: f
val labels = λx.case x of Leaf i ⇒ TF.S.singlton i

| Node (i, f) ⇒ TF.S.add i (F.labels f)
end
module Forest = struct
module T = TF.Tree
type t = T.t list
val sweep = λx.case x of [] ⇒ []

| (T.Leaf y) :: tl ⇒ (T.Leaf y) :: (sweep tl)
| (T.Node y) :: tl ⇒ sweep tl

val labels = λx.case x of [] ⇒ TF.S.empty
| hd :: tl ⇒ TF.S.union (T.labels hd) (labels tl)

val incr = λt.λf.let l1 = T.labels t in let l2 = labels f in
if TF.S.subset l2 l1 then (t :: f) else f

end
end : sig (Z)
module Tree : sig type t val split : t → Z.Forest.t end
module Forest : sig
type t val sweep : t → t val incr : Z.Tree.t → t → t end

end)

Figure 2: Intimate modules for trees and forests

In the second example, Tree and Forest have intimate relations: the func-
tions Tree.split and Forest.sweep need to know the underlying implemen-
tations of the types Forest.t and Tree.t of the others to construct and de-
construct values of those types. Given a tree, split cuts off the root node of
the tree and returns the resulting forest. The function sweep gathers the leaves
from a given forest.

Since the two modules are intimate, we do not seal Tree and Forest indi-
vidually here. Instead, we seal them as a whole with an opaque signature. The
signature only exposes functions split, sweep, and incr, which augments a
given forest only if the set of labels in a given tree subsumes the set of labels in
the forest, but hides functions Tree.labels and Forest.labels, which are util-
ity functions for incr. The signature also enforces type abstraction, protecting
their privacy from the outside.

The two examples we have seen so far illustrate two possible uses of recursive
modules. They may have privacy, enforcing type abstraction inside the recur-
sion. They may have intimacy, enforcing type abstraction outside the recursion.
Both uses would be useful and would become common in practice.

Module expr. E ::= struct (Z) D1 . . . Dn end structure
| functor(X : S) → E functor
| (E : S) sealing
| p module path

Definitions D ::= module M = E module definition
| val l = e value definition
| datatype t = T datatype definition
| type t = τ type abbreviation

Signature expr. S ::= sig (Z) B1 . . . Bn end signature type
| functor(X : S) → S functor type

Specifications B ::= module M : S module specification
| type t = τ manifest type specification
| type t abstract type specification
| val l : τ value specification

Recursive ident. rid ::= Z | rid .M
Module ident. mid ::= rid | mid(mid) | mid(X)
Module path p ::= mid | X
Program P ::= struct (Z) D1 . . . Dn end

Figure 3: The module language of Remonade

3 Syntax

We give the syntax for our module language in Figure 3, which is based on
Leroy’s module calculus with manifest types [13]. We use M as a metavariable
for ranging over module names, X for ranging over module variables, and Z
for ranging over self variables. For simplicity, we distinguish them syntactically,
however the context could tell them apart without this distinction.

As explained in the previous section, we extend structures and signatures
with implicitly typed declarations of self variables to support recursive refer-
ences. In the constructs struct (Z) D1 . . . Dn end and sig (Z) B1 . . . Bn end,
the self variable Z is bound in D1 . . . Dn, and B1 . . . Bn, respectively.

An unusual convention of bound module variables is that we let a module
variable X bound in the signature specified for X. That is, in the constructions
functor(X : S) → E and functor(X : S) → S′, we let X bound in S 2. There
are situations where this convention is useful, as we see in the next section.

The construct which enables recursive references is recursive identifiers. A
recursive identifier is constructed from a self variable and the dot notation “.M”,
which represents access to the module component M of a structure. A recursive
identifier may begin from any bound self variable, and may refer to a module
at any level of nesting within the recursive structure or signature, regardless
of component ordering. For instance, through the self variable of the top-level
structure, one can refer to any module named in that structure except for those
hidden within sealed sub-structures. It is important that recursive identifiers
can only use bound self variables, and that self variables of sealed modules are
unbound outside them. Otherwise type abstraction could be broken.

2This implies that the module expressions functor(X : sig (Z) type t type s = Z.t end) → X

and functor(X : sig type t type s = X.t end) → X denote the same functor.

Types τ ::= 1 | τ1 → τ2 | τ1 ∗ τ2 | ext rid .t | X.t
Datatype definition T ::= c of τ
Core expressions e ::= x | () | (λx.e : τ) | (e1, e2) | πi(e) | e1(e2)

| rid .c e | case e of ms | rid .l | X.l | (e : τ1 :: τ2)
Matching clause ms ::= rid .c x ⇒ e
Extended recursive ident. ext rid ::= Z | ext rid .M | ext rid(ext rid) | ext rid(X)

Figure 4: The core language of Remonade

For the sake of simplicity, we assume that functor applications only contain
module paths. In a practical system, however, we can weaken this restriction
following Leroy’s proposal [15].

To obtain a decidable type system, we impose a first-order structure restric-
tion that requires functors 1) not to have functors as arguments, 2) nor to access
inner modules of arguments. The first condition means that our functors are
first-order, and the second implies that we have to pass inner modules as in-
dependent parameters for functors instead of passing a module which contains
all of them. One might have noticed that the syntax of module paths excludes
those of the forms X.M and X(p). This is due to the restriction.

We give the syntax for our core language in Figure 4. We use x as a metavari-
able for program variables and c for value constructor names.

The core language describes a simple functional language extended with the
following three constructions.

• Value paths X.l and rid .l refer to the value components l in the modules
referred to by X and rid, respectively.

• Type paths X.t and ext rid .t refer to the type components t in the mod-
ules referred to by X and ext rid, respectively. For type paths, we slightly
extend the class of paths so as to liberally include functor applications,
motivated by Leroy’s proposal [14]. This gives us more flexibility in ex-
pressing type sharing constraint between modules.

• Type conversion (e : τ :: τ) is for turning values of concrete types into
values of abstract types, and vice versa.

When a module is sealed with a signature, we distinguish the module de-
fined inside the signature and the module which inhabits the signature.
In other words, a sealed module has different appearances depending on
whether the module is referred to inside the sealing or outside. For in-
stance, inside the module Forest in Figure 1, we do not equate the type
t and the type TF.Forest.t; the former is an internal type referring to
Forest’s type t inside the sealing, but the latter is an external type re-
ferring to Forest’s type t outside.

This design choice reflects our stand that an abstract type generates a new
type that is not equivalent to any types but itself, and keeps semantics
of type equality simple. Nevertheless, this choice might be occasionally

inconvenient, when one wants to build a value of an external type inside
the sealing. This is where the type conversion can be used.

Now, we shall explain functions Tree.mk tree and Forest.combine; the
former builds a tree from a given forest and the latter builds a tree from
given two trees. The type system infers that the expression [x;y] in the
body of combine has the type TF.Tree.t list. The internal type t of
Forest is equivalent to TF.Tree.t list, but the external type is not.
Hence, to apply Tree.mk tree to [x;y], one needs to turn the type of
[x;y] into the external type t of Forest, namely TF.Forest.t, using the
type conversion as we did in Figure 1. Note that Tree.mk tree expects
an argument of type TF.Forest.t.

Inside Forest, it is also possible to turn, for instance, a variable x of
the external type t of Forest into that of the internal type, with the
construction (x : TF.Forest.t :: t). Yet, it is not possible, inside
Tree, to produce a null list [] of type TF.Forest.t using the conversion,
since the type abstraction of Forest towards Tree is enforced. (Observe
that the internal type t of Forest can be only seen inside Forest.)

We note that the type conversion construct does not add to expressiveness
of Remonade essentially. That is, one can produce the same effect without
the construct, but using nested structures. We include it in the language
for programmer’s convenience.

From a technical point of view, it might be possible to infer the necessary
type conversions to some extent, and to insert the conversions automat-
ically instead of requiring programmers to write them explicitly. But we
think that the explicit conversions are useful for programmers to avoid
exporting values of internal types unintentionally.

Note that when sealing is not involved, type conversions are unnecessary
at all. For instance, inside the module Forest in Figure 2, the types t,
TF.Forest.t and TF.Tree.t list are equivalent.

In our formalization, 1) function definitions are explicitly type annotated;
2) each structure and signature type declares a self variable; 3) a path is always
prefixed by a self variable or a module variable. Our running examples do not
obey these rules. Instead, we have assumed that there is an elaboration phase,
prior to type checking, that adds type annotations for functions by running a
type inference algorithm of the core language. The original program may still
require some type annotations, to avoid running into the polymorphic recursion
problem. In [20], we discuss the details of this inference algorithm. The elab-
oration phase also infers omitted self variables, to complete implicit backward
references.

module type E =
sig type exp val eval : exp → int val simp : exp → exp end

module PF = functor(X : E with type exp = private [> PF(X).exp]) →
struct
type exp = [‘Num of int | ‘Plus of X.exp * X.exp]
val eval : exp → int = λx.case x of ‘Num n ⇒ n

| ‘Plus (e1, e2) ⇒ X.eval e1 + X.eval e2
val simp : exp → X.exp = λx.case x of ‘Num n ⇒ ‘Num n

|‘Plus(e1, e2) ⇒ case (X.simp e1, X.simp e2) of
(‘Num m, ‘Num n) ⇒ ‘Num(m+n)

| e12 ⇒ ‘Plus e12
end

module Plus = (PF(Plus) : E with type exp = PF(Plus).exp)

Figure 5: A first language

4 The expression problem

In this section, we present an example which expresses a variation on the ex-
pression problem [26]. The expression problem is one of the most fundamental
issues one faces during the development of extensible software. A typical exam-
ple of this problem is to enrich progressively a small expression language with
new constructors and provides operations on this language. Giving a concise
and type safe solution to this problem is notoriously difficult.

Objective Caml [16] was probably the first language to solve the problem
in a type safe way, using either polymorphic variants [7] or classes [23]. Later,
Garrigue refined the solution by combining recursive modules of Objective Caml
and private row types [8]. Here we further refine his solution by using recursive
modules of our proposal instead of those of O’Caml.

The example we use here is originally given in [9]. It is a variation on the
expression problem, where we only insist on the addition of new constructors;
adding new operations is trivial in this setting.

We shall assume that we have extended Remonade with polymorphic vari-
ants, private row types and some usual module language constructions. Adding
polymorphic variants and private row types is straightforward. We add typing
rules for them to our language. Our choice of applicative functors is essential for
having private row types. Allowing structures to have module type components
may not be easy, but having module type definitions in the top-level is easy.

To reduce notational burden, we omit preceding self variables even for for-
ward references, since no ambiguity seems to arise. We also omit the top-level
struct and end.

The functor PF in Figure 5 defines a first expression language. The type
exp in PF indicates that the first language supports expressions composed of
integer constants and addition. The function eval evaluates the expressions
into integers. The function simp simplifies the expressions, by reducing the
‘Plus constructor into ‘Num when possible.

module MF = functor(X : E with type exp = private [> MF(X).exp]) →
struct
module Plus = PF(X)
type exp = [Plus.exp | ‘Mult of X.exp * X.exp]
val eval : exp → int = λx.case x of

#Plus.exp as e ⇒ Plus.eval e
|‘Mult(e1, e2) ⇒ X.eval e1 * X.eval e2

val simp : exp → X.exp = λx.case x of
#Plus.exp as e ⇒ Plus.simp e

|‘Mult(e1, e2) ⇒ case (X.simp e1, X.simp e2) of
(‘Num m, ‘Num n) ⇒ ‘Num(m*n)

| e12 ⇒ ‘Mult e12
end

module Mult = (MF(Mult) : E with type exp = MF(Mult).exp)

Figure 6: A second language

To keep the first language extensible, we have the variant type and operations
recur through the parameter X of the functor PF, leaving PF open recursion.

We use a private row type in the specification for PF’s argument type. Infor-
mally, the specification type exp = private [> PF(X).exp] denotes an ab-
stract type into which PF(X).exp can be coerced. For more details on private
row types, we refer readers to [8]. Recall our convention on bound module
variables described in Section 3; in the signature of PF’s argument, X is bound.

The module Plus closes the recursion. Observe how it is easy; we take the
fixed-point of the functor PF.

In this small example, we used private row types, applicative functors and
recursive modules in a crucial way. In particular, if it were not for them, we
cannot specify the signature of PF’s argument; the signature contains the type
which shall be obtained by instantiating PF itself.

Next, we define a second expression language using the functor MF, which
appears in Figure 6. The second language supports expressions composed of
multiplication and addition on integer constants. Inside MF, we instantiate the
first addition language, and use it in operations eval and simp to delegate
known cases by variant dispatch.

Our solution here to this variation on the expression problem refines the
previous solution [9] in that we close the recursion at the type and the operation
levels simultaneously. In particular, it seems useful for programmers that one
needs not define recursive types explicitly so as to close the type level recursion
separately from the operation level.

5 Related work

Much work has been devoted to investigating type systems for the ML module
system with recursive module extensions. To the best of our knowledge, how-

ever, no formal work has been examined a type system for recursive modules
with applicative functors, except for the experimental implementation in Ob-
jective Caml, nor has proposed type inference for recursive modules whether
functors are applicative or generative. Among others, only our type system can
handle the example on the expression problem in Section 4.

Below we give a short review on other work.
Crary, Harper and Puri [2] gave a foundational, type-theoretic account for

recursive modules. They analyzed recursive modules in the context of a phase-
distinction formalism [11], by introducing a fixed-point operator for modules
and recursively dependent signatures. Their type system requires fully trans-
parent signature annotations for recursive modules, where all components of
the modules must be made public. This means that one cannot enforce type
abstraction inside recursive modules, hence Figure 1 from Section 2 is not typed.

Objective Caml [16] supports recursive modules. The design of Remonade
is motivated by it in large part. To type check Figure 2 in O’Caml, one has to
write duplicate signatures for the modules Forest and Tree.

Russo [25] proposed a type system for recursive modules, which is imple-
mented in Moscow ML [24]. In Russo’s system, self variables must be anno-
tated with forward declarations, in which implementations of types other than
datatypes cannot be hidden. Hence, one can not enforce type abstraction inside
recursive modules.

Dreyer [4] gave a theoretical account for recursive modules with generative
functors, by proposing a “destination passing” interpretation for the modules.
The type system requires duplicate signature annotations for Figure 2.

6 Conclusion

With the goal to use recursive modules easily in every day programming, we
have been developing a practical type system for the ML module system with
a recursive module extension. In this paper, we first reviewed important issues
we have faced during the development of the type system, then described our
design choice by giving several examples. In particular, the last example shall
support our design choice by presenting a concise and type safe solution to the
expression problem.

A Overview of proofs

Here, we give a very brief summary of our development and proofs.
To enable type inference and to detect cyclic type specifications in signatures,

we develop “expansion algorithms” for resolving forward references in recursive
modules. The development of the algorithms are somewhat involved. The
idea comes from our previous work [21]; the first-order restriction allows us to
use technique in ground term rewriting theory, where termination conditions
are well-investigated. Once we developed the expansion algorithms, we can

design the type system as a straightforward extension of Leroy’s applicative
functor calculus [14]. We obtain decidability of the type system as an immediate
consequence of the termination of the expansion algorithms.

Our proof of the soundness takes the following two steps.

1. We define a type system, named RemonadeX, whose type equality is de-
fined by the weak bisimulation on a labeled transition system on types.
RemonadeX is not necessarily decidable but can account for cyclic type
definitions in recursive modules. We prove progress and type preservation
lemmas in RemonadeX.

2. We show that when a program P is typed in Remonade, then the program
obtained from P by making opaque signatures transparent is typed in
RemonadeX.

References

[1] G. Boudol. The recursive record semantics of objects revisited. Journal of
Functional Programming, 14:263–315, 2004.

[2] K. Crary, R. Harper, and S. Puri. What is a recursive module? In Proc.
PLDI’99, pages 50–63, 1999.

[3] D. Dreyer. A type system for well-founded recursion. In Proc. POPL’04,
2004.

[4] D. Dreyer. Recursive Type Generativity. In Proc. ICFP’05, 2005.

[5] D. Dreyer. Understanding and Evolving the ML Module System. PhD
thesis, Carnegie Mellon University, 2005.

[6] J. Garrigue. Programming with polymorphic variants. In In Proc. ML
workshop’98, 1998.

[7] J. Garrigue. Code reuse through polymorphic variants. In Workshop on
Foundations of Software Engineering, 2000.

[8] J. Garrigue. Private rows: abstracting the unnamed. http://www.math.
nagoya-u.ac.jp/~garrigue/papers/privaterows.pdf, 2005.

[9] J. Garrigue. Private rows: abstracting the unnamed. Slides. http://www.
math.nagoya-u.ac.jp/~garrigue/papers/private-show.pdf, 2005.

[10] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In Proc. POPL’94, 1994.

[11] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the
phase distinction. In Porc. of POPL’90, pages 341–354, 1990.

[12] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In
Proc. ESOP’02, pages 6–20, 2002.

[13] X. Leroy. Manifest types, modules, and separate compilation. In Proc.
POPL’94, pages 109–122. ACM Press, 1994.

[14] X. Leroy. Applicative functors and fully transparent higher-order modules.
In Proc. POPL’95, pages 142–153. ACM Press, 1995.

[15] X. Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

[16] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective
Caml system, release 3.09. Software and documentation available on the
Web, http://caml.inria.fr/, 2005.

[17] D. MacQueen. Modules for Standard ML. In Proc. the 1984 ACM Confer-
ence on LISP and Functional Programming, pages 198–207. ACM Press,
1984.

[18] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[19] K. Nakata and J. Garrigue. Recursive modules for programming. http:
//www.kurims.kyoto-u.ac.jp/~keiko/, 2005.

[20] K. Nakata and J. Garrigue. Type inference for recursive modules. http:
//www.kurims.kyoto-u.ac.jp/~keiko/, 2005.

[21] K. Nakata, A. Ito, and J. Garrigue. Recursive Object-Oriented Modules.
In Proc. FOOL’05, 2005.

[22] B. Pierce, editor. Advanced Topics in Types and Programming Languages,
chapter 9. The MIT Press, 2004.

[23] D. Rémy and J. Garrigue. On the expression problem. http://pauillac.
inria.fr/~remy/work/expr/, 2004.

[24] S. Romanenko, C. Russo, N. Kokholm, and P. Sestoft. Moscow ML, 2004.
Software and documentation available on the Web, http://www.dina.dk/
~sestoft/mosml.html.

[25] C. Russo. Recursive Structures for Standard ML. In Proc. ICFP’01, pages
50–61. ACM Press, 2001.

[26] P. Wadler. The expression problem. Java Genericity mal-
ing list, 1998. http://www.cse.ohio-state.edu/~gb/cis888.07g/
java-genericity/20.

