
Recursive Object-Oriented Module System

Keiko Nakata, Akira Ito, Jacques Garrigue

1 Kyoto University Research Institute for Mathematical Science
2Hitachi, Ltd.

Abstract. ML-style modules and classes are complementary. The for-
mer are better at structuring and genericity, the latter at extension and
mutual recursion. We investigate the convergence of both mechanisms by
designing an object-oriented calculus based on a nominal module system
with mutual recursion. Our modules assume simultaneously the roles of
classes with subtyping, nested structures with type members, and sim-
ple functors. Flexible inter-module recursion is obtained by allowing free
references not constrained by the order of definitions. We closely exam-
ine the well-foundedness of the recursion, in the presence of nesting and
functors. The presented type system is provably decidable, and ensures
the well-foundedness. We also define a call-by-value semantics, for which
type soundness is proved.

1 Introduction

ML-style modules offer excellent support for structuring and genericity [8]. The
nested structure of modules plays a significant role in the decomposition of large
programs. Functors can express advanced forms of parametricity, and abstrac-
tion can be controlled by signatures with transparent, opaque, or translucent
types [11]. However, they are weak at extension and do not allow mutual recur-
sion.

Classes offer better support for extension and mutual recursion. Inheritance
and overriding allow one to build a new class only with extensions and changes
to an existing one. With subtyping, the new class can be used in place of the
previous one. Mutual recursion is in classes’ nature, and thereby recursion at
both of value and type level has to be supported.

Much work has been devoted to investigating how to combine both mecha-
nisms [13, 1, 9, 15].

Objective Caml is one example of orthogonal combination. The language is
very expressive, but the result is quite complex. Many concepts, such as struc-
tures, functors, signatures, classes and class interfaces, are introduced in a sin-
gle language. Despite some features of modules and classes overlap, they are
not merged, and use different syntax. This makes it mind-boggling to use both
mechanisms simultaneously.

Recently, to get rid of the inconvenience of the former approach, and to give
a theoretical foundation which harmonizes both mechanisms, much effort has
been made investigating their convergence. When designing such a language,

one has to give careful consideration to matters concerning decidability and
well-foundedness.

– As investigated in [13], dependent types play an important role in unifying
modules and classes. However, as seen in [14], the combination of subtyp-
ing and dependent types makes it a hard task to keep decidability of type
checking.

– The unification brings about mutual recursion into modules. We have to be
careful about the well-foundedness of the recursion, as recursion might cause
circular dependencies between modules [3, 9, 6].

Our ultimate goal is to design a language which unifies modules and classes,
and equip it with a sound and decidable type system, which ensures well-
foundedness of the recursion. In this paper, as a first step towards that goal,
we propose a calculus, called Room, based on a nominal module system with
mutual recursion. In Room, modules assume simultaneously the roles of classes,
nested structures, and simple functors. The characteristics of our modules are
summarized as follows.

Class role: Objects are created from modules, and modules themselves are types
of objects as with Java’s classes. Mutual recursion between modules is al-
lowed. Inheritance (with method overriding) and subtyping are provided
through an asymetric merging operator.

Structure role: Modules can be nested and have type members.
Functor role: Modules can be parameterized.

To make the type system decidable, we put a restriction on functor arguments
that requires them to be unparameterized (hence, Room does not have higher-
order functors), and to have exactly the same inner modules as are prescribed
by the functor types. Although this restriction costs our modules some forms
of parametricity compared to ML-functors, we still have enough parametricity
at class level; i.e. classes parameterized over types and superclasses can be ex-
pressed.

In Room, mutual recursion is offered by paths. Paths are our referencing
mechanism. They allow one to refer to any module at any level of nesting, up-
wards or downwards, notwithstanding the order of the definitions. Moreover,
simple cases of functor application are allowed in paths, where the functor and
its arguments themselves are paths. Paths give one a high degree of freedom for
reference, however (or perhaps for this reason), we are required to pay extensive
consideration to the well-foundedness of the recursion.

As a module can be defined as an alias of another module using a path, it
might happen that module definitions end up being circularly dependent. It is
highly desirable to statically reject such ill-founded modules in order to ensure
proper module elaboration, i.e. to produce a record of the methods defined
in a module. The existing approaches on well-founded recursion for recursive
modules [3, 9, 6] do not suit our situation, as their strict restriction on the order of
access to module components hinders mutual recursion as seen in object-oriented

2

programming. In this paper, we propose an innovative approach, by considering
topological sortability of modules. The restriction on functor arguments enables
its static inspection. As a consequence, our type system, once made decidable,
ensures the absence of ill-founded modules. The type system is also shown to be
sound for a call-by-value semantics.

The rest of this paper is organized as follows. In Section 2, we overview the
design of Room. Section 3 formally defines Room. Section 4 discusses the well-
foundedness of module systems. Section 5 presents the notion of normalization
of types. We give a decidable type system in Section 6. Dynamic semantics and
the type soundness result are in Section 7. In Section 8, we review related work.
Section 9 concludes.

2 Overview

SubObP = λV<:Value.{
Subject = {

V value,
up.Observer obsr,
void notifyObserver(){ obsr.update();},
void setValue(V v){

value = v;
notifyObserver();,

},
V getValue(){return value;},

}
Observer = {

up.Subject sub,
up.Subject getSubject(){return sub;},
abstract void update(),

}
}

Fig. 1. Subject/Observer pattern

In this section, we overview the design of Room. We use examples motivated
by the Subject/Observer pattern. This is a programming pattern seen in class-
based programming. It consists of an observed class, called the subject class, and
classes which observe that class, called observer classes, and presents a control
flow which ensures that changes in the subject are properly reported to observers.
This pattern is often used in practice. For instance, when building an editor, a
Data object is observed by Monitor objects, and changes in the Data object are
reported to Monitor objects in order to reflect the changes on the screen.

We begin by showing the module SubObP in Figure 1, which expresses the
pattern. SubObP packs 2 modules, Subject and Observer, and is parameterized

3

by a module variable V, which expresses the type of data handled by Subject.
Moreover, the method update contained in Observer is left to be implemented.
As in Java, we can declare abstract methods by giving only their types.

To interact mutually, Subject and Observer refer to each other, through vari-
ables obsr of type Observer, and sub of type Subject respectively. We use paths to
refer to modules. For example, a path SubObP(V).Observer refers to the module
Observer contained in the module obtained by applying SubObP to V. Using
absolute access paths starting from the top-most module, we can locate any
modules at any level of nesting. Relative access paths are also available. Here,
in the example, up is used to specify the enclosing context.

As seen in this example, types are paths or module variables. To simplify
examples, we enrich the core types with void and int.

One can build his own application from SubObP by instantiating V with his
own data type, and implementing update.

V is instantiated by application. The interface of V, namely the module
Value, requires actual values corresponding to V to be subtypes of Value.

Let Value and MyValue’ be defined as follows.

Value = {}
MyValue’ = {

int data,
int getData(){return data;}

}
We build the module MyValue by merging together the 2 modules.

MyValue = MyValue’ ⇀ Value

Merging is a counterpart to inheritance in class systems. It also induces
subtype relations between modules, as inheritance does in Java. Here, MyValue
is a subtype of MyValue’ and Value.

Then, we apply SubObP to MyValue, which yields MySubject as follows.

MySubject = SubObP(MyValue).Subject

MySubject is the module Subject contained in the module obtained by ap-
plying SubObP to MyValue.

Next, we would like to build MyObsr, which acts as the observer of MySub-
ject. Consider the following module.

MyObsr’ = {
void update(){

MyValue value = getSubject().getValue();
int i = value.getData();
...

},
abstract MySubject getSubject(),

}

4

MyObsr is created by merging together MyObsr’and SubOb(MyValue).Observer.

MyObsr = MyObsr’ ⇀ SubOb(MyValue).Observer

MyObsr is a module, which has methods update from MyObsr’ and getSubject
from Observer. The abstract methods in each module are given implementations
by each other’s identically named methods.

Finally, we get our own customized subject, MySubject, and observer, My-
Obsr.

Note that our dependent type system can infer that the type of the return
value of getValue contained in MySubject is MyValue. Hence, update of MyObsr
can invoke getDate from the value returned by MySubject’s getValue without
requiring the method to be specified in advance in V’s interface.

We have seen that by combining both mechanisms of ML-modules and classes,
the Subject/Observer pattern can be naturally expressed, offering proper exten-
sibility. The unification of the two mechanisms eases their simultaneous use.
Moreover, our type system does not require one to explicit the types of recursive
modules, whereas this is often a cause of difficulty in existing languages featuring
recursive modules.

Next we will show that the combination also enables easy mixin-style pro-
gramming.

Observer given in Figure 2 is a module parameterized over the implementa-
tion of update through the module variable C. Inside ObsrImpl, 2 methods set
and getSubject are defined. By declaring update as an abstract method, we can
call this method insides bodies of other methods, as we do in set. We use here
in paths to specify the current context.

The interface of the module variable C, namely ObserverType, mentions
the update method as required. As C is a concrete variable, this means that
Observer may only be applied to modules providing an implementation for up-
date. Additionally, the concreteness requires that they do not have any abstract
method other than getSubject.

We have 2 kinds of module variables, virtual module variables and concrete
module variables, to support flexible parameterization. Conceptually, the former
are used to parameterize over types as we did in the first example, the latter
over implementations as we do here.

The implementation of update is instantiated by applying Observer. We co-
erce C to getSubject, update before merging it with ObsrImpl. The coercion
operator coerce offers a means of access control. ObsrMixin is a module having
the same methods as C, but only getSubject and update are accessible. This co-
ercion is useful, as it avoids unexpected interference even if, for example, C too
had a method named set.

An object is created in main from Obsr with the new operator. The restriction
imposed by ObserverType on actual values corresponding to C, ensures that
Obsr has no abstract methods.

5

Observer = λC<:ObserverType.{
ObsrImp = {

Subject sub,
void set(Subject s){sub = s; update();. . . ,},
Subject getSubject(){return sub;},
abstract void update(),

}
ObsrMixin = C coerce {getSubject, update}
Obsr = here.ObsrMixin ⇀ here.ObsrImp
void main(){

here.Obsr obsr = new here.Obsr
. . . ,

}
}
ObserverType = {

required void update
abstract Subject getSubject,

}

Fig. 2. Mixin-style programming

3 Syntax

The syntax for Room is given in Figure 3. M, m, and x are metavariables which
range over module names, method names, and variable names, respectively.
Names is the set of module names. The special variable this is assumed to
be included in the set of variables. We write M or [Mi]ni=1 as a shorthand for
M1, · · · , Mn (n ≥ 0); M = E or [Mi = Ei]ni=1 for M1 = E1, · · · ,Mn = En;
λX<:p.E or λ[Xi<:pi]ni=1.E for λX1<:p1.λX2<:p2. · · · .λXn<:pn.E; p.M(q) or
p.M([qi]ni=1) for p.M(q1) · · · (qn).

A module system S is a record of module definitions, method definitions, and
method declarations. Modules are defined by module expressions, which are one
of path, basic module, coercion, or merging.

A path p is a reference to a module, which is obtained by combination of
dot notation (access to a module component) and functor application. We use
syntactic sugar here and up to abbreviate respectively the current and the en-
closing context, as in Figures 1 and 2. In the module pointed to by p.M(p′), a
path here.q (resp. up.q) is a shorthand for p.M(p′).q (resp. p.q). A path prefixed
with a sequence of up’s, such as up.up.M , can be defined similarly. We usually
omit the leading “ε.” when writing paths.

A basic module is a record of module definitions, method definitions, and
method declarations. It can be parameterized by module variables, constrained
by their interfaces. Interfaces are paths, and denote upper type bounds of mod-
ules to which the parameterized modules are to be applied.

Coercion allows visibility control. Programmers may create a new module by
hiding some components of an existing one.

6

S ::= {M = E,met} module system
E ::= p path

| λX <: p.{met , D} basic module

| p coerce {M, m} coercion
| p ⇀ p merging

p, q, r ::= ε | C | p.M | p(p) | p(V) path
X ::= C | V module var.
τ ::= p | V type
met ::= τ m(τ x){e} met. definition

| abstract τ m(τ x) abstract met.
| required τ m(τ x) required met.

e ::= x | e.m(e) | new p program expr.
P ::= (S, e) program

Fig. 3. Syntax for Room

Merging is used to define a module by merging together two existing modules.
For methods implemented in both modules, the resulting module contains the
implementation from the left-hand side of the operator ⇀, i.e. the left-hand side
overrides the right-hand side.

We have two types of module variables, namely virtual module variables V
and concrete module variables C. A virtual module variable may only be used
as a type, which is either a path or a module variable, while concrete module
variables may freely be used in paths. For instance, one may not create a new
object from a virtual variable, but this is allowed with concrete variables as we
did in Figure 2. Conceptually, they respectively provide parameterization over
types and implementations.

Methods are either defined or declared. We have two qualifiers for method
declarations, abstract and required. Using required in interfaces, we can
express implementation requirements on parameters, as we did in Figure 2.

Program expressions are either variables, method calls, or object creations.
A program is a pair of a module system and a program expression.
Any module system is assumed to satisfy the following three conditions:

1) all module variables are bound, where the definition of bound variables is
as usual; 2) all bound variables differ from each other; 3) all basic modules
contain no duplicate method declarations and definitions for any method name,
no duplicate module definitions for any module name.

For simplicity, we leave out several features, which would be important to
build a practical language from Room, like static methods, instance and class
variables, the “super”operator, constructors and others.

4 Well-founded module system

Paths give one a high degree of freedom for references, with absolute or relative
access, allowing functor application in it. We can naturally express mutual re-

7

cursion with them, in the presence of functors and nesting. However, we have to
make sure that module systems are properly defined.

As a module itself may be defined as an alias or a composition of other
modules using paths, it might happen that module definitions end up being
mutually dependent. For example, consider the following module system,

{M1 = M2 ⇀ M3,
M2 = M1 ⇀ M4}

which is clearly ill-founded.
It is highly desirable to statically reject such ill-founded module systems

while accepting mutual recursion in general. The question is how to define “well-
foundedness” in our situation. On the one hand, we would like to access to com-
ponents of partially evaluated modules, i.e access to components of a module
should be allowed before the evaluation of some other components of the mod-
ule is yet completed. This is necessary to support mutual recursion as seen in
object-oriented programming. On the other hand, we would like to statically
reject circular dependencies between modules in order to ensure proper module
elaboration, i.e. to produce a record of the methods defined in a module.

Our definition of well-foundedness for module systems is based on the well-
foundedness of the dependency relation between modules. This ensures that
modules can be sorted topologically. For example, while the above example is
unsortable as M1 and M2 are circularly dependent, the following example is
sortable,

{M1 = {M11 = M2.M22, M12 = {. . .}},
M2 = {M21 = M1.M12, M22 = {. . .}}}

as we only have M1.M11 depending on M2.M22 and M2.M21 depending on
M1.M12, which is not circular. Moreover, we only consider dependencies at the
value level. For example, in Figure 1, Subject does not depend on Observer as
Observer is used only at the type level in Subject.

In the rest of this section, we formally define the dependency relation.

Dependency relation

Our approach it to extract a dependency relation from a module system S, then
check whether the relation is well-founded or not.

Let S be a module system, the dependency relation of S is a binary relation on
flat paths, where a flat path is a path containing no application. The construction
of the dependency relation takes two steps: 1) extract a base relation from S; 2)
expand the base relation in order to take into account the dependencies that do
not explicitly appear in S.

The base relation of S is extracted by the function dp given in Figure 4. Given
a flat path p and a module expression E, dp calculates dependencies assuming
that p depends on E. When E is of form λX<:q.E, it recursively calculates
dependencies assuming that p depends on q and E, and X on q. When E is of

8

dp(p, λX<:q.E) = dp(p, q) ∪ dp(p, E) ∪ dp(X, q)
dp(p, {[Mi = Ei]

n
i=1,met}) =

⋃
1≤i≤n

dp(p.Mi, Ei)

dp(p, q1 ⇀ q2) = dp(p, q1) ∪ dp(p, q2)

dp(p, q coerce {M, m}) = dp(p, q)
dp(p, q) = {(p, r) | r ∈ flats(q)}
flats(p) = flat(p) ∪⋃

q∈args(p)
flats(q)

flat(p.M) = flat(p).M
flat(p(q)) = flat(p)

args(p.M) = args(p)
args(p(q)) = {q} ∪ args(p)

Fig. 4. Extraction of the base relation

form {[Mi = Ei]ni=1,met}, p.Mi depends on Ei. Note that, instead of regarding p
as depending on Ei, it employs more precise dependencies. Although this make
the dependencies more complex, it gives more freedom for recursion between
modules. Coercion and merging are straightforward. Finally, if E is a path q,
dp approximates functor applications in q by making p depend on all flat paths
appearing in q. The function flats returns the set of flat paths appearing in a
path. For example, flats(M1.M2(M3(M4.M5)).M6) = {M1.M2.M6, M3, M4.M5}.

The base relation of S is defined as dp(ε, S). Then the dependency relation
of S is defined as the postfix and transitive closure of the base relation.

Definition 1. Let D be a binary relation on flat paths. The postfix and transitive
closure of D, denoted as D̃, is the smallest transitive relation which contains
D and meets the following condition: if (p, q) is in D̃ and M in Names, then
(p.M, q.M) is also in D̃.

We call postfix closure of D the smallest relation that satisfies only the second
condition.

Example 1. Consider the following module system S,

{M1 = {M11 = {· · ·},M12 = here.M13.N, M13 = M2.M21}
M2 = {M21 = {N = {· · ·}, · · ·}, M22 = M1.M11}}

The base relation of S is:
{(M1.M12, M1.M13.N), (M1.M13, M2.M21),
(M2.M22, M1.M11)}.

Then the dependency relation is the postfix closure of the following set:
{(M1.M12, M1.M13.N), (M1.M13, M2.M21),
(M2.M22, M1.M11), (M1.M13.N, M2.M21.N),
(M1.M12, M2.M21.N)}.

9

[N-ROOT]
nlz (ε, ε).

[N-VAR]
nlz (X, X).

[N-APP]
nlz (p(q), p′(q′))

:- nlz (p, p′),nlz (q, q′).

[N-ExPV]
nlz (p.M, p′.M)

:- nlz (p, p′),
src(p′.M, E),
E 6≡ q.

[N-PV]
nlz (p.M, q)

:- nlz (p, p′),
src(p′.M, r),
subst(p′, θ),
nlz (θ(r), q).

[N-CRC]
nlz (p.M, q)

:- nlz (p, p′.N),

src(p′.N, r coerce {M, m}),
M ∈ {M},
subst(p′, θ),
nlz (θ(r).M, q).

[N-MRG1]
nlz (p.M, q)

:- nlz (p, p′.N),
src(p′.N, r ⇀ r′),
subst(p′, θ),
nlz (θ(r).M, q).

[N-MRG2]
nlz (p.M, q)

:- nlz (p, p′.N),
src(p′.N, r ⇀ r′),
subst(p′, θ),
nlz (θ(r′).M, q).

[N-INF]
nlz (p.M, q)

:- nlz (p, C),
nlz (∆(C).M, q).

Fig. 5. Normalization of paths

Definition 2. Let D be a binary relation on flat paths. D is well-founded if and
only if D does not contain an infinite descending sequence, i.e. there does not
exists an infinite sequence {pi}∞i=1 such that, for all i in [1,∞), (pi, pi+1) is in
D.

Definition 3. A module system S is well-founded if and only if the postfix and
transitive closure of dp(ε,S) is well-founded. Moreover, we say a program (S, e)
is well-founded if and only if S is well-founded.

Proposition 1. It is decidable whether a module system S is well-founded or
not.

In the following sections, we fix a well-founded program (S, e).

5 Normalization of types

Types are paths or module variables. We judge the equivalence of types by the
equality of the modules they refer to. For example, consider the following module
system S1,

{M1 = {M11 = {N = {· · ·}}},
M2 = {· · ·},
M3 = λC<:M1.{M31 = C.M11},
M4 = M2 ⇀ M1}

10

src(ε, S).

src(p.M([Mi]
n
i=1).N, E) :- src(p.M, λ[Xi:qi]

n
i=1.{· · · , N = E, · · ·}).

subst(ε, id).

subst(p.M, θ) :- subst(p, θ), src(p.M, λX:q.{met , D}).
subst(p(q), θ[X : q]) :- params(p, X :: L), subst(p, θ).

params(p.M, X) :- src(p.M, λX:q.{met , D}).
params(p.M, []) :- src(p.M, q coerce {m, M}).
params(p.M, []) :- src(p.M, q1 ⇀ q2).

params(p(q), L) :- params(p, X :: L).

params(X, []).

Fig. 6. Source predicates

M1.M11, M4.M11 and M3(M4).M31 are equivalent types as they all refer to
the module M11 contained in module M1.

In this section, we introduce the notion of normalization of types. We formally
define the equivalence of types by the equality of their normal forms.

Normalization is defined using the predicate nlz given in Figure 5, and auxil-
iary predicates in Figure 6. ∆ is the finite mapping, which maps module variables
to their interfaces. For example, ∆(C) = M1 holds in the above module system
S1. All variables of the module system are assumed to have different names.

We use Horn clauses in Prolog-like syntax to define our predicates and their
inference rules. The clause A:-B,C. is read as “if B and C hold, then A holds”.

Another possible notation would be
B C

A , but we prefer the first one in most
cases, as it is more versatile and lets us use explicit names for predicates.

We give a brief account of the predicates in Figure 6. If p is in normal form
other than module variables, the module definition of p is looked up in the mod-
ule system S with the predicate src. For example, src(M1.M11, {N = {· · ·}})
holds in S1, meaning that the module referred to by M1.M11 is defined by the
module expression {N = {· · ·}}1. Substitutions of types for module variables
are constructed from normal forms with the predicate subst, where id is the
identity substitution. The metavariable θ ranges over the substitutions. When
subst(p, θ) holds, we call θ the substitution extracted from p. The predicate
params denotes the formal parameters of the module referred to by p. For ex-
ample, subst(M3(M1), [C 7→ M1]) and params(M3, C) hold in S1.

1 src (and other predicates we will define in the following sections) should also take
the module system we are considering as parameter, but we omit it throughout this
paper, supposing a fixed well-founded module system.

11

Definition 4. A type q is a normal form of a type p if nlz (p, q) holds.

For untyped module systems, some type p may have no normal form or
have several different normal forms. Moreover the normalization of p may not
terminate. The following 2 examples show typical cases.

Example 2. In the following, the normalization of M1.M2 does not terminate.

{M1 = M2.M3,
M2 = M1}

Example 3. In the following, the normalization of M1.M2(M1).M3 does not ter-
minate.

M1 = {M2 = λC<:M′
2.{M3 = C.M2(C).M3}}

As our type system relies on normalization for judging type equalities, we
sometimes need to use normalization on types for not-yet-typed module sys-
tems. In order to keep typing decidable, we define a semi-ground normalization
that, contrary to the above “direct” normalization, is guaranteed to terminate.
Semi-ground normalization meets the following two requirements when S is well-
founded.

– Semi-ground normalization of types always terminates. Moreover we have
an algorithm to calculate the set of semi-ground normal forms of types.

– If S is well-typed then, both semi-ground normalization and direct normal-
ization always terminate, and they lead to the same normal form.

Using semi-ground normalization, we can decide the typability of a module sys-
tem in 3 steps.

1. Check for well-foundedness of the dependency relation (we already know this
is decidable.)

2. Check the typing using semi-ground normalization in place of direct normal-
ization (normalization is no longer a cause of undecidability.)

3. This typing is also valid with direct normalization (nothing to do.)

The formal definition of semi-ground normalization and the statements of
these properties are found in Appendix A.

Basically, semi-ground normalization uses the corresponding interfaces in-
stead of functor arguments when accessing inner modules of variables (hence it
is ground.) Remaining variables are substituted with arguments only at the end
of this process, once all accesses are solved (hence it is only semi-ground.) Our
restriction on functor arguments, which is detailed in Section 6, makes it a valid
normalization strategy.

12

Module definition typing

ε ` met ¦ ε ` D ¦
` {met , D} ¦

[T-ROOT]
E 6≡ λX<:q.{met , D} ` E ¦

p ` M = E ¦ [T-ExBM]

` q1 ¦ . . . ` qn ¦ p.M([Xi]
n
i=1) ` met ¦ p.M([Xi]

n
i=1) ` D ¦

p ` M = λ[Xi<:qi]
n
i=1.{met , D} ¦

[T-BM]

Module expression typing

valid(p)

` p ¦

` p1 ¦ ` p2 ¦
mergeable(p1, p2)

` p1 ⇀ p2 ¦

` p ¦
coercible(p, {m, M})
` p coerce {m, M} ¦

Method typing

` τ ¦ ` τ ′ ¦
this : p, x : τ ′ ` e : τ

p ` τ m(τ ′ x){e} ¦
` τ ¦ ` τ ′ ¦

p ` abstract τ m(τ ′ x) ¦
` τ ¦ ` τ ′ ¦

p ` required τ m(τ ′ x) ¦

Expression typing

Γ ` e : τ ′ τ ′ ≤ τ ` τ ¦
Γ ` e : τ

[T-SUB] Γ ` x : Γ (x) [T-VAR]

` p ¦ nlz (p, p′) sig(p′,A,R, I, b) N(A) ∪N(R) ⊆ N(I)

Γ ` new p : p
[T-NEW]

Γ ` e : p nlz (p, p′)
sig(p′,A,R, I, b) (m, τ ′, τ) ∈ A ∪R ∪ I Γ ` e′ : τ ′

Γ ` e.m(e′) : τ
[T-MTD]

Fig. 7. Typing rules

13

6 Type system

In this section, we define our type system. As defined in Section 3, types are
paths or module variables. Let us begin by defining the subtype relation over
types. As we judge the equivalence of types by the equality of their normal forms,
we first define the subtype relation on normal forms then extend it to any types.

The subtype relation ≤0 on normal forms is the smallest reflective and tran-
sitive relation containing the rules given in Figure 8. Subtyping basically arises
from merging[S-MRG]. [S-VAR] denotes that X is a subtype of a normal form
of its interface ∆(X).

[S-VAR]
nlz (∆(X), τ)

X ≤0 τ

[S-MRG]
src(p.M, q1 ⇀ q2) subst(p, θ) nlz (θ(qi), τi)

p.M ≤0 τi for i = 1, 2

Fig. 8. Subtype relation

Then, the subtype relation is naturally extended to any types.

Definition 5 (subtype relation). τ1 is a subtype of τ2, denoted τ1 ≤ τ2, if
there are types τ ′1, τ

′
2 such that nlz (τ1, τ ′1), nlz (τ2, τ ′2) and τ ′1 ≤0 τ ′2 hold.

Figure 7 provides the typing rules for Room. They use auxiliary predicates
to be found in Figure 9 to 13.

Before examining these rules, we explain the predicate sig (Figure 9), which
is frequently used. This predicate is meant to give information about the method
signatures of a module. A method signature is a tuple (m, τ, τ ′) where m is a
method name and τ, τ ′ are types. The metavariables A, R, I range over sets of
method signatures, and b ranges over false or true. When sig(p,A,R, I, b) holds,
A, R and I give respectively the sets of abstract methods, required methods,
and implemented methods, provided by module p. We give details on the use
of b later. Note that, since a concrete module variable may only be instantiated
by modules implementing all required methods, in [Sig-VAR] required methods
are added to the set of implemented methods.

The type judgment p ` M = E ¦ states that “the module definition M = E
is well-typed in the context p”, and ` E ¦ states that “the module expression E
is well-typed”. The type judgment p ` met ¦ is read similarly.

A type environment Γ is a finite mapping from program variables to types.
The type judgment Γ ` e : τ states that “the program expression e has type τ
in the type environment Γ”.

14

[Sig-BM]
sig(p, {[(m1i, θ(τ ′1i), θ(τ1i))]

n1
i=1},

{[(m2i, θ(τ ′2i), θ(τ2i))]
n2
i=1},

{[(m3i, θ(τ ′3i), θ(τ3i))]
n3
i=1}, false)

:- p ≡ p1.M([qi]
n
i=1), subst(p, θ)

src(p1.M, λ[Xi<:q′i]
n
i=1.{

[abstract τ1i m1i(τ
′
1i x1i)]

n1
i=1,

[required τ2i m2i(τ
′
2i x2i)]

n2
i=1,

[τ3i m3i(τ
′
3i x3i){ei}]n3

i=1, D}).

[Sig-MRG]
sig(p.M,A1 ∪ A2,R1 ∪R2, I1 ∪ I2, b1 ∨ b2)

:- src(p.M, q1 ⇀ q2), subst(p, θ),
nlz (θ(q1), q′1), sig(q′1,A1,R1, I1, b1),
nlz (θ(q2), q′2), sig(q′2,A2,R2, I2, b2).

[Sig-CRC]
sig(p.M,A |{m},R |{m}, I |{m}, false)

:- src(p.M, q coerce {m, N}), subst(p, θ),
nlz (θ(q), q′), sig(q′,A,R, I, b).

where M |{m}= {(m, τ ′, τ) ∈M | m ∈ {m}}.

[Sig-VAR]
sig(C,A,R, I ∪ R, true)

:- nlz (∆(C), q),
sig(q,A,R, I, b).

Fig. 9. Method signature lookup

15

valid(ε).

valid(X).

valid(p.M) :- valid(p), nlz (p.M, q).

valid(p(q)) :- valid(p), valid(q),nlz (p, p′),nlz (q, q′),
params(p′, X :: L), subst(p′, θ),
match(q′, (X, θ(∆(X)))).

Fig. 10. Validity of paths

[Mat-V]
match(p, (V, q)) :- p ≤ q.

[Mat-C]
match(p, (C, q)) :-p ≤ q,

∀M(Nlz (p.M) = Nlz (q.M)),
sig(p,A1,R1, I1, b1),
nlz (q, q′), sig(q′,A2,R2, I2, b2),
N(A1)\N(I1) ⊆ N(A2)\N(I2),
N(R1) ⊆ N(I1).

Fig. 11. Conditions for matching

Module definition typing

A module system S is well-typed when each component of S is well-typed in
context ε.

If a module is defined by a basic module, its module definition is well-typed
if each component defined in the basic module is well-typed in the context of
this module.

Otherwise the module definition is well-typed if the module expression defin-
ing it is well-typed.

Module expression typing

A module expression p is well-typed when p is valid. The formal definition of
the validity of paths is given in Figure 10. Roughly, valid(p) checks that p has
a normal form, and any application contained in p matches the corresponding
interface.

match is formally defined in Figure 11. We distinguish the matching of virtual
module variables from that of concrete modules variables. When q is the interface
of a virtual module variable [Mat-V], then p matches q provided p is a subtype of
q. When q is the interface of a concrete module variable [Mat-C], the condition is
stricter. Since a concrete module variable may be used in expressions such as “new
C” or “C.M”, we must check that all required methods are implemented, and

16

[Mrg-FF]
mergeable(p1, p2)

:- ∀M(Nlz (p1.M) = ∅ ∨ Nlz (p2.M) = ∅),
nlz (p1, p′1), sig(p′1,A1,R1, I1, false),
nlz (p2, p′2), sig(p′2,A2,R2, I2, false),
∀m((m, τ1, τ ′1) ∈ A1 ∪R1 ∪ I1

∧(m, τ2, τ ′2) ∈ A2 ∪R2 ∪ I2

⇒ nlz (τ1, τ) ∧ nlz (τ2, τ)
∧nlz (τ ′1, τ ′) ∧ nlz (τ ′2, τ ′)).

[Mrg-FT]
mergeable(p1, p2)

:- ∀M(Nlz (p1.M) = ∅ ∨ Nlz (p2.M) = ∅),
nlz (p1, p′1), sig(p′1,A1,R1, I1, false),
nlz (p2, p′2), sig(p′2,A2,R2, I2, true),
∀m((m, τ1, τ ′1) ∈ A1 ∪R1 ∪ I1

⇒ (m, τ2, τ ′2) ∈ A2 ∪R2 ∪ I2

∧nlz (τ1, τ) ∧ nlz (τ2, τ)
∧nlz (τ ′1, τ ′) ∧ nlz (τ ′2, τ ′)).

[Mrg-SYM]
mergeable(p1, p2) :- mergeable(p2, p1).

Fig. 12. Mergeability

coercible(p, {m, M})
:- ∀M(M ∈ {M} ⇒ nlz (p.M, q)),

nlz (p, p′), sig(p′,A,R, I, b),
N(A) ∪N(R) ⊆ {m} ∪N(I),
{m} ⊆ N(A) ∪N(R) ∪N(I).

Fig. 13. Coercibility

17

that the identity condition on inner modules is satisfied. The former translates
to the two following requirements: all required methods of q are implemented in
p, and the abstract methods of p are a subset of the abstract methods of q. Here
N(M) = {m | (m, τ, τ ′) ∈M} extracts method names from method signatures.

The latter is done by checking that for every module name M , either both p
and q have a submodule p.M , defined identically, or they both lack it. For this
we use the set of normal forms of p, defined as Nlz (p) = {q | nlz (p, q)}2. When
this condition is satisfied for all modules, direct normalization and semi-ground
normalization coincide. This restriction means that we should pass functor ar-
guments as several flat modules rather than one module containing all of them.

A module expression p1 ⇀ p2 is well-typed when both p1 and p2 are well-
typed and the following two conditions are satisfied: 1) p1 and p2 do not contain
modules with the same names, 2) if both p1 and p2 contain identically named
methods, then these methods have the same signatures. We formally define these
conditions in Figure 12.

We must pay particular attention to modules derived from non-coerced con-
crete module variables, as they might have more methods than described in
their interfaces. The 5th argument of sig is used for that purpose. It is set to
true for modules derived from non-coerced module variables, false otherwise.
Rule [Mrg-FT] states that when one of the modules inherits from a non-coerced
module variable, this module should have signatures for all the methods in the
other module. This way we make sure that the typing is consistent. For the same
reason, we cannot merge two modules, both derived from non-coerced module
variables.

A module expression p coerce {m,M} is well-typed when p is well-typed
and the following three conditions are satisfied: 1) for all M in {M}, p contains
a module named M , 2) for all m in {m}, p contains a method named m, 3) all
the not-yet-implemented methods of p are contained in {m}. The last condition
is needed to avoid hiding unimplemented methods, as hidden methods cannot
be overridden. The formal definition of these conditions is given in Figure 13.

Program expression typing

The typing rules for program expressions are classical. Hence, we only give a
brief account.

The rule [T-SUB] is the subsumption rule. The rule for program variables [T-

VAR] is as usual. The rule for object creation [T-NEW] checks that all methods
are implemented. The rule for method invocation [T-MTD] first checks that e
has type p, and p has a method m with signature (m, τ ′, τ). Then, it checks that
e′ has type τ ′. If all of these conditions are satisfied, then e.m(e′) has type τ .

2 As direct normalization does not always terminate, Nlz (p) works as an oracle in
typing derivations. However, semi-ground normalization always terminates, and we
have an algorithm that calculates the set of semi-ground normal forms of paths.

18

Definition 6. The module system S is well-typed if and only if ` S ¦ holds.
Moreover, the program (S, e) has type τ , denoted as ` (S, e) : τ if and only if S
is well-typed, e does not contain module variables, and ` e : τ holds.

In Appendix A, we establish the result that, if we use semi-ground normal-
ization instead of direct normalization, then type checking of a well-founded
module system is decidable. Moreover, type checking with direct normalization
and semi-ground normalization are equivalent.

7 Operational semantics

In this section, we provide the operational semantics for Room. The purpose of
the semantics is to reduce a program expression to a value. A value is a reference
obj(`, w) to an object, where ` is a location, which is an element of an infinite
enumerable set Loc, and w is a method dictionary, which is a finite mapping over
method names.

Values refer to objects. An object in Room is a collection of labeled compo-
nents [m1 = ζ1, . . . mn = ζn] where mi is a method name and ζi is a closure. A
closure is a 4-tuple (p, w, x, e): p is a path, meant for an evaluation context, w is
a method dictionary, x is a program variable, meant for a formal parameter, e
is a program expression, meant for a method body. We take into account hiding
of methods caused by coercion by adding method dictionaries to closures. Any
method invocation on self, which is expressed as this.m, is done by looking up
its actual name in the method dictionary.

Given an object store κ, which is a finite mapping from locations to objects,
a value obj(`, w) refers to an object stored in the location ` of κ, denoted κ(`),
and any method invocation on obj(`, w) is done consulting w.

An execution state is a couple (ι, κ): ι is a finite mapping from program
variables to values, κ is an object store.

Our operational semantics is given in terms of a reduction relation ⇓. We
write ι; κ; p |= e ⇓ (v, ι′, κ′) to mean that in the context p with the execution
state (ι, κ), e is evaluated to the value v and the execution state transits to
(ι′, κ′). The rules for the semantics are given in Figure 14 with an auxiliary
predicate in Figure 15.

The first rule of the semantics describes object creation. In order to evaluate
new q in context p, the module θ(q) should be elaborated, where θ is the substitu-
tion extracted from p. Elaboration is defined by means of the predicate elb given
in Figure 15. It traverses, with allowance for method hiding, all modules which
contribute to the module referred to by a path, in order to collect all the methods
constituting the module. elb(p, {(m1, ζ1), . . . , (m1, ζn)}) means that the module
p has methods mi with closures ζi. If the elaboration of θ(q) resolves, the result
is added to the object store κ. The second rule describes method invocation. In
order to evaluate e.m(e′), we should first calculate the result of e, check that
the result refers to an object which has the target method m seen through the
method dictionary, calculate the result of e′, and then evaluate the invocated

19

subst(p, θ) nlz (θ(q), q′)
elb(q′, {[(mi, ζi)]

n
i=1}) ` 6∈ dom(κ)

ι; κ; p |= new q ⇓ (obj(`, id), ι, κ′)
where κ′ ≡ κ[` 7→ {[mi = ζi]

n
i=1}]

ι; κ; p |= e ⇓ (obj(`, w0), ι0, κ0)

κ0(`).w0(m) = (p1, w1, x, e′′)
ι0; κ0; p |= e′ ⇓ (v1, ι1, κ1)

this : obj(`, w1), x : v1; κ1; p1 |= e′′ ⇓ (v2, ι2, κ2)

ι; κ; p |= e.m(e′) ⇓ (v2, ι1, κ2)

ι; κ; p |= x ⇓ (ι(x), ι, κ)

Fig. 14. Operational semantics

[Elb-BM]
elb(p, {[(mi, (p, id, xi, ei))]

n
i=1)})

:- p ≡ p1.M([qi]
n′
i=1),

src(p1.M, λ[Xi<:ri]
n′
i=1.{

abstract τ m(τ x),

required τ m(τ x),

[τ1i mi(τ2i xi){ei}]ni=1, D}).

[Elb-CRC]
elb(p.M, {[(w(mi), (pi, w ◦ wi, xi, ei))]

n
i=1)})

:- src(p.M, q coerce {m, M}), subst(p, θ),
nlz (θ(q), q′), elb(q′, {[(mi, (pi, wi, xi, ei))]

n
i=1)}).

where w is a mapping which renames method names
in {[mi]

n
i=1} \ {m} to fresh names.

[Elb-MRG]
elb(p.M, M)

:- src(p.M, q1 ⇀ q2), subst(p, θ)
nlz (θ(q1), q′1),nlz (θ(q2), q′2),
elb(q′1, M1), elb(q′2, M2)
M = M1 ∪ (M2 |N(M2)\N(M1)).

where N(M) = {m | (m, ζ) ∈M}.

Fig. 15. Elaboration

20

method’s body. The third rule implements access to variables. Note that, run-
time elaboration is not needed actually, as we statically know which paths should
be elaborated.

The following proposition states that the type system guarantees the module
elaboration.

Proposition 2. If the module system S is well-founded and well-typed, and `
p ¦ holds, then the elaboration of p is always successful.

As we have an algorithm that checks whether S is well-founded or not, and
a decidable type system(see Appendix A), we can statically guarantee all the
elaboration needed during evaluation.

Type Soundness

Our type soundness states that if a program has a type, then either it reduces to
a value of the same type, or its evaluation does not terminate. In the following of
this section, we assume that the program (S, e) is well-founded and well-typed.

To reason about type soundness, we extend program expression typing to
account for the context in which the expression is type checked, and define a
judgment for value typing. We write V (p) to denote the set of module variables
contained in p.

The type judgment p; Γ ` e : τ states that the program expression e has type
τ in context p under the type environment Γ .

Definition 7. p; Γ ` e : τ holds if Γ ` θ(e) : τ holds, where θ is the substitution
extracted from p.

The judgment κ ` v : τ asserts that the value v has type τ under the object
store κ. It checks that the object referred to by v has signatures for all the
methods the module referred to by τ has.

Definition 8. κ ` v : τ holds if v ≡ obj(`, w), nlz (τ, τ ′), sig(τ ′,A,R, I, b), and
for all (m, τ ′1, τ1) ∈ A ∪R ∪ I, κ(`).w(m) = (p, w′, x, e) and p; this : p, x : τ ′1 `
e : τ1

The following theorem states type soundness formally.

Theorem 1. If the well-founded program (S, e) has type τ , then either the eval-
uation of e does not terminate, or ∅; ∅; ε |= e ⇓ (v, ι′, κ′) and κ′ ` v : τ
hold.

21

8 Related Works

In this section, we examine related works. We first take up languages and cal-
culi which have mechanisms for both ML-style modules and classes, then com-
pare our approach to existing approaches to recursive modules in terms of well-
foundedness of the recursion.

νObj [13] is a calculus for objects and classes. It identifies objects with mod-
ules, and classes with functors. Most mechanisms of ML-modules and classes are
supported in νObj , including higher-order functors, which are missing in Room.
They have a sound type system, however their type judgment is undecidable.
Unlike νObj , Room enjoys a sound and decidable type system. Although it costs
us certain forms of parametricity, it pays us by ensuring well-foundedness of
recursion. We would like to draw a more thorough comparison with νObj , in
order to make clear the essentials which make our type system decidable, while
causing undecidability in νObj .

Objective Caml [10] and Moscow ML [15] are real languages, that sup-
port recursion between modules. As their type systems do not guarantee well-
foundedness of the recursion, run-time errors might occur because of cycles in
module import dependency graphs.

Moby [7] and Loom [4] have both of modules and classes, however they lack
inter-module recursion, while this is the main motivation for Room.

Mixin modules (hereafter, “mixins”) are modules equipped with class mecha-
nisms such as mutual recursion or overriding. Ancona&Zucca notably developed
a calculus for mixins [2], and, based on it, constructed a module system, called
JavaMod [1], on top of a Java like language. In JavaMod, they faces the prob-
lem of cycles in the inheritance hierarchy. Yet, as the modules of JavaMod are not
hierarchical, the problem is much simpler and easily solved. Hirschowitz&Leroy
investigated a mixin calculus in a call-by-value settings [9], which requires them
to statically reject ill-founded recursion between mixins. They employ a different
approach from ours, which we review in detail below. Nested structures and type
members are not considered in [9] .

Boudol [3], Hirschowitz&Leroy [9] and Dreyer[6] have investigated type sys-
tems for well-founded recursion. They track recursively used variables while
checking that they are protected under lambda abstraction. On the one hand, we
can access to components of a module before the evaluation of the module is yet
completed, which is illegal in their systems. On the other hand, their modules
can recursively refer to themselves inside their own definition if the reference
is protected under a lambda abstraction, which is illegal in Room regardless of
whether there is a lambda abstraction or not. For example, the following module
system:

{M = {M1 = N.N2, M2 = {· · ·}},
N = {N1 = M.M2, N2 = {· · ·}}}

is accepted in Room, but rejected in theirs. On the other hand, our definition of
well-foundedness excludes the module system M = λX<:N.{M1 = M}, which is
legal in their systems. Module systems of the former form are needed to support

22

mutual recursion as seen in object-oriented programming. However, the absence
of the latter form means that we have no way to define modules as fixpoints of
functors.

9 Conclusion

In this paper, we presented an object-oriented module calculus, which unifies
classes, nested structures, simple functors, and their types. The unification eases
the simultaneous use of ML-style module and class mechanisms.

Mutual recursion is fundamental to classes, yet, it might allow undesirable
modules which have circular dependencies or are inconsistent, when we introduce
it into an ML-style module setting. We defined a decidable type system, which
ensures the absence of such ill-founded modules. Decidability is reached by first
eliminating ill-found module systems by verifying their dependency relation on
flat paths, and then checking types with a variant of normalization guaranteed
to terminate when this relation is well-founded.

There are two points we would like to improve in Room. First, it would be
nice to make it more liberal with recursion. Room is flexible enough for mu-
tual recursion, yet it lacks the ability to define modules as fixpoints of functors.
A possible approach would be to introduce two kinds of functor applications,
one for virtual module variables, the other for concrete module variables. This
approach seems to work well, but would make our calculus more verbose. We
are still looking for a better solution. Second, the condition on inner modules
of functor arguments seems to be overly restrictive: actual values of concrete
module variables must have exactly the same inner modules as their correspond-
ing interfaces. This is not an essential restriction, as one can always pass inner
modules as independent parameters, but we would like to relax it, to make our
calculus more general.

References

1. D. Ancona and E. Zucca. True modules for Java-like languages. In Proc.
ECOOP’01, number 2072 in Springer LNCS, pages 354–380, 2001.

2. D. Ancona and E. Zucca. A Calculus of Module Systems. Journal of Functional
Programming, 12(2):91–132, 2002.

3. Gerard Boudol. The recursive record semantics of objects revisited. Journal of
Functional Programming, 14:263–315, 2004.

4. K. Bruce, L. Petersen, and J. Vanderwaart. Modules in LOOM: Classes are not
enough. http://www.cs.williams.edu/kim, 1998.

5. M. Dauchet and S. Tison. The theory of ground rewrite system is decidable. In
LICS’90, 1990.

6. Derek Dreyer. A type system for well-founded recursion. In Proc. POPL’04, 2004.
7. Kathleen Fisher and John H. Reppy. The Design of a Class Mechanism for Moby.

In Proc. PLDI’99, pages 37–49, 1999.
8. R. Garcia, J. Järvi, A. Lumsdaine, J. Siek, and J. Willcock. A comparative study of

language support for generic programming. In Proc. OOPSLA’03, pages 115–134,
2003.

23

9. Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value setting. In
Proc. ESOP’02, number 2305 in Springer LNCS, pages 6–20, 2002.

10. X. Leroy, D. Doligez, J. Garrigue, and J. Vouillon. The Objective Caml system.
Software and documentation available on the Web, http://caml.inria.fr /.

11. Xavier Leroy. Manifest types, modules, and separate compilation. In POPL’94,
pages 109–122. ACM Press, 1994.

12. Keiko Nakata, Akira Ito, and Jacques Garrigue. Recursive object-oriented modules.
Extended version. http://www.kurims.kyoto-u.ac.jp/˜keiko/.

13. Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nom-
inal theory of objects with dependent types. In Proc. ECOOP’03, 2003.

14. Benjamin C. Pierce. Bounded quantification is undecidable. In C. A. Gunter and
J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design, pages 427–459. The MIT Press, Cambridge, MA,
1994.

15. S. Romanenko, C. Russo, N. Kokholm, and P. Sestoft. Moscow ML. Software and
documentation available on the Web, http://www.dina.dk/ sestoft/mosml.html.

A Appendix

[P-ROOT]
gnlz (ε, ε).

[P-VAR]
gnlz (X, X).

[P-APP]
gnlz (p(q), p′(q′))

:- gnlz (p, p′), gnlz (q, q′).

[P-ExPATH]
gnlz (p.M, p′.M)

:- gnlz (p, p′),
src(p′.M, E),
E ≡ C ∨ E 6≡ q.

[P-PATH]
gnlz (p.M, q)

:- gnlz (p, p′),
src(p′.M, r),
r 6≡ C,
env(p′, θ),
gnlz (θ(r), q).

[P-CRC]
gnlz (p.M, q)

:- gnlz (p, p′.N),

src(p′.N, r coerce {M, m}),
M ∈ {M},
env(p′, θ),
gnlz (θ(∆̃(r)).M, q).

[P-MRG1]
gnlz (p.M, q)

:- gnlz (p, p′.N),
src(p′.N, r ⇀ r′),
env(p′, θ),
gnlz (θ(∆̃(r)).M, q).

[P-MRG2]
gnlz (p.M, q)

:- gnlz (p, p′.N),
src(p′.N, r ⇀ r′),
env(p′, θ),
gnlz (θ(∆̃(r′)).M, q).

[P-PAR]
gnlz (p.M, q)

:- gnlz (p, p′.N),
src(p′.N, C),
env(p′, θ),
gnlz (θ(∆̃(C)).M, q).

[P-INF]
gnlz (C.M, q) :- gnlz (∆(C).M, q).

Fig. 16. Ground-normalization

24

η(X) = X

η(p.M) =

{
η(θ(C)) if src(p.M, C) and subst(p, θ) hold
η(p).M otherwise

η(p(q)) = η(p)(η(q))

Fig. 17. Variable normalization

In this section, we define semi-ground normalization and establish technical
results on it.

The intuition of semi-ground normalization is to look at interfaces instead of
actual values when pulling out inner modules from module variables. This works
well because our type system ensures that the inner modules of actual values
coincide with the inner modules of their corresponding interfaces.

Formally, semi-ground normalization is defined by the predicate gnlz given
in Figure 16, and the function η given in Figure 17, where ∆̃ replaces a variable
by its interface until it obtains an absolute path (i.e. not starting by a variable).
It is defined as follows:

∆̃(p) =





∆̃(∆(X)) (p ≡ X)
∆̃(∆(C)(q).r) (p ≡ C(q).r)
p (otherwise)

Definition 9. A path q is a semi-ground normal form of p if gnlz (p, q′) and
η(q′) = q hold.

We use subscript W to denote type judgments with semi-ground normalization,
e.g. `W S ¦ denotes that S is well-typed when type checked with semi-ground
normalization.

Theorem 2. Let (S, e) be a well-founded program, it is decidable whether `W

(S, e) : τ holds or not. Moreover, `W (S, e) : τ holds if and only if ` (S, e) : τ
holds.

Above theorem is a direct result from the following proposition.

Proposition 3. Let (S, e) be a well-founded program, then

– semi-ground normalization of paths always terminates.
– the set of semi-ground normal forms of any path is finite, and we have an

algorithm that calculates this set.
– it is decidable whether `W S ¦ holds or not.
– for any path p, it is decidable whether `W p ¦ holds or not.
– if ` S ¦ then `W S ¦, and vice versa.
– if ` S ¦, then ` p ¦ holds if and only if `W p ¦ holds.
– if ` S ¦ and ` p ¦, then the normal form of p coincides with the semi-ground

normal form of p.

25

– if ` S ¦ and ` p ¦, then the elaboration of p is always successful.

For reasons of space, we refer the proof for the proposition to the extended
version [12].

B Decidability of the well-foundedness of module systems

Proposition 4. Let S be a module system, then it is decidable wheter the postfix
and transitive closure of dp(ε, S) is well-founded or not.

Proof. The proposition holds, as the termination of ground rewrite systems is
decidable[5].

C Well-founded Relation on paths

In this section, we construct from the well-founded module system S a well-
founded relation Â on paths. Decidability of the type checking and the type
soundness result will be proved by induction on the relation. We construct the
relation by extending Dp step by step. u is a metavariale ranging over flat paths.

Definition 10. The relation À1 on flat paths is the smallest transitive relation
containing Dp and {(u.M, u) | u ∈ FPaths,M ∈ Names}.
Proposition 5. À1 is well-founded.

Proof. By definition, if we have an infinite sequence {ui}∞i=1 in Dp, then, for any
u′ in FPaths, {ui.u

′}∞i=1 is also in Dp. Hence we have the proposition. ut
Definition 11. A path tree t is defined as follows.

t ::= u | u(nodes)
nodes ::= t | t,nodes

t is a metavariables which ranges over path trees.
In this section, we show the relation À2 defined in Definition 12. is well-

founded, which is attained in Proposition 8.

Definition 12. The relationÀ2 on path trees is defined as follows: u([ti]ni=1) À2

u′([t′i]
n′
i=1) holds if and only if either of the following conditions holds.

1. – u À1 u′

– For all i in {1 . . . n′}, either of the followings holds.
• u([ti]ni=1) À2 t′i
• there exisits j such that tj = t′i or tj À2 t′i holds.

2. – u = u′

– There exsit i, j such that ti À2 t′j holds, and for all k in {1, . . . , n′}\{j}
there exists l such that either of ti À2 t′k or tl = t′k holds.

26

3. There exists j such that tj = u′([t′i]
n′
i=1) holds.

4. u = u′ and, there exists j such that {t1, · · · , tn}\{tj} = {t′1, · · · , t′n′} holds.

Definition 13. Let P and P’ be finite multisets of flat paths. P À0
3 P ′ holds if

and only if the following condition holds.

There exists u ∈ P, and a nonembty submultiset {u′1, . . . u′n} of P’ such
that, for all i in {1 . . . n}, u À1 u′i and P\{u} ⊇ P ′\{u′1, · · · , u′n} hold.

Proposition 6. À0
3 is well-founded.

Proof. Suppose there exists an infinite sequence {Pi}i∈N such that, for all i,
Pi À0

3 Pi+1 holds. For each i, we construct a labeled Tree T (Pi) as follows. Note
that the multiset of the leaves of T (Pi) includes Pi.

– T (P1) = (u1, · · · , un), where P1 = {u1, · · · , un}.
– T (Pi+1) is constructed from T (Pi). By definition, there exists u ∈ Pi, and a

nonempty submultiset {u′1, . . . u′n} of P ′i+1 such that, for all i in {1, . . . , n},
u À1 u′i and Pi\{u} ⊇ Pi+1\{u′1, · · · , u′n} hold. Then T (Pi+1) is T (Pi) with
a leaf u replaced with u(u′1, · · · , u′n).

As the size of T (Pi), which is the number of nodes and leaves, increases
as i increases, by Köning’s lemma on finitely branching trees, we can find an
infinitely deep branch. Hence we have an infinite sequence of flat paths {ui}i∈N

such that, for all i, ui À0 ui+1 holds, which contradicts the well-foundedness of
À1. ut
Definition 14. Let P,P ′ be multisets of flat paths. P À3 P ′ holds if and only
if either of P À0

3 P ′ or P ⊃ P ′ holds.

Corollary 1. À3 is well-founded.

Definition 15. Let P be a multiset of flat paths. The multiset locmaxs(P) is
defined as P ∩ {u ∈ P | ∀u′ ∈ P (u′ 6À1 u)}, which is the largest sub-multiset of
P which includes u if and only if there does not exsits u′ such that u′ ∈ P and
u′ À1 u hold.

Definition 16. Let P,P ′ be multisets of flat paths. P À4 P ′ holds if and only
if either of the following conditions holds.

– locmaxs(P) À3locmaxs(P ′)
– locmaxs(P) = locmaxs(P ′), and P\{locmaxs(P)} À4 P ′\{locmaxs(P ′)}

Proposition 7. À4 is well-founded.

Proof. First, we define a well-founded order À5 as follows. P À5 P ′ holds
if and only if locmaxs(P) À3 locmaxs(P ′) holds. The well-foundedness comes
from Corollary 1.

Then, we show by induction on the order À5 of P that there does not exist
an infinite sequence {Pi}i∈N such that P1 = P and, for all i, Pi À4 Pi+1 holds.
Suppose we have such a sequence {Pi}i∈N . We have the following 2 cases.

27

– Suppose locmaxs(P1) À3locmaxs(P2) holds. As P1 À5 P2, by IH, there
does not exists an infinite sequence {P ′i}i∈N such that P ′1 = P2 and, for all
i, P ′i À4 P ′i+1 holds. This contradicts our assumption.

– Suppose locmaxs(P1) = locmaxs(P2), and P1\{locmaxs(P1)} À4 P2\{locmaxs(P2)}
holds. By IH, there does not exists an infinite sequence {P ′i}i∈n such that
P ′1 = P1\{locmaxs(P1)}, and, for all i, P ′i À4 P ′i+1 holds. Hence, we have
k ∈ N such that locmaxs(P1) À3locmaxs(Pk) holds. By IH, there does
not exists an infinite sequence {P ′i}i∈n such that P ′1 = Pk, and, for all i,
P ′i À4 P ′i+1 holds. This contradicts our assumption.

ut

Proposition 8. À2 is well-founded.

Proof. Let t be a path tree, we define the multiset Branches(t) of multisets of
flat paths, which denotes the multiset of branches of t, as follows.

– Branches(t) = {{u}}, where t = u holds.
– Branches(t) = {{u} ∪P11, . . . , {u} ∪P1n1 , . . . , {u} ∪Pm1, . . . , {u} ∪Pmnm

},
where t = u(t1, . . . , tm), and, for all i in {1, . . . ,m}, Branches(ti) = {Pi1, . . . ,Pini}
holds.

Suppose we have an infinite sequence {ti}i∈N such that, for all i in N ,
ti À2 ti+1 holds. We construct, for all i, a labeled tree T (ti) as follows. Note
that the multiset of the leaves of T (ti) , denoted Leaves(T (ti)), coincides with
Branches(ti).

– T (t1) = (P1, · · · ,Pn), where Branches(t1) = {P1, · · · ,Pn}.
– T (ti+1) is constructed from T (ti). We have the following 2 cases.

• There exists a nonempty submultiset {P1, . . . ,Pn} of Leaves(T (ti)), nonempty
submultisets Q1, . . . ,Qn of Branches(ti+1), and a submultiset Qn+1 of
Branches(ti+1) such that

⋃n+1
i=1 Qi = Branches(ti+1), Leaves(T (ti))\{P1, . . . ,Pn} ⊇

Qn+1, and, for all i in {1, . . . , n}, Pi is greater in terms of À4 than any
elements of Qi, i.e. for all P in Qi, Pi À4 P. Then T (ti+1) is constructed
from T (ti) as follows.
∗ For all i in {1, . . . , n}, a leaf Pi of T (ti) replaced with Pi(P ′1, . . . ,P ′n′),

where Qi = {P ′1, . . . ,P ′n′} holds.
∗ For each P in Leaves(T (ti))\({P1, . . . ,Pn} ∪ Qn+1), a leaf labelled
P is cut off.

• Branches(ti) ⊃ Branches(ti+1) holds. Then T (ti+1) is T (ti) with, for
each P ∈ Branches(ti)\Branches(ti+1), a leaf labelled with P is cut off.

Then, for all i, either of the following condition holds between T (ti) and
T (ti+1).

– T (ti+1) is deeper than T (ti).
– T (ti+1) is T (ti) with some leaves cut off.

28

By definition, the size of T (ti), which is the total number of nodes and leaves,
can not grow without growth in the depth of T (ti). As we can not infinitely
cut off leaves without growth in the size of trees, we can find an infinitely deep
branch. This means that we have an infinite sequence {Pi}i∈N such that, for all
i ∈ N , Pi À4 Pi+1 holds, which contradicts the well-foundedness of À4. ut
Definition 17. The relation Â1 on paths is the smallest transitive relation con-
taining rules given in Fig. 18.

p Â1 p′

p.M Â1 p′.M

q Â1 q′

p(q) Â1 p(q′)

p Â1 p′

p(q) Â1 p′(q)

p Â1 p′ q Â1 q′

p(q) Â1 p′(q′)

src(p.M, r) env(p, θ)

p.M Â1 θ(∆̃(r))

src(p.M, q coerce {m, M}) env(p, θ)

p.M Â1 θ(∆̃(q))

src(p.M, q1 ⇀ q2) env(p, θ)

p.M Â1 θ(∆̃(qi)) for i = 1, 2

Fig. 18. Definition of Â1

A path context p[] is defined as follows.

p[] ::= ε | C | p[].M || p([]) | p[](p[]) | p[](V)

A path p[q] is p[] with each occurence of [] in p[] replaced with q.

Definition 18. The relation Â2 is the smallest transitive relation containing
rules given in Fig. 19.

p.M Â2 p p(q) Â p p(q) Â2 q

p Â1 p′

p Â2 p′
q Â2 q′

p[q] Â2 p[q′]

Fig. 19. Definition of Â2

Proposition 9. Â2 is well-founded.

Proof. Suppose we have an infinite sequence {pi}∞i=1 in Â2. By definition, we
can assume, for all i, pi Â2 pi+1 is derived without transitivity.

Let p be a path, we construct a path tree T (p) as follows.

– T (p) = p where p is in FPaths
– T (p) = u(T (p1), . . . , T (pn)) where flat(p) = u and args(p) = {p1, . . . , pn}.

29

Then we can check by considering each rules given in Fig. 18, ??, that, for
all i, T (pi) À2 T (pi+1). This contradict well-foundedness of À2. ut
Definition 19. The relation Â is the smallest transitive relation containing Â2,
{(X, ∆(X)) | X ∈ Vars} and {(X.M,∆(X).M) | M ∈ Names, X ∈ Vars}
Proposition 10. Â is well-founded.

To show Proposition 10 we first define well-founded relations =0 on module
variables and = on sets of module variables. We write V (p) to denote the set of
module variables contained in p.

Definition 20. X =0 X ′ holds if and only if either of the following condition
holds.

– X ′ is in V (∆(X)).
– X =0 X ′′ and X ′′ =0 X ′.

Note that, as P contains no free module variables and all bound module
variables differ from each other, =0 is well-founded.

Definition 21. Let X and Y be sets of module variables. The relation X = Y
holds if and only if either of the following conditions holds.

1. There exists X in X such that for any Y in Y, X =0 Y .
2. Y is a proper subset of X .

2

Lemma 1. =is well-founded.

Proof. As =0 is well-founded and Vars is finite, we can easily check this proposi-
ton. ut
Proof (Proposition 10). If p Â2 q holds, then we can check that V (p) w V (q)
holds by induction on the structure of the derivation of p Â2 q. Then we can
check this proposition by considering a lexicographical order (=,Â2). ut

D The equivalence between type checking with
normalization and well-founded normalization

In this appendix, we show that the type checking with normalization and well-
founded normalization are equivalent. In the following appendixes, we fix a well-
founded program (S, e).

In the following sections, we consider θ as a finite mapping, not as substitu-
tions.

In the following sections, θ is assumed to be complete.
To show the equivalence, we have to define well-founded normalization for of

C.M , this is defined as follows;

30

Definition 22. q is a well-founded normal form of C.M , if gnlz (∆̃(C).M, q′)
and η(q′) = q hold.

Definition 23. A set of module variables X ⊆ Vars is complete if, for all X in
X , if X =0 X ′ then X ′ is in X .

Note that if X is complete, then for all X in X , V (∆(X)) ⊆ X holds.

Definition 24. A substitution θ is normalized (resp. pre-normalized, well-founded
normalized), if, for all X in dom(θ), nlz (θ(X), θ(X)) (resp. gnlz (θ(X), θ(X)),
wf-nlz(θ(X), θ(X))) holds.

D.1 If ` S ¦ then `W S ¦
Proposition 11. If ` P ¦, then `W S ¦.
Proof. This proposition is a direct result from lemma 2. ut

In the following of this section, we assume P is well-typed in terms of nor-
malization, i.e. ` P ¦.

mvalid(ε).

mvalid(X).

mvalid(p.M) :- mvalid(p),nlz (p.M, q).

mvalid(p(q)) :- mvalid(p), mvalid(q),nlz (p, p′),nlz (q, q′),
params(p′, X :: L), env(p′, Θ),mmatch(q′, (X, Θ(∆(X))).

Fig. 20. The definition of mvalid

mmatch(p, (V, q)) :- p ≤ q

mmatch(p, (C, q)) :- p ≤ q, ∀M(Nlz (p.M) = Nlz (q.M)).

Fig. 21. The definition of mmatch

We define predicates mvalid and mmatch in Figure 20, 21.

Definition 25. A substitution θ is member valid (hereafter, “θ is m.v.”) if, for
all X ∈ dom(θ), mvalid(θ(X)) holds.

Definition 26. A substitution θ is member coherent (hereafter, “θ is m.c.”) if
the following conditions hold.

– for all X in dom(θ), mvalid(θ(X)) and mmatch(X, (X, θ(∆(X)))).

31

– dom(θ) is complete.

In the following of this section, we assume that p, q, r are is in Paths or on
the form C.M .

Lemma 2. The following results hold.

1. if mvalid(p) and nlz (p, q), then mvalid(q) and wf-nlz(p, q).
2. if mvalid(p), nlz (p, q) and nlz (p, q′), then q ≡ q′.
3. if wf-nlz(p, q), and, for any proper subpath p′ of p, mvalid(p′), then mvalid(q)

and nlz (p, q).
4. if wf-nlz(p, q), wf-nlz(p, q′), and, for any proper subpath p′ of p, mvalid(p′),

then q ≡ q′.

Proof. The proof is by induction on the order Â of p. First, we have an assump-
tion that mvalid(p) and nlz (p, q) hold.

– p ≡ p1.M : Let P be a finite set of paths and M in Names, we define
CompM (P) as {q | p.N ∈ P, src(p.N, r1 ⇀ r2), env(p, θ), i ∈ {1, 2},nlz (θ(ri), q)}∪
{q | p.N ∈ P, src(p.N, r coerce {M}),M ∈ M, env(p, θ),nlz (θ(r), q)}.
CompW

M (P) is the well-founded normalization version of CompM (P). CompP
M (P)

is defined as {q | p.N ∈ P, src(p.N, r1 ⇀ r2), env(p, θ), i ∈ {1, 2}, gnlz (θ(∆̃(ri)), q)}∪
{q | p.N ∈ P, src(p.N, r coerce {M}), M ∈ M, env(p, θ), gnlz (θ(∆̃(r)), q)}∪
{q | p.N ∈ P, src(p.N, C), env(p, θ), gnlz (θ(∆̃(C)), q)}.
By I.H, nlz (p1, p2), wf-nlz(p1, p2) and gnlz (p1, p3) hold. Let P0 = {p2},
Pi+1 = CompM (Pi), and P̄ =

⋃∞
i=0 CompM (Pi). Let PW0 = {p2}, Pi+1 =

CompW
M (PWi), and P̄W =

⋃∞
i=0 CompW

M (PWi). Let PP0 = {p3}, Pi+1 =
CompP

M (PPi), and P̄P =
⋃∞

i=0 CompP
M (PPi).

Then, we can check the following statements by induction on Â of p using
Lemma 3.
• P̄ = P̄W ⊃ η(P̄P), where η(P̄P) = {η(p) | p ∈ P̄P }
• for all p ∈ P̄ ∪ P̄P , mvalid(p)
• there exists the unique path p4.M2([p5i]ni=1) in P̄ such that src(p4.M2, λ[X :

p′5i]
n
i=1.{. . . ,M = E}), nlz (p4.M2([p5i]ni=1).M2.M, q), p6.M2([p7i]ni=1) ∈

P̄P , and η(p6.M2([p7i]ni=1)) = p4.M2([p5i]ni=1) hold.
As p º p6.M2([p7i]ni=1).M , by I.H., we have the proposition for this case.

– p ≡ p1(p2): Easy.

Next, we assume wf-nlz(p, q) and, for all subpropser path p′, mvalid(p′).

– p ≡ p1.M and mvalid(p1): We can check this case similarly as above.
– p ≡ p1(p2): Easy.

ut

Lemma 3. If nlz (p, q), θ is normalized and m.c., then nlz (θ(p), θ(q)) holds.

Proof. The proof is by induction on the structure of the derivation of nlz (p, q).

32

inlz (ε, ε). inlz (Xθ, Xθ).

inlz (p.M, p′.M)
:- inlz (p, p′),

src(p′.M, E),
E 6≡ q.

inlz (p.M, q)
:- inlz (p, p′),

src(p′.M, r)
env(p′, θ),
inlz (θ(r), q).

inlz (p1.M, q)
:- inlz (p1, p2.N),

src(p2, r coerce {M}),
M ∈ {M},
env(p2, θ),
inlz (θ(r).M, q)

inlz (p1.M, q)
:- inlz (p1, p2.N),

src(p2, r1 ⇀ r2),
env(p2, θ),
inlz ((θ(r1).M, q)

inlz (p1.M, q)
:- inlz (p1, p2.N),

src(p2, r1 ⇀ r2),
env(p2, θ),
inlz (θ(r2).M, q)

inlz (p1(p2), p′1(p
′
2))

:- inlz (p1, p′1),
inlz (p2, p′2).

inlz (p1.M, q)

:- inlz (p1, Cθ),

inlz (∆(C).Mθ, q).

Fig. 22. Definition of inlz

[N-INF] p ≡ p1.M , nlz (p1, C), nlz (∆(C).M, q): By IH, nlz (θ(p1), θ(C)),
nlz (θ(∆(C)).M, θ(q)). As θ is m.c., nlz (θ(C).M, θ(q)) holds.

The remaining cases can be ckecked with a easy induction. ut
Lemma 4. If nlz (θ(p), q), θ is normalized and m.c., then there exsits a path q′

such that nlz (p, q′) and q ≡ θ(q′).

To reason about lemma 4, we introduce not-yet-replaced-by-θ paths(hereafter θ-
paths), which are paths obtained using Cθ’s or V θ’s as module variables instead
of C’s or V ’s. s, t, u are metavariables which range over θ-paths.

Notation 1 Let p be a path, then pθ is p with all occurrences of X replaced with
Xθ.

Notation 2 Let s be a θ-path, then γ(s) is s with all occurrences of Xθ replaced
with θ(X).

Note that θ(p) = γ(pθ) holds. Next, we define a well-founded relation, by
induction on which we will prove lemma 4.

Definition 27. Let S (resp.S ′) be a paire of (D, θ) (resp. (D′, θ′), where D
(D′) is a derivation of nlz (p, q) (nlz (p′, q′)) and there exists p1(p′1) such that
p = θ(p1) (p′ = θ(p′1)) holds. Then S Â1 S ′ holds if and only if either of the
following conditions holds.

– D′ is a proper substructure of D and θ ≡ θ′.
– dom(θ) = dom(θ′).

33

The definition of = is found in Appendix B.
As = is well-founded, we have the following lemma.

Lemma 5. Â1 is well-founded.

Lemma 6. If nlz (θ(p), q) and θ is normalized and m.c., then inlz (pθ, s) and
γ(s) = q hold, where inlz is given in Fig. 22.

Proof. The proof is by induction on the order Â1 of (nlz (θ(p), q), θ).

– p ≡ p1.M , nlz (θ(p1), p2.N), src(p2.N, r1 ⇀ r2), env(p2, θp2), nlz (θp2(r1).M, q):
By IH, inlz (pθ

1, p3) and γ(p3) = p2.N hold.
• p3 ≡ Cθ: As θ(C) = p2.N , we have nlz (θ(C).M, q). Hence, by m.c.

of θ, nlz (θ(∆(C).M), q) holds. Let θ′ = θ |{X|C=0X}, where the def-
inition of =0 is found at Appendix B. Then, nlz (θ′(∆(C).M), q) and
dom(θ) = dom(θ′) hold. As (nlz (p, q), θ) Â1 (nlz (θ′(∆(C).M), q), θ′) by
IH, inlz (∆(C).Mθ′ , q′) and γ(q′) = q hold. Now we have inlz (∆(C).Mθ, q′′)
and γ(q′′) = q, where q′′ is q′ with all occurrence of Xθ′ replaced with
Xθ. By definition, we have inlz (p1.M

θ, q′′), which is the conclusion for
this case.

• p3 6≡ Cθ: Let p4 be p3 with all occurrence of Xθ replaced with X.
Then, p4 ≡ p5.N , θ(p5.N) = p2.N , p5.N

θ = p3, src(p5.N, r1 ⇀ r2),
env(p5, θp5), θ◦θp5 = θp2 hold. By IH, inlz (θp5(r1)θ, q′) and q′ = q hold.
As we have env(pθ

5, θpθ
5
), θpθ

5
(r1) = θp5(r1)θ, we have the conclusion for

this case.
– The case where p ≡ C holds: Then q ≡ θ(C) and inlz (Cθ, Cθ) hold, which

is the conclusion for this case.
– The case where p ≡ p1(p2) holds: Easy by induction.

The remaining cases can be checked similarly to the first case. ut
Now we show Lemma 4.

Proof (Lemma 4). By lemma 6, inlz (pθ, s) and γ(s) = q hold. Let r be s with all
Xθ replaced with X, then s = rθ and q = θ(r) hold. It can be easily checked that
nlz (p, r) holds by induction on the structure of the derivation of inlz (pθ, s). ut

D.2 If `W P ¦ then ` P ¦
The following proposition says that if P is well-typed w.r.t. well-founded nor-
malization, then P is well-typed w.r.t. normalization,

Proposition 12. If `W P ¦, then ` P ¦ holds.

Proof. This proposition is a direct result from Lemma 7. ut
In the following, we assume P is well-typed when typed w.r.t. well-founded

normalization, i.e. `W P ¦. The predicate mvalidW is the well-founded normal-
ization version of mvalid .

34

Lemma 7. The following 4 results hold:

– if mvalidW (p) and gnlz (p, q), then mvalidW (q) and nlz (p, η(q)).
– if mvalidW (p), gnlz (p, q) and gnlz (p, q′), then q ≡ q′.
– if nlz (p, q), mvalidW (p′) for all proper subpath p′ of p, then mvalidW (q) and

wf-nlz(p, q).
– if nlz (p, q), nlz (p, q′), and mvalidW (p′) for all proper subpath p′ of p, then

p ≡ q.

Proof. This proposition can be ckecked similarly to Lemma 2 using Lemma 8, 9.
ut

Lemma 8. If, for all X in dom(θ), gnlz (θ(X), θ(X)) and gnlz (p, q), then gnlz (θ(p), θ(q)).

Proof. This lemma can be checked by induction on the structure of the derivation
of gnlz (p, q). ut

Lemma 9. If, for all X in dom(θ), gnlz (θ(X), θ(X)) and gnlz (θ(p), q), then
there exists a path q′ such that gnlz (p, q′) and q = θ(q′).

Proof. This lemma can be checked by induction on the structure of the derivation
of gnlz (θ(p), q). ut

E Decidability of type checking

In this section, we show that type checking w.r.t. the well-founded normalization
is decidable.

Theorem 3. Let S be a well-founded module system, then `W S ¦ is decidable.

Proof. To show the theorem, it is enough to show the following results.

– for all p in Paths, we have an algrithm calculating the set of well-founded
normal forms of p.

– for all p in Paths, we have an algrithm calculating A,R, I, b which meets
sig(p,A,R, I, b).

– for all p, q in Paths, p ≤ q is decidable.

These 3 results reduces to the following statement: for all p in Paths and M in
Names, we have an algorithm calculating CompP

M (p), where CompP is defined
in the proof of Lemma 2. This statement is a direct results of well-foundedness
of Â. Note that, as Â is well-founded, there does not exists an infinite derivation
of gnlz (p, q) for any p, q in Paths. ut

Corollary 2. If V (p) = ∅, valid(p), and nlz (p, p), then there exists an algo-
rithm calculating q,M such that nlz (p, q) and elb(q, M) hold.

35

F Type soundness

In this section, we show the type soundness results for Room. It says that, if
the evaluation of a program does not diverge, then it produces a results of the
correct type without getting stuck.

In the following of this section, we fix a well-founded program (P, e) of type
τ .

We first show that well-typedness of path is preserved through normalization.

Proposition 13. If valid(p) and nlz (p, q), then valid(q).

Proof. By Lemma 2, we only have to check conditions on methods. By Lemma 2,
there exists a unique path q′ such that gnlz (p, q′) and η(q′) = q hold. We can
check that if valid(p) and gnlz (p, q), then valid(q) by induction on the structure
of the derivation of gnlz (p, q) using Lemma 12, 13. Hence, valid(q′) holds. By
Lemma 10, we have the conclusion.

Lemma 10. If valid(p) and gnlz (p, p), then valid(η(p)).

Proof. Easy. ut
Definition 28. A module variable environment θ is coherent if, for all X in
dom(θ), valid(θ(X)) and match(θ(X), ((X, θ(∆(X))), h))old.

Lemma 11. If nlz (p, p), mvalid(p), mvalid(q), p ≤ q and sig(p,A,R, I, b),
then nlz (q, q′), sig(q′,A′,R′, I ′, b′) and A ⊇ A′,R ⊇ R′, I ⊇ I ′ hold.

Proof. By Lemma 2, there exists a unique q‘ such that nlz (q, q′) and p ≤0

q′ holds. Then, we can check the lemma by induction on the structure of the
derivation of p ≤0 q′. ut
Lemma 12. If nlz (p, p), mvalid(p), sig(p,A,R, I, b) and θ is normalized and
coherent, then following results hold.

– sig(θ(p),A′,R′, I ′, b′),
– if b = true then b′ = true

– N(A) ⊆ N(A′), N(R) ⊆ N(R′), N(I) ⊆ N(I ′)
– N(A)\N(I) ⊇ N(A′)\N(I ′)
– N(R)\N(I) ⊇ N(R′)\N(I ′)

Proof. This lemma can be checked by induction on the structure of the derivation
of sig(p,A,R, I, b) using Lemma 11. ut
Lemma 13. If valid(p), nlz (p, p), sig(p,A,R, I, false) and θ is normalized
and coherent, then sig(θ(p),A′,R′, I ′, b) and N(A) ∪N(R) ∪N(I) = N(A′) ∪
N(R′) ∪N(I ′)
Proof. This lemma can be checked by induction on the structure of the derivation
of sig(p,A,R, I, false) using Lemma 12. ut

36

Then, we show some properties of sig and elb, which is essential to show the
type soundness result.

Lemma 14. If nlz (p, p), valid(p), sig(p,A,R, I, b), and θ is normalized and
coherent, then sig(θ(p),A′,R′, I ′, b′), and, for all (m, τ1, τ2) ∈ A′ ∪ R′ ∪ I ′, if
m ∈ N(A) ∪ N(R) ∪ N(I) then there exists (m, τ ′1, τ

′
2) ∈ A ∪ R ∪ I such that

nlz (τ ′1, τ ′′1), nlz (τ1, θ(τ ′′1)), nlz (τ ′2, τ ′′2) nlz (τ2, θ(τ ′′2)) hold.

Proof. This lemma can be checked by induction on the derivation of the structure
of sig(p,A,R, I, b). ut
Lemma 15. If nlz (θ(p), θ(p)), valid(θ(p)), sig(θ(p),A,R, I, b), and θ is nor-
malized and coherent, then sig(p,A′,R′, I ′, b′), and, for all (m, τ1, τ2) ∈ A′ ∪
R′ ∪ I ′, there exists (m, τ ′1, τ

′
2) ∈ A ∪ R ∪ I such that nlz (τ1, τ ′′1), nlz (τ ′1, τ3

1),
θ(τ ′′1) = τ3

1 nlz (τ2, τ ′′2), nlz (τ ′2, τ3
2), θ(τ ′′2) = τ3

2 hold.

Proof. This lemma can be checked by induction on the derivation of the structure
of sig(θ(p), θ(A), θ(R), θ(I), b). ut
Lemma 16. If nlz (p, p), valid(p), sig(p,A,R, I, b), then, for all (m, τ1, τ

′
1), (m, τ2, τ

′
2)

in A ∪R ∪ I, nlz (τ1, τ3), nlz (τ2, τ3), nlz (τ ′1, τ ′3), and nlz (τ ′2, τ ′3) hold.

Proof. This lemma can be checked by induction on the derivation of sig(p,A,R, I, b)
using Lemma 12, 13, 14, 15.

Lemma 17. If V (p) = ∅, elb(p, M), valid(p), nlz (p, p), then the follwing three
results hold:

– sig(p,A,R, I, b)
– if (m, τ, τ ′) ∈ I, then (m, (q, w, x, e)) ∈M and this : q, x : τ ; q ` e : τ ′

– if (m, (q, w, x, e)) ∈ M, then sig(q,A′,R′, I ′, b′) and, for all (m1, τ1, τ
′
1) ∈

A′ ∪R′ ∪ I ′, either of the followings holds.
• m1 ∈ (N(A) ∪N(R))\N(I)
• (w(m1), (q1, w1, x1, e1)) ∈M and this : q1, x1 : τ1; q1 ` e1 : τ ′1

Proof. This lemma can be checked by induction of the structure of the derivation
of elb(p, M).

To formally state the type soundness result, we extend values to include
wrong, and add rules in Figure 23 to the rules for the operational sematics.
Moreover we assume that new q evaluates to wrong in a context p with a execution
state (ι, κ), if there does not exist q,M such that nlz (p, q), elb(q, M) hold.

Then the type soundness theorem is stated as following.

Theorem 4. Suppose the following (I) to (VI) holds, then (a) to (e) hold.
(I)p;Γ ` e : τ
(II)ι; κ; p |= e ⇓ r
(III)valid(p), nlz (p, p),V (p) = ∅
(IV)Γ is coherent
(V)` κ ok
(VI)κ ` ι : Γ

37

ι; κ; p |=S e ⇓ wrong

ι; κ; p |=S e.m(e′) ⇓ wrong

ι; κ; p |= e ⇓ (obj(`, w0), ι0, κ0) ` 6∈ dom(κ0)

ι; κ; p |=S e.m(e′) ⇓ wrong

ι; κ; p |= e ⇓ (obj(`, w0), ι0, κ0) w0(m) 6∈ dom(κ0(`))

ι; κ; p |=S e.m(e′) ⇓ wrong

ι; κ; p |= e ⇓ (obj(`, w0), ι0, κ0)

κ0(`).w0(m) = (p1, w1, x, e′′)
ι0; κ0; p |=S e1 ⇓ wrong

ι; κ; p |=S e.m(e′) ⇓ wrong

ι; κ; p |= e ⇓ (obj(`, w0), ι0, κ0)

κ0(`).w0(m) = (p1, w1, x, e′′)
ι0; κ0; p |= e1 ⇓ (v1, ι1, κ1)

[this : obj(`, w1); x : v1]; κ1; p1 |=S e′′ ⇓ wrong

ι; κ; p |=S e.m(e′) ⇓ wrong

x 6∈ dom(ι)

ι; κ; p |=S x ⇓ wrong

Fig. 23. Additional rules for operational semantics

(a) r = (v, ι′, κ′)
(b)κ′ ` v : τ
(c)` κ′ ok
(d)κ′ ` ι′ : Γ
(e)κ ⊆ κ′

ut
Proof. The proof is by induction on the structure of the derivation of p;Γ ` e : τ .

[T-SUb] By IH, ι; κ; p |= e ⇓ (v, ι′, κ′) and κ′ ` τ ′ : . By Lemma 11, we get
the conclusion for this case.

[T-VAR] Easy.
[T-NEW] We get this case by Lemma 2, 17.
[T-MTD] Let e ≡ e1.m(e2). Suppose p; Γ ` e1 : τ1, nlz (τ1, τ ′1), sig(τ ′1,A,R, I, b),

(m, τ2, τ) ∈ A ∪ R ∪ I, p; Γ ` e2 : τ2. By IH, ι; κ; p |= e1 ⇓ (v1, ι1, κ1),
ι1; κ1; p |= e2 ⇓ (v2, ι2, κ2). As κ1 ⊆ κ2, by IH, κ2 ` v1 : τ1, κ2 ` v2 : τ2.
By definition of κ2 ` v1 : τ1 and IH, we get this case.

ut

38

