Preface

This volume collects original papers written by the speakers of the RIMS symposium “Harmonic Analysis and Nonlinear Partial Differential Equations”, held at Research Institute for Mathematical Sciences, Kyoto University, in June 25 - June 27, 2018.

The symposium “Harmonic Analysis and Nonlinear Partial Differential Equations” has been held annually at RIMS since 1997. Its purpose is to provide the opportunity for specialists in various areas of harmonic analysis and nonlinear partial differential equations to exchange ideas and the latest developments and to build networks.

Financial support from the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University, and JSPS KAKENHI Grant Numbers: 17K14219 and 18H01129, is gratefully acknowledged.

We would like to thank the speakers, all the participants and anonymous referees who have made the symposium successful and this proceeding scientific.

March, 2019
Hideo Takaoka and Satoshi Masaki
CONTENTS

Satoshi Masaki and Jun-ichi Segata .. 1
A note on Strichartz estimates for Airy equation and its application

Rowan Killip and Monica Visan ... 23
Sonin’s argument, the shape of solitons, and the most stably singular matrix

Neal Bez and Jayson Cunanan ... 33
Smoothing estimates for velocity averages with radial data

Mamoru Okamoto ... 47
Remarks on the probabilistic well-posedness for quadratic nonlinear Schrödinger equations

Eiichi Nakai ... 65
Generalized Campanato spaces with variable growth condition

Mitsuo Izuki and Takahiro Noi .. 93
Characterization of generalized Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces by differences

Yohei Tsutsumi ... 127
Sparse bounds for local smoothing operators