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Abstract

In these notes we give an overview on some known and new results on

sufficient conditions for the regularity of the Navier‐Stokes equations in

terms of the direction of the vorticity. After recalling some known results

we state a new theorem (the proof will appear in a forthcoming paper, in

collaboration with L.C. Berselli) which establish that in regular domains

 $\Omega$ the solutions to the evolution Navier‐Stokes equations under the slip‐
type boundary condition (2.15) must be smooth if the direction of the

vorticity is 1/2‐Hólder continuous with respect to the space variables.

1 Introduction

In reference [11] it is proved that the solution of the evolution NavierStokes

equations in the whole of \mathrm{R}^{3} must be smooth if the direction of the vorticity
is Lipschitz continuous with respect to the space variables. In reference [7] the

above result is improved by showing that Lipschitz continuity may be replaced
by 1/2‐Hólder continuity. We have some evidence that the 1/2 exponent is very

difficult to improve. A next step is the extension of the above type of results to

boundary value problems. In reference [5] the 1/2‐Hólder continuity sufficient

condition is extended to solutions in the half‐space \mathrm{R}_{+}^{3} under the slip boundary
condition. Note that in the half‐space (more precisely, in any portion of flat

boundary) this condition coincides with the well‐known condition (2.15). In a

forthcoming paper the author and L.C. Berselli prove that the above 1/2‐Hólder
sufficient condition still holds for solutions to the Navier‐Stokes equations in any

arbitrary regular open set  $\Omega$ under the boundary condition (2.15).
In these notes we give an overview on the above results.

2 Known and new results

In the sequel  $\Omega$ denotes a bounded, connected, open set in \mathrm{R}^{3}
, locally situated on

one side of its boundary  $\Gamma$
,

a manifold of (at least) class  C^{3, $\alpha$} for some  $\alpha$\in(0,1) .

We denote by \underline{n} the unit outward normal to  $\Gamma$ . We do not introduce standard

notation or notation whose meaning is clear from the context. We denote by
\Vert \Vert_{p} the canonical norm in the Lebesgue space L^{p}:=L^{p}( $\Omega$) , 1\leq p\leq\infty.
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H^{k}:=H^{k}( $\Omega$) ,
k positive integer, denotes the classical Sobolev space. Scalar

and vector function spaces are indicated by the same symbol.
Consider the evolution 3‐D NavierStokes equations

(2.1) \left\{\begin{array}{l}
\frac{\partial u}{\partial t}+(u\cdot\nabla)u-v\triangle u+\nabla p=0 \mathrm{i}\mathrm{n}  $\Omega$\times[0, +\infty) ,\\
\nabla\cdot u=0 \mathrm{i}\mathrm{n}  $\Omega$\times[0, +\infty) ,\\
u(x, 0)=u(x) \mathrm{i}\mathrm{n}  $\Omega$.
\end{array}\right.
It is well known (under suitable boundary conditions if  $\Gamma$ is not empty) that

there is at least one weak solution in [0, +\infty ) of the above problem and, for a

suitable  $\tau$>0, \mathrm{a} (unique) strong solution in [0,  $\tau$ ). It is not known, however,
whether weak solutions are unique and whether strong solutions are global in

time. We are interested in simple conditions on the vorticity  $\omega$,

 $\omega$(x, t)=\nabla\times u(x, t) ,

that guarantee the regularity of the solution. The following is a typical result

(see see also Weak solutions are regular provided that

(2.2)  $\omega$\in L^{p}(0, T;L^{q}) for \displaystyle \frac{2}{p}+\frac{n}{q}\leq 2, 1\leq p\leq 2.

This result is an extension to values p\leq 2 of the classical condition

(2.3) u\in L^{p}(0, T;L^{s}) for \displaystyle \frac{2}{p}+\frac{n}{s}\leq 1, 2\leq p<\infty.

This type of conditions have an analytical character. On the other hand, in ref‐

erences [11] and [7], a geometrical assumption is considered. Define the direction

of the vorticity  $\xi$ as

 $\xi$(x)=\displaystyle \frac{ $\omega$(x)}{| $\omega$(x)|}
and denote by  $\theta$(x, y, t) the angle between the vorticity  $\omega$ at two distinct points
 x and y at time t . In reference [11] the authors prove the following result.

Theorem 2.1. (see [11]). Let be  $\Omega$=\mathrm{R}^{3} and u be a weak solution of (2.1) in

(0, T) with u_{0}\in H^{1} and \nabla\cdot u_{0}=0 . If

(2.4) \sin $\theta$(x, y, t)\leq c|x-y|

in the region where the vorticity at both points x and y is larger than an ar‐

bitrary fixed positive constant K
,

then the solution u is strong in [0, T] and,
consequently, is regular.

In [7] the authors improve the above result by showing that

(2.5) \sin $\theta$(x, y, t)\leq c|x-y|^{1/2}

is sufficient to guarantee the regularity of weak solutions. More precisely
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Theorem 2.2. (see [7]). Let be  $\Omega$=\mathrm{R}^{3} and u be a weak solution of (2.1) in

(0, T) with u_{0}\in H^{1} and \nabla\cdot u_{0}=0 . Assume that for some  $\beta$\in[1/2, 1] and

g\in L^{a}(0, T;L^{b}) ,
where

(2.6) \displaystyle \frac{2}{a}+\frac{3}{b}= $\beta$-\frac{1}{2}, a\in[\frac{4}{2 $\beta$-1}, \infty],
one has

(2.7) \sin $\theta$(x, y, t)\leq g(t, x)|x-y|^{ $\beta$}

in the region where the vorticity at both points x and y is larger than an ar‐

bitrary fixed positive constant K. Then the solution u is strong in [0, T] and,
consequently, is regular.
In particular (2.5) alone is a sufficient condition for regularity.

In [3] we assume that  $\beta$\in[0 , 1/2 ] and show sufficient condition for the

regularity of weak solutions that involves, simultaneously, the magnitude and

the direction of the vorticity. More precisely,

Theorem 2.3. (see [3]). Let u be a weak solution of (2.1) in (0, T) with

u_{0}\in H^{1} and \nabla\cdot u_{0}=0 . Let  $\beta$\in[0 , 1/2 ] and assume that (2.21) holds in

the region where the vorticity at both points x and y is larger than an arbitrary
fixed positive constant K. Assume, moreover, (2.18),(2.19). Then the solution

u is strong in [0, T] and, consequently, is regular. In particular (2.5) alone is a

sufficient condition for regularity.

The proof of Theorem 2.3 follows that given in [7].
As remarked in reference [5], in the assumptions made in references [11], [7] and

[3] the quantity \sin $\theta$(x, y, t) can be everywhere replaced by

(2.8) |(x-y,  $\xi$(x))Det(x-y,  $\xi$(y),  $\xi$(x))\wedge\wedge|,

as follows immediately from the proofs. We simply opt for replacing the above

quantity by \sin $\theta$(x, y, t) . We use the notation \displaystyle \hat{z}=\frac{z}{|z|}.
Clearly the above quantity can be replaced by any upper bound as, for instance,

|\cos $\psi$(x, y, t)|\sin $\phi$(x, y, t)

where  $\psi$(x, t) denotes the angle between  $\xi$(x, t) and x-y ,
and  $\phi$(x, y, t) denotes

the angle between  $\xi$(y, t) and the plane generated by  $\xi$(x, t) and x-y.

A fundamental open problem remains the improvement of the best exponent
 $\beta$ for which the assumption (2.21) guarantees the regularity of the solutions with‐

out any other additional hypotheses. The proof given in reference [3] formally
leads us to believe that the sharpness of the regularity exponent  $\beta$=1/2 cor‐

responds to that of the classical sufficient condition (2.3). Consequently, the

above improvement appears quite difficult to obtain.

Another central problem is the extension of the theory to boundary value

problems. In [5] it is proved that the above 1/2‐Hólder assumption still remains

a sufficient condition for regularity under the Navier, or slip, boundary condition
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in the half‐space \mathrm{R}_{+}^{3}=\{x\in \mathrm{R}^{3} : X3 >0\} . Let us introduce the slip boundary
condition, see (2.13), in the general case of an open set  $\Omega$ in \mathrm{R}^{3} . Denote by

T=-pI+v(\nabla u+\nabla u^{T})

the stress tensor, and set \underline{t}=T\cdot \mathrm{n} . Hence

(2.9) T_{ik}=-$\delta$_{ik}p+v(\displaystyle \frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}})
and

(2.10) t_{i}=\displaystyle \sum_{k=1}^{n}T_{ik}n_{k}.
Also consider the linear operator \underline{ $\tau$},

(2.11) \underline{ $\tau$}(u)=\mathrm{t}-(\underline{t}\cdot\underline{n})\mathrm{n},

the components of which are given by

(2.12) $\tau$_{i}(u)=v\displaystyle \sum_{k=1}^{n}(\frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}})n_{k}-2v[\sum_{k,l=1}^{n}\frac{\partial u_{l}}{\partial x_{k}}n_{k}n_{l}]n_{i}.
Note that \underline{ $\tau$}(u) is tangential to the boundary.

The slip boundary condition reads

(2.13) \left\{\begin{array}{l}
(u\cdot \mathrm{n})_{| $\Gamma$}=0,\\
\underline{ $\tau$}(u)_{| $\Gamma$}=0.
\end{array}\right.
This boundary condition (2.13) was proposed by Navier, see [17]. We point
out that this condition, and similar ones, are an appropriate model for many

important flow problems. Besides the pioneering mathematical contribution

[22] by Solonnikov and Ščadilov, this boundary condition has been considered

by many authors. See, for instance, [1], [4], [9], [12], [13], [16], [18], [19], [23]
and references therein.

In the half‐space the slip boundary condition has the form (2.13)

(2.14) \left\{\begin{array}{ll}
u_{3}=0, & \\
v\frac{\partial u_{j}}{\partial x_{3}}=0, & 1\leq j\leq 2.
\end{array}\right.
It is worth noting, and immediate to verify, that in the half space (or, more gen‐

erally, in any flat portion of the boundary  $\Gamma$ ) the above slip boundary condition

coincides with another well known boundary condition (see for instance [2] and

[10]), namely

(2.15) \left\{\begin{array}{l}
(u\cdot n)_{| $\Gamma$}=0,\\
( $\omega$\times n)_{| $\Gamma$}=0.
\end{array}\right.
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Theorem 2.4. Let

(2.16) u_{0}\in\{v\in H^{1}(\mathrm{R}_{+}^{3}):(\nabla\cdot v=0 and v_{3}(x_{1}, x_{2},0)=0 }

and let u be a weak solution of the Navier‐Stokes equations (2.1) where  $\Omega$=\mathrm{R}_{+}^{3},
endowed with the boundary condition (2.14). Let  $\beta$\in[0 , 1/2 ] and assume that,
for almost all  t\in ]  0, T[,

(2.17) \sin $\theta$(x, y, t)\leq c|x-y|^{ $\beta$}.

Moreover, suppose that

(2.18)  $\omega$\in L^{2}(0, T;L^{r}) ,

where

(2.19) r=\displaystyle \frac{3}{ $\beta$+1}.
Then the solution u is strong in [0, T] and, consequently, is regular. In particular
the solution is regular if (2.5) holds. In this case (2.18) is superfluous.

The last claim follows from the fact that weak solutions satisfy (2.18) for

r=2.

In a forthcoming paper [8] we extend the above result to arbitrarily regular open

sets  $\Omega$ by considering the extension (2.15) of (2.14). More precisely, we prove

the following result.

Theorem 2.5. Let  $\Omega$ be a regular bounded open set and

(2.20)  u_{0}\in V=\{v\in H^{1}( $\Omega$):(\nabla\cdot v)_{| $\Omega$}=0 and (v\cdot n)_{| $\Gamma$}=0\}.

Let u be a weak solution in [0, T) \times $\Omega$ of the Navier‐Stokes equations (2.1) under

the boundary condition (2.15).
Assume that, for a.a.  t\in(0, T) the assumption (2.5) holds. Then the

solution u is strong in [0, T] , i.e.,

(2.21) u\in L^{\infty}(0, T;H^{1})\cap L^{2}(0, T;H^{2}) .

A fundamental tool in proving the Theorem 2.4 is the use of both the Green

and the Neumann functions for \mathrm{R}_{+}^{3} ,
as suggested by the fact that in (2.14)

the components of the velocity are not mixed. Moreover, localization is not

needed. On the contrary, in order to prove the Theorem 2.5 we need to localize

the problem near any point x_{0} which lies on the boundary itself or even near

the boundary. This leads to non trivial problems and to a deep study of the

Green function associate to our boundary value problem. A fundamental tool

in the proof are the sharp results on Green matrices for general boundary value

problems proved by V. Solonnikov in his outstanding works [20] and [21]. See

also [15].
Similar ideas have been applied in reference [6] for the non‐slip boundary con‐

dition

(2.22) u=0 on  $\Gamma$,
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by appealing to the Green function for  $\Omega$ . In this case the problems connected

to the Green function are easier to treat than in the other cases referred above.

The fundamental estimates concerning the non linear term ( $\omega$\cdot\nabla)u\cdot $\omega$ are

proved. However a new obstacle (due to the specific boundary condition (2.22))
appears, and regularity under the sole assumption \sin $\theta$(x, y, t)\leq c|x-y|^{1/2}
(or even \sin $\theta$(x, y, t)\leq c|x-y| ) remains an open, challenging, problem.
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