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ABSTRACT. A solution of the Cauchy problem for a system of an exponentially
stratified fluid in the gravity field is obtained in the form of singular integrals.
If the initial data have a specified smoothness, the solution is written in the

form of integrals with weak singularities of the kernels. Both these forms of

solutions enable exact L_{p} estimates to be obtained. We also establish the

asymptotic behaviour as  t\rightarrow\infty and investigate the spectral properties of the

corresponding operators.

1. Introduction

The objective of this paper is to study the qualitative properties of the solutions

of the system which describes small motions of an exponentially stratified fluid in

the homogeneous gravity field, such as existence, uniqueness and  L_{p} ‐estimates. We

obtain the solution in the form of singular integrals, taken in the Cauchy principal
value sense, when singularities are removed by a ball, that is, isotropically. If

the initial data have a specified smoothness, the solution is written in the form

of integrals with weak singularities of the kernels. Both these forms of solutions

enable exact L_{p} ‐estimates (p>1) to be obtained. This paper is inspired by the

works [6],[7], where similar results were obtained for rotating (not stratified) fluid.

The smoothness of the solution of stratified system for the particular case of the

intrusion was studied in [8]. The isolated case of uniqueness for stratified fluid in a

class of increasing functions was considered in [9].
We consider a system of equations in the form

(1.1) \left\{\begin{array}{l}
$\rho$_{*}\frac{\partial v_{1}}{\partial t}+\frac{\partial p}{\partial x_{1}}=0\\
$\rho$_{*}\frac{\partial v_{2}}{\partial t}+\frac{\partial p}{\partial x_{2}}=0\\
$\rho$_{*}\frac{\partial v_{3}}{\partial t}+g $\rho$+\frac{\partial p}{\partial x_{3}}=0\\
\frac{\partial $\rho$}{\partial t}-\frac{N^{2}$\rho$_{*}}{g}v_{3}=0\\
\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}+\frac{\partial v_{3}}{\partial x_{3}}=0
\end{array}\right.
in the domain \{x\in R^{3}, t>0}, where \vec{v}(x, t) is a velocity field with components
v_{1}, v_{2} , V3, the function p(x, t) is the scalar field of the dynamic pressure,  $\rho$(x, t) is

the dynamycal density and $\rho$_{*}, g, N are positive constants. The equations (1.1) are
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deduced in [1] under the assumption that the function of stationary distribution of

density is performed by the function $\rho$_{*}e^{-Nx_{3}}.
We consider the Cauchy problem for (1.1):

(1.2) \left\{\begin{array}{l}
\vec{v}|_{t=0}=\vec{v}^{0}(x)\\
 $\rho$|_{t=0}=0
\end{array}\right.
For the function \vec{v}^{0}

,
we shall add the conditions of the absence of the rotational

component in (x_{1}, x_{2})

(1.3) \displaystyle \frac{\partial v_{1}^{0}}{\partial x_{2}}-\frac{\partial v_{2}^{0}}{\partial x_{1}}=0
together with the natural condition

(1.4) div (\vec{v}^{0})=0.
The conditions (1.3) do not restrict the generality and are only necessary in

order that the Fourier image of the velocity field be represented as a product of

the \wedge\vec{v^{0}}( $\xi$) and a function of  $\xi$ . If we do not assume (1.3), the Fourier image of the

solution will be represented as a linear combination of the Fourier images of the

three coordinates of \wedge\vec{v^{0}}( $\xi$) .

We put P=\displaystyle \frac{1}{$\rho$_{*}}\frac{\partial p}{\partial t} . We also note that, we can change the scale of the velocity
and the density, introducing the modified velocity as \vec{v}$\rho$_{*} ,

and the modified density
as  g $\rho$ . For the qualitative properties of the considered solutions, we also may put
 N=1 . Thus, without loss of generality, we can assume $\rho$_{*}=1, N=1, g=1.

2. Construction of solutions

In order to restrict ourselves to convergent integrals, we assume that the ini‐

tial data have, for example, continuous second derivatives and decrease sufficiently
rapidly at infinity together with their derivatives up to the second order. Using the

Fourier transform with respect to x
,

the Laplace transform with respect to t and

the conditions (1.3) and (1.4), we obtain the solution of our problem in the form

\displaystyle \wedge\vec{v}( $\xi$,  $\lambda$)=\frac{ $\lambda$| $\xi$|^{2}}{$\lambda$^{2}| $\xi$|^{2}+|$\xi$'|^{2}}\vec{v^{0}}( $\xi$) , \displaystyle \hat{ $\rho$}( $\xi$,  $\lambda$)=\frac{| $\xi$|^{2}\hat{v}_{3}^{0}( $\xi$)}{($\lambda$^{2}| $\xi$|^{2}+|$\xi$'|^{2})}, \displaystyle \hat{P}( $\xi$,  $\lambda$)=\frac{i$\xi$_{3}\hat{v}_{3}^{0}( $\xi$)}{$\lambda$^{2}| $\xi$|^{2}+| $\xi$|^{2}},
where  $\xi$=($\xi$_{1}, $\xi$_{2}, $\xi$_{3}) , | $\xi$|^{2}=\displaystyle \sum_{k=1}^{3}$\xi$_{k}^{2}, |$\xi$^{\ovalbox{\tt\small REJECT}}|^{2}=\displaystyle \sum_{k=1}^{2}$\xi$_{k}^{2} . After an inverse Laplace trans‐

form we obtain the solution in the form

(2.1) \displaystyle \wedge\vec{v}( $\xi$, t) = \wedge v^{0}\rightarrow( $\xi$)\cos\frac{|$\xi$^{\ovalbox{\tt\small REJECT}}|}{| $\xi$|}t, \hat{ $\rho$}( $\xi$, t)=\hat{v}_{3}^{0}( $\xi$)\frac{| $\xi$|}{| $\xi$|}\sin\frac{|$\xi$^{\ovalbox{\tt\small REJECT}}|}{| $\xi$|}t,
\displaystyle \hat{P}( $\xi$, t) = \hat{v}_{3}^{0}( $\xi$)\frac{i$\xi$_{3}}{| $\xi$|| $\xi$|}\sin\frac{|$\xi$^{\ovalbox{\tt\small REJECT}}|}{| $\xi$|}t.

We now find the inverse Fourier transform of the required solution. We first obtain

the solution in the form of integrals with weak singularities of the kernels. For this

we seek a vector \vec{v}(x, t) expressed in terms of the Laplace operator and a function

P(x, t) expressed in terms of the first derivatives of the initial data. As we see from
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(2.1), it is sufficient to calculate only two kernels

(2.2) K_{1}(x-y, t) = \displaystyle \frac{1}{(2 $\pi$)^{3}}\int_{-\infty}^{\infty}e^{i( $\xi$,x-y)}\frac{1}{| $\xi$|^{2}}\cos\frac{|$\xi$'|}{| $\xi$|}td $\xi$,
(2.3) K_{2}(x-y, t) = \displaystyle \frac{1}{(2 $\pi$)^{3}}\int_{-\infty}^{\infty}e^{i( $\xi$,x-y)}\frac{1}{| $\xi$||$\xi$^{\ovalbox{\tt\small REJECT}}|}\sin\frac{|$\xi$'|}{| $\xi$|}td $\xi$.
We note that K_{2} is the primitive of K_{1} with respect to t

,
and it is therefore

sufficient to calculate only one of these integrals.
An integral of type (2.3) is calculated in [2] by means of Sonine�s formulas for

Bessel functions and is given by

(2.4) K_{2}(x-y, t)=\displaystyle \frac{1}{4 $\pi$}\frac{1}{r}\int_{0}^{t}J_{0}(t- $\tau$)J_{0}(\frac{ $\rho \tau$}{r})d $\tau$,
where $\rho$^{2}=(x_{3}-y_{3})^{2}, r^{2}=\displaystyle \sum_{k=1}^{3}(x_{k}-y_{k})^{2} ,

and J_{0} is the Bessel function of order

zero. Therefore

(2.5) K_{1}(x-y, t)=\displaystyle \frac{1}{4 $\pi$}\frac{1}{r}J_{0}(\frac{ $\rho$ t}{r})-\frac{1}{4 $\pi$}\frac{1}{r}\int_{0}^{t}J_{1}(t- $\tau$)J_{0}(\frac{ $\rho \tau$}{r})d $\tau$.
If we now use (2.4) and (2.5), the solution of the Cauchy problem for system (1)
can be written in the form

(2.6) \displaystyle \vec{v}(x, t) = \iiint_{R^{3}}\{-\triangle\vec{v}^{0}(y)K_{1}(x-y, t)\}dy,
(2.7) P(x, t)=\displaystyle \int_{R}\int_{3}\int\{\frac{\partial v_{3}^{0}}{\partial y_{3}}K_{2}(x-y, t)\}dy.
These are basic formulas defining our solution with weak singularities of the kernels.

To obtain the exact estimates in L_{p} ‐norms it is helpful to rewrite these formulas in

another form with strong singularities of the kernels.

In (2.6) and (2.7) we integrate by parts in order that the solution be expressed
in terms of the initial functions rather than their derivatives. This is easily done in

(2.7) for P(x, t) ,
because after one integration by parts the kernels will still have

an integrable singularity. However, in (2.6), after the second integration by parts
we shall have a strong (locally non‐integrable) singularity.

We remove from our space the ball K_{ $\epsilon$} of radius  $\epsilon$ with boundary  S_{ $\epsilon$} and center

at (x_{1}, x_{2}, x_{3}) and denote the rest of the domain by $\Omega$_{ $\epsilon$} . The component v_{1}(x, t) of

\vec{v}(x, t) is given by

v_{1}(x, t)=\displaystyle \lim_{ $\epsilon$\rightarrow 0}\frac{1}{4 $\pi$}\iiint_{$\Omega$_{ $\epsilon$}}(-\triangle v_{1}^{0})[\frac{1}{r}J_{0}(\frac{ $\rho$ t}{r})-\frac{1}{r}\int_{0}^{t}J_{1}(t- $\tau$)J_{0}(\frac{ $\rho \tau$}{r})d $\tau$]dy=
=\displaystyle \lim_{ $\epsilon$\rightarrow 0}\frac{1}{4 $\pi$}\int\int_{$\Omega$_{ $\epsilon$}}\int(-v_{1}^{0})[\triangle(\frac{1}{r}J_{0}(\frac{ $\rho$ t}{r}))-\int_{0}^{t}J_{1}(t- $\tau$)\triangle(\frac{1}{r}J_{0}(\frac{ $\rho \tau$}{r}))d $\tau$]dy+
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+\displaystyle \lim_{ $\epsilon$\rightarrow 0}\frac{1}{4 $\pi$}\int_{S}\int_{ $\epsilon$}(-v_{1}^{0})[\frac{\partial}{\partial n}(\frac{1}{r}J_{0}(\frac{ $\rho$ t}{r}))-\int_{0}^{t}J_{1}(t- $\tau$)\frac{\partial}{\partial n}(\frac{1}{r}J_{0}(\frac{ $\rho \tau$}{r}))d $\tau$]ds,
where n is the normal to the surface S_{ $\epsilon$} which is interior with respect to $\Omega$_{ $\epsilon$}.

We calculate the principal value of the integral over the surface of the sphere
and denote it by I Also we remark that on the surface of the sphere we have
‐ \displaystyle \frac{\partial}{\partial n} (\displaystyle \frac{1}{r}J_{0} (\frac{ $\rho$ t}{r}))=\frac{1}{r^{2}}J_{0} (\displaystyle \frac{ $\rho$ t}{r}) . We transform to spherical coordinates on the surface

of the sphere of radius  $\epsilon$ so that

 I=\displaystyle \frac{1}{4 $\pi$}\lim_{ $\epsilon$\rightarrow 0}v_{1}^{0}(x)\int_{S}\int_{ $\epsilon$}[\frac{1}{r^{2}}J_{0}(\frac{ $\rho$ t}{r})-\int_{0}^{t}J_{1}(t- $\tau$)\frac{1}{r^{2}}J_{0}(\frac{ $\rho \tau$}{r})d $\tau$]ds=
=v_{1}^{0}(x)\displaystyle \int_{0}^{ $\pi$/2}[J_{0}(t\cos $\theta$)\sin $\theta$-(\int_{0}^{t}J_{1}(t- $\tau$)J_{0}( $\tau$\cos $\theta$)d $\tau$)\sin $\theta$]d $\theta$=v_{1}^{0}(x) $\Phi$(t) ,

where

(2.8)  $\Phi$(t)=\displaystyle \frac{1}{t}\int_{0}^{t}J_{0}( $\eta$)d $\eta$-\int_{0}^{t}J_{1}(t- $\tau$)(\frac{1}{ $\tau$}\int_{0}^{ $\tau$}J_{0}( $\eta$)d $\eta$)d $\tau$.
On carrying out exactly similar argumants for the other components of \vec{v}(x, t)

and P(x, t) ,
we obtain

\vec{v}(x, t)=\vec{v}^{0}(x) $\Phi$(t)+

(2.9)

+\displaystyle \frac{1}{4 $\pi$} V.p. \displaystyle \int\int\int\vec{v}^{0}(y)(\triangle(-\frac{1}{r}J_{0}(\frac{ $\rho$ t}{r}))+\int_{0}^{t}J_{1}(t- $\tau$)\triangle(\frac{1}{r}J_{0}(\frac{ $\rho \tau$}{r}))d $\tau$)dy,
where the integrals are calculated in the principal value sense over the sphere, and

the function  $\Phi$(t) is given by (2.8). For P(x, t) we obtain

(2.10) P(x, t)=\displaystyle \frac{1}{4 $\pi$}\iiint v_{3}^{0}(y)\frac{\partial}{\partial y_{3}}(-\frac{1}{r}\int_{0}^{t}J_{0}(t- $\tau$)J_{0}(\frac{ $\rho \tau$}{r})d $\tau$)dy,
where the kernels have integrable singilarities.

In what follows we shall show that the function \vec{v}(x, t) defined by (2.9) is a

unique solution of the Cauchy problem and that P(x, t) is defined by (2.10) to

within a term depending on t (since the initial Cauchy data for it were not given).

3. L_{p}‐estimates

We shall show that the kernels which are used in writing out the solution and

its derivatives satisfy the conditions of the Calderón‐Zygmund Theorem [3]. We

write (2.9) in the form of convolution:

(3.1) \vec{v}(x, t)=\vec{v}^{0}(x) $\Phi$(t)+(\vec{v}^{0}* $\Gamma$)_{R^{3}},
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(3.2) (\displaystyle \vec{v}^{0}* $\Gamma$)_{R^{3}}=\iiint_{R^{3}}\vec{v}^{0}(y) $\Gamma$(x-y, t)dy,

(3.3)  $\Gamma$(x, t)=G(x, t)-\displaystyle \int_{0}^{t}J_{1}(t- $\tau$)G(x,  $\tau$)d $\tau$,
where the infinite triple integrals are calculated in the sense of principal value, and

from (2.9), after the corresponding differentiation, we obtain

(3.4) G(x, t)=\displaystyle \frac{1}{4 $\pi$}[\frac{t^{2}(x_{1}^{2}+x_{2}^{2})}{r^{5}}J_{0}(\frac{ $\rho$ t}{r})+\frac{t}{r^{3}}(\frac{ $\rho$}{r}+\frac{r}{ $\rho$})J_{0}^{\ovalbox{\tt\small REJECT}}(\frac{ $\rho$ t}{r})]
It is easy to see that  $\Gamma$ is infinitely differentiable function of  t since a singularity in

the space x does not increase on differentiation with respect to t . We examine the

properties of the kernel  $\Gamma$ for any finite  t :  0\leq t\leq T<\infty . Let us observe that the

function  $\Gamma$ satisfies the following three conditions.

(1)  $\Gamma$ is a homogeneous function of  x of degree -3 The proof is obvious

from nothing that Bessel functions of the argument  $\rho$ t/r are homogeneous
functions of degree zero.

(2)  $\Gamma$ may be put in the form  $\Gamma$(x, t)=\displaystyle \frac{\overline{ $\Omega$}(x,t)}{r^{3}} ,
where

\displaystyle \overline{ $\Omega$}(x, t)= $\Omega$(x, t)-\int_{0}^{t}J_{1}(t- $\tau$) $\Omega$(x,  $\tau$)d $\tau$,
 $\Omega$(x, t)=\displaystyle \frac{1}{4 $\pi$}[\frac{t^{2}(x_{1}^{2}+x_{2}^{2})}{r^{2}}J_{0}(\frac{ $\rho$ t}{r})+\frac{t(r^{2}+$\rho$^{2})}{r $\rho$}J_{0}^{\ovalbox{\tt\small REJECT}}(\frac{ $\rho$ t}{r})]

(3) The integrals of \overline{ $\Omega$}(x, t) over the unit sphere are zero.

Indeed, transforming to polar coordinates on the unit sphere and using the

change of variables \cos $\theta$=z
,

we obtain

\displaystyle \iint_{r=1} $\Omega$ ds = \displaystyle \int_{0}^{ $\pi$/2}\{t^{2}\sin^{3} $\theta$ J_{0}(t\cos $\theta$)+t\sin $\theta$[\cos $\theta$+\frac{1}{\cos $\theta$}]J_{0}^{\ovalbox{\tt\small REJECT}}(t\cos $\theta$)\}d $\theta$=
= \displaystyle \int_{0}^{1}\{t^{2}(1-z^{2})J_{0}(tz)+t[z+\frac{1}{z}]J_{0}^{\ovalbox{\tt\small REJECT}} (tz)\}dz=
= \displaystyle \int_{0}^{1}t^{2}(1-z^{2})J_{0} (tz ) dz-\displaystyle \int_{0}^{1}t^{2}(1+z^{2})(J_{0}(tz)+J_{0}^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}} (tz)) dz=

(3.5) = \displaystyle \int_{0}^{1}J_{0} (tz ) (-2t^{2}z^{2})dz-\displaystyle \int_{0}^{1}t^{2}(1+z^{2})J_{0}'' (tz ) dz.



6 GINIATOULLINE ANDREI AND ZAPATA OSWALDO

In (19) we used the Bessel equation JÓ� (y)+\displaystyle \frac{J_{0}'(y)}{y}+J_{0}(y)=0 . Integrating by parts
and using the Bessel equation for the first integral in (3.5), we obtain

-\displaystyle \int_{0}^{1}2t^{2}z^{2}J_{0} (tz) dz=2\displaystyle \int_{0}^{1}t^{2}z^{2}J_{0}'' (tz) dz+2\displaystyle \int_{0}^{1}tzJ_{0}' (tz) dz=2tJ_{0}'(t)-2\displaystyle \int_{0}^{1}tzJ_{0}' (tz) dz.

For the second integral in (3.5), we integrate by parts and obtain

\displaystyle \int_{0}^{1}t^{2}(1+z^{2})J_{0}^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}} (tz ) dz=2tJ_{0}^{\ovalbox{\tt\small REJECT}}(t)-2\displaystyle \int_{0}^{1}tzJ_{0}^{\ovalbox{\tt\small REJECT}} (tz ) dz.

Finally, summing up the two last results, we have \displaystyle \iint_{r=1} $\Omega$ ds=0.
Thus the three conditions of the Calderón‐Zygmund Theorem [3] are satisfied,

and we therefore have the following estimate for the vector \vec{v}(x, t) in the L_{p}‐norm,

 1<p<\infty ,
in the layer  E_{4}^{T}=\{-\infty<x_{i}<+\infty, 0\leq t\leq T\} (and also on each

cross‐section t=const):

(3.6) \Vert\vec{v}\Vert_{L_{p}(E_{4}^{T})}\leq C(p, T)\Vert\vec{v}^{0}\Vert_{L_{p}(R^{3})},
where C depends only on p and T . We observe that, in differentiation with respect
to t

,
the properties 1), 2) and 3) for the kernel  $\Gamma$ in (3.1)-(3.4) are preserved. In

this way, for any derivative with respect to t we shall have

(3.7) \Vert D_{t}^{k}\vec{v}\Vert_{L_{p}(E_{4}^{T})}\leq C(p, T)\Vert\vec{v}^{0}\Vert_{L_{p}(R^{3})}.
If we denote the lth order derivative with respect to x_{1}, x_{2} , X3 by D_{x}^{l} (that is, D_{x}^{l}=

\displaystyle \frac{\partial^{l}}{\partial x_{1}^{l_{1}}\partial x_{2}^{l_{2}}\partial x_{3}^{l_{3}}}) ,
then we can see that the convolution (3.2) possesses the property

(3.8) D_{x}^{l}(\vec{v}^{0}* $\Gamma$)_{R^{3}}=(D_{x}^{l}\vec{v}^{0}* $\Gamma$)_{R^{3}}.
Thus, on accout of (3.7) and (3.8) we have the following expression for the deriva‐

tives of \vec{v}(x, t) :

(3.9) D_{t}^{k}D_{x}^{l}\vec{v}(x, t)=D_{x}^{l}\vec{v}^{0}(x)D_{t}^{k} $\Phi$(t)+(D_{x}^{l}\vec{v}^{0}*D_{t}^{k} $\Gamma$)_{R^{3}}.
Bearing in mind (3.9) and the property of the kernel (3.8), we have the following
estimate for the derivatives of \vec{v}(x, t) :

\Vert D_{t}^{k}D_{x}^{l}\vec{v}\Vert_{L_{p}(E_{4}^{T})}\leq C(p, T)\Vert D_{x}^{l}\vec{v}^{0}\Vert_{L_{p}(R^{3})}
Making similar calculations for \nabla P ,

we obtain the estimates

(3.10) \Vert\nabla P\Vert_{L_{p}(E_{4}^{T})}\leq C(p, T)\Vert\vec{v}^{0}\Vert_{L_{p}(R^{3})},
(3.11) \Vert D_{t}^{k}D_{x}^{l}\nabla P\Vert_{L_{p}(E_{4}^{T})}\leq C(p, T)\Vert D_{x}^{l}\vec{v}^{0}\Vert_{L_{p}(R^{3})}.

REMARK 3.1. A solution of the Cauchy problem for system (1.1) has the fol‐

lowing property: as it is seen from (3.10) and (3.12), the smoothness of the solution

with respect to t does not depend on the smoothness of the initial conditions.

If we denote by W_{p,t,x}^{k,l}(E_{4}^{T}) the Sobolev space having k derivatives with respect
to t and l derivatives with respect to x which are pth power summable, then we

have proved the following theorem.
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THEOREM 3.2. If the initial data satisfy \vec{v}^{0}(x)\in W_{p}^{l}(R^{3}) and if \vec{v}(x, t) ,

P(x, t) is a solution of the problem (1.1)‐(1.4) for which the norms given below are

finite, then the following estimates will hold:

(3.12) \Vert\vec{v}\Vert_{W_{p,t,x}^{k,l}(E_{4}^{T})}\leq C_{1}(p, T)\Vert\vec{v}^{0}\Vert_{W_{p}^{l}(R^{3})},

(3.13) \Vert\nabla P\Vert_{W_{p,t,x}^{k,l}(E_{4}^{T})}\leq C_{2}(p, T)\Vert\vec{v}^{0}\Vert_{W_{p}^{l}(R^{3})},
where the constants C_{i} depend only on p and, in general on T(0\leq t\leq T<\infty) ,

k

and 1.

Basing ourselves on Theorem 3.1 and the explicit formulas obtained for the

solution and using the closure in the corresponding spaces, we obtain the following
existence theorem.

THEOREM 3.3. If the initial data \vec{v}^{0}(x) belong to L_{2} (R3), then there exists a

solution of system (1.1) in the class

\displaystyle \vec{v}, \frac{\partial\vec{v}}{\partial t}, \frac{\partial^{2}\vec{v}}{\partial t^{2}}, \nabla P\in L_{2}(E_{4}^{T}) ,

whereby the first four equations of (1) are satisfied almost everywhere and the last

equation, in the generalized sense

\displaystyle \int\int_{R^{3}}\int(\vec{v}, \nabla $\varphi$)dx=0
for any infinitely differentiable function  $\varphi$ . If, however, \vec{v}^{0}(x)\in W_{p}^{l}(R^{3}) ,

the

solution obtained will belong to the space W_{p,t,x}^{k,l}(E_{4}^{T}) .

The following uniqueness theorem is also valid.

THEOREM 3.4. The solution \vec{v}(x, t) of problem (1.1)‐(1.4) defined by (2.9) is

unique in L_{2} ,
and P(x, t) is defined to within a function depending on t . In this

case \nabla P is also determined uniquely in L_{2}.

Theorem 3.3 follows from the usual power inequalities obtained by multiplying
the first three equations of (1.1) by \vec{v}, \displaystyle \frac{\partial\vec{v}}{\partial t}, \displaystyle \frac{\partial^{2}\vec{v}}{\partial t^{2}} or \nabla P respectively, and integrating
by parts. The inequalities are of the form

\displaystyle \Vert\vec{v}\Vert_{L_{2}(E_{4}^{T})}+\Vert\frac{\partial\vec{v}}{\partial t}\Vert_{L_{2}(E_{4}^{T})}+\Vert\frac{\partial^{2}\vec{v}}{\partial t^{2}}\Vert_{L_{2}(E_{4}^{T})}+\Vert\nabla P\Vert_{L_{2}(E_{4}^{T})}\leq C(T)\Vert\vec{v}^{0}\Vert_{L_{2}(R^{3})}.
4. Asymptotic behavior as  t\rightarrow\infty

THEOREM 4.1. Let the initial data be finite, and let \vec{v}_{0}(x)\in C^{\infty} (R3). Then

the solution \vec{v}(x, t) of the Cauchy problem (1.1)‐(1.4) decreases as \displaystyle \frac{1}{\sqrt{t}} for t\rightarrow\infty.

REMARK 4.2. In fact, in the proof of Theorem 4.1 we require only that \vec{v}_{0}(x)\in
 C^{3} (R3), and all the derivatives up to 4th order decrease suffciently rapidly as

|x|\rightarrow\infty ; it is sufficient to require that when multiplied by |x|^{2} they are integrable
over R^{3}.
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Proof.

We write the solution of the Cauchy problem in the form

\displaystyle \vec{v}(x, t)=\int\int_{R^{3}}\int\{-\triangle\vec{v}^{0}(y)K_{1}(x-y, t)dy\}.
It is easy to see that it is sufficient to study the asymptotics of the kernel K_{1}.

We express the kernel K_{1} as

K_{1}(x, t)=\displaystyle \frac{1}{(2 $\pi$)^{3}}\int_{-\infty}^{\infty}e^{ix_{3}$\xi$_{3}}\int_{R}\int_{2}e^{i(x',$\xi$')}\frac{\cos(\frac{|$\xi$'|t}{\sqrt{| $\xi$|^{2}+$\xi$_{3}^{2}}})}{|$\xi$'|^{2}+$\xi$_{3}^{2}}d$\xi$'d$\xi$_{3}=
=\displaystyle \frac{1}{2$\pi$^{2}}\int_{0}^{\infty}\int_{0}^{\infty}\frac{R}{R^{2}+$\xi$_{3}^{2}}J_{0}(|x^{\ovalbox{\tt\small REJECT}}|R)\cos(\frac{Rt}{\sqrt{R^{2}+$\xi$_{3}^{2}}})\cos(x_{3}$\xi$_{3})d$\xi$_{3}dR=

=\displaystyle \frac{1}{2$\pi$^{2}|x|}\int_{ $\lambda$}^{1}\frac{w}{\sqrt{1-w^{2}}}\frac{\cos(tw)}{\sqrt{w^{2}-$\lambda$^{2}}}dw,  $\lambda$=\frac{|x_{3}|}{|x|}.
The asymptotics of the above integral as  t\rightarrow\infty is well‐known and can be

obtained by the stationary phase method. As it can be seen in [10], the main term

of the asymptotic expansion has the form

(4.1)  K_{1}(x, t)=\displaystyle \sqrt{\frac{ $\pi$}{2 $\lambda$(1-$\lambda$^{2})}}\frac{\cos(t $\lambda$-\frac{ $\pi$}{4})}{2$\pi$^{2}|x|\sqrt{t}}+O(t^{-1}) .

Thus, the theorem is proved.

REMARK 4.3. For  $\lambda$=0 we have K_{1}(x, t)=\displaystyle \frac{1}{2$\pi$^{2}|x|}\int_{0}^{1}\frac{\cos(tw)}{\sqrt{1-w^{2}}}dw . From the known

Lebesgue theorem on the decay of the Fourier coeffcients of an integrable function

(see, for example, [11]), we can easily obtain the extension of Theorem 4.1 for this

case.

REMARK 4.4. For  $\lambda$=1 we use (2.4) and the relations K_{1}=\displaystyle \frac{\partial K_{2}}{\partial t} and

\displaystyle \int_{0}^{t}J_{0}(t- $\tau$)J_{0}( $\tau$)d $\tau$=\sin t ,
which allows us to represent the kernel K_{1} in terms

of elementary functions: K_{1}(x, t)=\displaystyle \frac{\cos t}{4 $\pi$|x|},  $\lambda$=1 . The last relation means that on

the vertical axis ( $\lambda$=1) ,
the solution acts as a stationary wave with no limit for

t\rightarrow\infty.

REMARK 4.5. Summing up the results obtained for the solution of the Cauchy
problem as  t\rightarrow\infty

,
we may conclude that the solution reveals its irregular, non‐

uniform character: it tends to zero as a stationary wave with vanishing amplitude
for  $\lambda$=0 ,

it is a stationary wave which has no limit for  $\lambda$=1
,

and it represents a

remarkable wave process for 0< $\lambda$<1 ,
as it can be seen from (4.1): the equiphase

surfaces of the wave (wave peaks), are described by the relation  $\lambda$=\displaystyle \frac{|x_{3}|}{|x|}=\frac{Const}{t}
and are represented by conic surfaces with the vertex in the origin and the vertical
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axis which increase their opening with the growth of t
, approaching the plane

x_{3}=0 . This geometric situation explains the lack of limit of the solution as \mathrm{t}\rightarrow\infty

for  $\lambda$=1 (on the vertical axis).

REMARK 4.6. The solution of the Cauchy problem is closely related to the

function

V=\displaystyle \frac{1}{r}J_{0}(\frac{ $\rho$}{r}t)=\frac{1}{r}J_{0}(t\cos $\theta$) .

Let us consider the behaviour of the function V as a function of t . We consider a

sphere of a constant radius, on which, for every t
,

the function V depends only on

the polar angle  $\theta$ . The argument of the Bessel function on the sphere changes from

 0 to t . With t growing, we will have more and more waves generated by maxima and

minima of the Bessel function, all of them situated between the pole and the equator
of the sphere. The waves will appear on the pole and then will move towards the

equator, accumulating but not disappearing. Thus large waves will generate more

and more short ones.

5. Spectral properties

Let us assume g=1 and $\rho$_{*}=1 ,
and write the system (1.1) in the following

form:

(5.1) \left\{\frac{\partial^{2}\vec{v}}{\partial t^{2}}\nabla\vec{e}^{2}v_{3}=0\frac{\partial v_{1}+}{\partial x_{1}}+\frac{P+\partial v_{2}}{\partial x_{2}}+\frac{3\partial v_{3}N}{\partial x_{3}}=0\right.
First, let us analyze certain mathematical similarity of the system (5.1) and the

system which describes rotational motions of incompressible fluid over the vertical

axis (\vec{ $\omega$}=(0,0,  $\omega$

\left\{\frac{\partial^{2}\vec{v}}{\partial t^{2}}+\vec{ $\omega$}\vec{v}\nabla p=0\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}\times}{\partial x_{2}}+\frac{+\partial v_{3}}{\partial x_{3}}=0\right.
Particularly, we would like to compare the scalar form of the two systems

\displaystyle \frac{\partial^{2}}{\partial t^{2}}(\frac{\partial^{2} $\Phi$}{\partial x_{1}^{2}}+\frac{\partial^{2} $\Phi$}{\partial x_{2}^{2}}+\frac{\partial^{2} $\Phi$}{\partial x_{3}^{2}})+N^{2}(\frac{\partial^{2} $\Phi$}{\partial x_{1}^{2}}+\frac{\partial^{2} $\Phi$}{\partial x_{2}^{2}}) = 0,
\displaystyle \frac{\partial^{2}}{\partial t^{2}}(\frac{\partial^{2} $\Phi$}{\partial x_{1}^{2}}+\frac{\partial^{2} $\Phi$}{\partial x_{2}^{2}}+\frac{\partial^{2} $\Phi$}{\partial x_{3}^{2}})+$\omega$^{2}\frac{\partial^{2} $\Phi$}{\partial x_{3}^{2}} = 0,

and their corresponding singular solutions ([12]):

Nt|x_{3}|
|x|

\displaystyle \mathcal{E}(x, t)=\frac{1}{4 $\pi$|x_{3}|} \int_{0} J_{0}( $\alpha$)d $\alpha$,
 $\omega$ t|\overline{x}|

|x|

\displaystyle \mathcal{E}(x, t)=\frac{1}{4 $\pi$|\overline{x}|} \int_{0} J_{0}( $\alpha$)d $\alpha$.
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This mathematical analogy between gravitational and rotational waves, may

lead to the corresponding analogy in spectral properties.
In [13] we proved that the essential spectrum of normal vibrations generated

by rotational inner waves, is the interval of the real axis [- $\omega$,  $\omega$] , so, it seems

appropriate to express the conjecture that the operators generated by (5.1) should

possess spectral properties, analogous to the rotational system, namely, the essential

spectrum of such operators should be the interval [-N, N] . Here we prove that this

conJecture is true.

Let  $\Omega$ be a bounded domain in  R^{3} and let us consider the boundary conditions

\vec{v} \vec{n}|_{\partial $\Omega$}=0 for the system (5.1).
It is proved in [14] that there is valid the decomposition  L_{2}( $\Omega$)=J_{2}( $\Omega$)\oplus

 G_{2}( $\Omega$) ,
so we can reduce (5.1) to the problem

(5.2) \left\{\frac{\partial^{2}\vec{v}}{\partial t^{2}}+N^{2}B\vec{u}=0\vec{v}\in J_{2}( $\Omega$)\right.
where

B\vec{v}=P\{v_{3}\vec{e_{3}}\},
P is the operator of the orthogonal projection of L_{2}( $\Omega$) onto J_{2}( $\Omega$) , D(B)=
J_{2}( $\Omega$) ,

and J_{2}( $\Omega$) as a closure of J_{0}( $\Omega$) in the norm of L_{2}( $\Omega$) , being J_{0}( $\Omega$) be the

following space of solenoidal fields :

J_{0}( $\Omega$)=\{\vec{v}(x) : \vec{v}(x)\in C^{1}( $\Omega$) , div\vec{v}=0, \vec{v}\vec{n}|_{\partial $\Omega$}=0\},
and G_{2}( $\Omega$) being the space of potential fields in L_{2}( $\Omega$) :

G_{2}( $\Omega$)=\{\vec{v}(x)\in L_{2}( $\Omega$) : \vec{v}(x)=\nabla $\psi$,  $\psi$\in W_{2}^{1}( $\Omega$)\}.
For the system (5.2) we consider the problem of normal vibrations

\vec{v}(x, t) = \vec{u}(x)e^{i $\lambda$ t}, u\in J_{2}( $\Omega$)
P(x, t) = q(x)e^{i $\lambda$ t}, q\in W_{2}^{1}( $\Omega$) .

Thus, the system (5.2) can be written in spectral form

\left\{\begin{array}{l}
$\lambda$^{2}\vec{u}-N^{2}B\vec{u}=0\\
\vec{u}\in J_{2}( $\Omega$)
\end{array}\right.
Let us note that, if q is the solution of the system

(5.3) \left\{\begin{array}{l}
-$\lambda$^{2}u_{1}+\frac{\partial q}{\partial x_{1}}=0\\
-$\lambda$^{2}u_{2}+\frac{\partial q}{\partial x_{2}}=0\\
(-$\lambda$^{2}+N^{2})u_{3}+\frac{\partial q}{\partial x_{3}}=0\\
\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}=0
\end{array}\right.
then q satisfies the equation

\displaystyle \frac{\partial^{2}q}{\partial x_{1}^{2}}+\frac{\partial^{2}q}{\partial x_{2}^{2}}+\frac{\partial^{2}q}{\partial x_{3}^{2}}=-div (N^{2}u_{3}\vec{e}_{3}) ,

which implies
div (N^{2}u_{3}\vec{e}_{3}+grad q)=0.

Thus, the projection operator B obtains its explicit form as

N^{2}B\vec{u}=N^{2}u_{3}\vec{e}_{3}+grad q.
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Our aim now is to investigate the spectrum of the operator B.

We recall that the essential spectrum is composed of the points belonging to

the continuous spectrum, limit points of the point spectrum and the eigenvalues
of infinite multiplicity ([15], [16]). We shall use the following criterion which is

attributed to Weyl ([15], [16]): A necessary and suffcient condition that a real

finite value  $\mu$ be a point of the essential spectrum of a self‐adjoint operator  B is

that there exist a sequence of elements x_{n}\in D(B) such that

(5.4) \Vert x_{n}\Vert=1 x_{n}\rightarrow 0 \Vert(B- $\mu$ I)x_{n}\Vert\rightarrow 0.

LEMMA 5.1. B is a positive self‐adjoint operator in J_{2}( $\Omega$) .

LEMMA 5.2.  $\lambda$=0 is an eigenvalue of infinite multiplicity for B.

The proof of Lemma 5.1 is based on the fact that for bounded operators the

property of self‐adjointness follows from the symmetry, and the symmetry for B is

a consequence of the permutability of the operators of projection and inner product
in L_{2}( $\Omega$) .

The proof of Lemma 5.2 follows from the property that the kernel of B is the

subspace of J_{2}( $\Omega$) with trivial third component.

THEOREM 5.3. The essential spectrum of the operator N^{2}B is the interval

of the real axis [-N, N] . Moreover, the points 0, \pm N are eigenvalues of infinite
multiplicity.

We shall draw the general idea of the proof.
Let us denote $\lambda$^{2}= $\mu$,  $\mu$\neq O. Then, the system (5.3) can be written in the

matrix form:

(5.5) (\displaystyle \frac{- $\mu$ 00\partial}{\partial x_{1}} \frac{- $\mu$ 00\partial}{\partial x_{2}} N_{\frac{2_{\partial}^{0}0-}{\partial x_{3}}} $\mu$ \frac{}{}\frac{}{}\frac{\partial}{\partial x_{3}\partial x\partial_{\partial^{2}}^{\partial^{1}},0x})\left(\begin{array}{l}
u_{1}\\
u_{2}\\
u_{3}\\
q
\end{array}\right)=\left(\begin{array}{l}
0\\
0\\
0\\
0
\end{array}\right)
One can easily see that the main symbol of the differential operator in (5.5) is:

L( $\xi$)=\left(\begin{array}{llll}
- $\mu$ & 0 & 0 & $\xi$_{1}\\
0 & - $\mu$ & 0 & $\xi$_{2}\\
0 & 0 & N^{2}- $\mu$ & $\xi$_{3}\\
$\xi$_{1} & $\xi$_{2} & $\xi$_{3} & 0
\end{array}\right)
As \det(L( $\xi$))= $\mu$(- $\mu$| $\xi$|+N^{2}\sqrt{$\xi$_{1}^{2}+$\xi$_{2}^{2}}) ,

we may conclude that the operator

N^{2}B is not elliptic in the sense of Douglis‐Nieremberg if and only if  $\mu$\in[0, N^{2}]
([17]).

Now, let us consider $\mu$_{0}\in(0, N^{2}) and choose a vector  $\xi$\neq 0 such that

-$\mu$_{0}| $\xi$|+N^{2}\sqrt{$\xi$_{1}^{2}+$\xi$_{2}^{2}}=0.
Therefore, there exists  $\eta$=($\eta$_{1}, $\eta$_{2}, $\eta$_{3}, $\eta$_{4}) such that L( $\xi$) $\eta$=0 :

(5.6) \left\{\begin{array}{l}
-$\mu$_{0}$\eta$_{1}+$\xi$_{1}$\eta$_{4}=0\\
-$\mu$_{0}$\eta$_{2}+$\xi$_{2}$\eta$_{4}=0\\
(-$\mu$_{0}+N^{2})$\eta$_{3}+$\xi$_{3}$\eta$_{4}=0\\
$\xi$_{1}$\eta$_{1}+$\xi$_{2}$\eta$_{2}+$\xi$_{3}$\eta$_{3}=0
\end{array}\right.
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Solving (5.6) with respect to  $\eta$ ,
we obtain one of possible solutions:

\left\{\begin{array}{l}
$\eta$_{1}=\frac{$\xi$_{1}}{$\mu$_{0}}\\
$\eta$_{2}=\frac{$\xi$_{2}}{$\mu$_{0}}\\
$\xi$_{3}\\
$\eta$_{3}=_{\overline{$\mu$_{0}-N^{2}}}\\
$\eta$_{4}=1
\end{array}\right.
We observe that $\eta$_{i}\neq 0 ,

i=1
, 2, 3, 4.

Now, let C_{0}^{\infty}( $\Omega$) be a space of smooth functions with compact support in  $\Omega$

and let us choose a function

 $\psi$_{0}(x)\displaystyle \in C_{0}^{\infty}( $\Omega$) , \int_{|x|\leq 1}$\psi$_{0}^{2}(x)dx=1
We fix  x_{0}\in $\Omega$ and define

 $\psi$_{k}(x)=k^{\frac{3}{2}}$\psi$_{0}(k(x-x_{0})) k=1, 2, 
We define the Weyl sequence

\overline{v}^{k}=(v_{1}^{k}, v_{2}^{k}, v_{3}^{k}, q^{k})
as follows:

(5.7) \left\{\begin{array}{l}
v_{j}^{k}(x)=$\eta$_{j}e^{ik^{3}<x, $\xi$>}($\psi$_{k}-\frac{1}{ik^{3}$\xi$_{j}}\frac{\partial$\psi$_{k}}{\partial x_{j}}) j=1, 2, 3\\
q^{k}=-\frac{i}{k^{3}}$\psi$_{k}e^{ik^{3}<x, $\xi$>}\\
<x,  $\xi$>=x_{1}$\xi$_{1}+x_{2}$\xi$_{2}+x_{3}$\xi$_{3} k=1, 2, 
\end{array}\right.
It can be shown that the sequence (5.7) actually satisfies all the conditions

(5.4).
We have seen that  $\lambda$=0 is an eigenvalue of infinite multiplicity. The same

statement holds for the points  $\lambda$=\pm N.

Indeed, for  $\lambda$=\pm N the system (5.3) transforms into

\left\{\begin{array}{l}
-N^{2}v_{1}+\frac{\partial q}{\partial x_{1}}=0\\
-N^{2}v_{2}+\frac{\partial q}{\partial x_{2}}=0\\
\frac{\partial q}{\partial x_{3}}=0\\
\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}+\frac{\partial v_{3}}{\partial x_{3}}=0
\end{array}\right.
It can be easily seen that any function of the type (0,0,  $\varphi$(x_{1}, x_{2}), 0)  $\varphi$\in C_{0}^{\infty},
satisfies the last system.

Thus, the Theorem is proved.
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