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Abstract. Consider the Cauchy problem of the incompressible Navier‐Stokes equations with

initial velocity U_{0} of the form U_{0}(x) :=u_{0}(x)-f(x) ,
where f is a Lipschitz function and  u_{0}\in

 L_{ $\sigma$}^{p} It is shown that under these assumptions the equations of Navier‐Stokes admit a unique
local in time mild solution.

1. Introduction

We consider the flow of an incompressible, viscous fluid in the whole space \mathbb{R}^{n}, n\geq 2 described by
the Cauchy problem for the system of the Navier‐Stokes equations, i.e.,

(1.1) \left\{\begin{array}{ll}
U_{t}-\triangle U+(U, \nabla)U+\nabla P = F, \mathrm{i}\mathrm{n} \mathbb{R}^{n}\times(0, T) , & \\
\nabla\cdot U = 0 \mathrm{i}\mathrm{n} \mathbb{R}^{n}\times(0, T) , & \\
U|_{t=0} = U_{0} (\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} \nabla\cdot U_{0}=0) & \mathrm{i}\mathrm{n} \mathbb{R}^{n}.
\end{array}\right.
Here, U=(U\mathrm{l}, . ::; U^{n}) and P represent the unknown velocity and the unknown pressure of the

fluid; U_{0} is the given initial velocity, and F is a given external force term.

There is a vast literature on existence of solutions of (1.1) in \mathbb{R}^{n}
,

see e.g. [1, 7, 9, 12, 16, 19, 22].
All these results assume that the initial data decay as |x|\rightarrow\infty . In particular, when  F=0 ,

it is

well known that there exists a locally‐in‐time smooth solution to (1.1) provided the initial velocity
U_{0} belongs to L_{ $\sigma$}^{p}(\mathbb{R}^{n}) and p\geq n (see e.g. [15, 19

On the other hand, there is strong interest in equation (1.1) for initial data which do not decay
at innity. For results in this direction, we refer to [5, 6, 13] and [8]. Also, H. Okamoto [24] showed

that for certain concrete flow problems there exist exact solutions to (1.1) which have the property
that u grows linearly as |x|\rightarrow\infty.

In this paper, we consider initial data of the form

(1.2) U_{0}(x)=u_{0}(x)-f(x) , x\in \mathbb{R}^{n},

where u_{0}\in L^{p}(\mathbb{R}^{n})^{n} satises \nabla\cdot u_{0}=0 and f fullls the following three conditions:

(H1) \nabla\cdot f=0,

(H2) \triangle f\in L_{ $\sigma$}^{p},

(H3) \exists $\Pi$ : scalar function s.t. (f, \nabla)f+\nabla $\Pi$\in L_{ $\sigma$}^{p}.

The particular case where f(x)=Mx was considered in [17]. Here M denotes a real n\times n matrix

having tr M=0 . It was shown that this case there exists a unique, local solution to (1.1). It was

also shown that this solution is analytic in the spatial variables provided M is skew‐symmetric. In

this paper, we generalize the result of [17] to the case of Lipschitz continuous functions f satisfying
(H1), (H2) and (H3).

For the time being consider again the case where f(x)=Mx. Then it is known that (1.1)
admits many exact solutions, which are studied e.g. in [10, 21, 25]. In fact, let f be of the form
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f(x)=Mx+V ,
where M=(m_{ij})_{i,j} is an nn real‐valued constant matrix satisfying that tr M=0

and such that M^{2} is symmetric. Moreover, let V be a vector. Then \triangle f=0 and

tr  M=0\Leftrightarrow (H1) and  M^{2} is symmetric \Leftrightarrow (H3):

In fact, take  $\Pi$=\displaystyle \frac{1}{2}(M^{2}x, x)+ ( V, MTx). Then (U, P) given by U=-f and  P=- $\Pi$ solves (1.1)
with  F\equiv 0 provided \triangle f=0 and (H3) holds.

The particular case, where M=R describes pure rotation, was investigated by Hishida and

by Babin, Mahalov and Nicolaenko. Indeed, Hishida constructed in [18] a local solution to the

equation (1.3) written below in the L^{2} context and provided u_{0} belongs to a certain fractional

power space. Babin, Mahalov and Nicolaenko [2, 3] proved the existence of a local solution and

even a global solution to (1.1)-(1.2) provided the speed of rotation is fast enough. Further, the case

f(x)= (axl, ax_{2}, -2aX) with some constant a\in \mathbb{R} ,
was investigated by Giga and Kambe [14].

They studied the axisymmetric irrotational flow and the stability of the vortex.

In [26], the third author proved the existence of a local solution of (1.1)-(1.2) ,
still for M=R

provided u_{0} belongs to the homogeneous Besov space \dot{B}_{\infty,1}^{0} . Although \dot{B}_{\infty,1}^{0} is strictly smaller than

L^{\infty}
,

this space still contains the nondecaying function f(x)=\sin x . He also showed the uniqueness
of the solution for general matrices M ; see [27].

In the following consider the the substitutions u:=U+f and \tilde{P}:=P+ $\Pi$ . Then the pair (U, P)
satises (1.1) in the classical sense, if and only if (u,\tilde{P}) satises

(1.3) \left\{\begin{array}{l}
u_{t}-\triangle u+(u, \nabla)u-(f, \nabla)u-(u, \nabla)f+\nabla\tilde{P} = \tilde{F} \mathrm{i}\mathrm{n} \mathbb{R}^{n}\times(0, T) ,\\
\nabla\cdot u = 0 \mathrm{i}\mathrm{n} \mathbb{R}^{n}\times(0, T) ,\\
u(0) = u_{0} \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} \nabla\cdot u_{0}=0 \mathrm{i}\mathrm{n} \mathbb{R}^{n}.
\end{array}\right.
Here \tilde{F} :=F+\triangle f-(f, \nabla)f-\nabla $\Pi$ . Of course, if (f,  $\Pi$) is a stationary solution to (1.1) with

F=F(x) ,
then \tilde{F}\equiv 0 . Our approach to equation (1.1) is based on equation (1.3).

2. Main Results

Let u_{0}\in L_{ $\sigma$}^{p}(\mathbb{R}^{n}) for some p satisfying  1<p<\infty . Moreover, let  f be a vector‐valued globally
Lipschitz continuous function satisfying hypothesis (H1), (H2), (H3).

We then rewrite the first equation of (1.3) as the abstract equation

(2.1) u^{0}+Au+(u, \nabla)u-2(u, \nabla)f+\nabla\tilde{P}=\tilde{F}.

with A being an operator in L_{ $\sigma$}^{p}(\mathbb{R}^{n}) dened by

(2.2) Au :=-\triangle u-(f, \nabla)u+(u, \nabla)f.

Equipped with the domain D(A) :=\{u\in W^{2,p}(\mathbb{R}^{n})\cap L_{ $\sigma$}^{p}(\mathbb{R}^{n});(f, \nabla)u\in L^{p}(\mathbb{R}^{n})\}, -A generates a

C_{0}‐semigroup \{e^{-tA}\}_{t\geq 0} on L_{ $\sigma$}^{p} for  1<p<\infty . This follows from the results in [20] and standard

perturbation theory.
Applying the Helmholtz projection \mathbb{P} to (2.1), we may rewrite (1.3) as

(2.3) \left\{\begin{array}{l}
u^{0}+Au+\mathbb{P}(u, \nabla)u-2\mathbb{P}(u, \nabla)f = \tilde{F}\\
u(0) = u_{0}.
\end{array}\right.
Note that in our case the Helmholtz projection \mathbb{P} can be expressed explicitly by \mathbb{P}:=($\delta$_{ij}+R_{i}R_{j})_{i,j},
where $\delta$_{ij} stands for Kronecker�s delta, and R_{i} is the Riesz transform dened by R_{i}:=\partial_{i}(-\triangle)^{-1/2}
for i=1

,
. . .

,
n . Observe that A and \mathbb{P} commute in our case, since \nabla. Au=0 if \nabla\cdot u=0 . Since u,

F and f are divergence‐free, \mathbb{P}u=u as well as \mathbb{P}\tilde{F}=\tilde{F}.
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For T>0 we call a function u\in C([0, T);L_{ $\sigma$}^{p}(\mathbb{R}^{n})) a mild solution of (2.3) if u satises the

integral equation

(2.4) u(t)=e^{-tA}u_{0}-\displaystyle \int_{0}^{t}e^{-(t-s)A}\mathbb{P}(u(s), \nabla)u(s)ds
+2\displaystyle \int_{0}^{t}e^{-(t-s)A}\mathbb{P}(u(s), \nabla)fds+\int_{0}^{t}e^{-(t-s)A}\tilde{F}(s)ds

for t\in(0, T) ,
and u(0)=u_{0}.

We now state the our existence and uniqueness results for mild solutions of (2.3) in L^{p} spaces.

2.1. Theorem. Let n\geq 2, T>0,  p\in[n, \infty ) and  q\in[p, \infty ). Let  f be a vector‐valued globally
Lipschitz continuous function satisfy ing (H1), (H2) and (H3). Assume that u_{0}\in L_{ $\sigma$}^{p}(\mathbb{R}^{n}) ,

and that

F\in C(0, T;L_{ $\sigma$}^{p}(\mathbb{R}^{n})) . Then there exist T_{0}\in(0, T) and a unique mild solution u of (2.3) such that

(2.5) [t\mapsto t^{\frac{n}{2}(\frac{1}{p}-\frac{1}{q})}u(t)]\in C([0, T_{0});L_{ $\sigma$}^{q}(\mathbb{R}^{n}))
(2.6) [t\displaystyle \mapsto t\frac{n}{2}(\frac{1}{p}-\frac{1}{q})+\frac{1}{2}\nabla u(t)]\in C([0, T_{0});L^{q}(\mathbb{R}^{n})) .

2.2. Remark. (i) The semigroup \{e^{-tA}\}_{t\geq 0} is not analytic.
(ii) Consider the case  p=\infty and  u_{0}\in L_{ $\sigma$}^{\infty}(\mathbb{R}^{n}) or u_{0}\in BUC_{ $\sigma$} , i.e., u_{0} do not decay at space

innity. In this case, one might expect to obtain the existence result for the mild solutions  u\in

 C([0, T_{0});\dot{B}_{\infty,1}^{0}) satisfying (2.3) provided that u_{0}\in\dot{B}_{\infty,1}^{0}(\mathbb{R}^{n}) and \nabla\cdot u_{0}=0 . In [27], this is

discussed for the case f(x)=Mx.
The proof of Theorem 2.1 is based on Kato�s iteration procedure. The key is to derive appropriate

smoothing estimates for the semigroup and its gradient; see Proposition 3.3. Uniqueness follows the

by Gronwall�s inequality.

3. Estimates F0R the semigroup

In this section we prepare the linear estimates needed for the iteration scheme. Let f be a vector‐

valued globally Lipschitz continuous function satisfying (H1), (H2) and (H3).
We the dene the realization of the operator

(3.1) Lu :=-\triangle u-(f, \nabla)u, x\in \mathbb{R}^{n},

in L^{p}(\mathbb{R}^{n}) for p\in(1, \infty) as follows. Set

Lu := \mathcal{L}u

D(L) := \{u\in W^{2,p}(\mathbb{R}^{n});(f, \nabla)u\in L^{p}(\mathrm{R}n)\}.
Then the following result was proved by Lunardi and Metafune [20].

3.1. Proposition.  Let1<p<\infty . Then the operator -L generates a C_{0} ‐semigroup \{e^{-tL}\}_{t\geq 0} on

L^{p}(\mathbb{R}^{n}) .

3.2. Remark. (i) The semigroup \{e^{-tL}\}_{t\geq 0} is not analytic; see [20].
(ii) The family \{e^{-tL}\}_{t\geq 0} is also a semigroup on L^{1}(\mathbb{R}^{n}) and on L^{\infty}(R^{n}) ,

which in the latter case

is not strongly continuous.

(iii) If f(x)=Mx where M is a constant matrix, the semigroup \{e^{-tL}\}_{t\geq 0} has an explicit repre‐

sentation given by

e^{-tL} $\varphi$(x):=\displaystyle \frac{1}{(4 $\pi$)^{n/2}(detQ_{t})^{1/2}}\int_{\mathbb{R}^{n}} $\varphi$(e^{tM}x-y)e^{-\frac{1}{4}(Q_{t}^{-1}y,y)}dy, x\in \mathbb{R}^{n}, t>0,
where Q_{t} for t>0 is given by Q_{t}:=\displaystyle \int_{0}^{t}e^{sM}e^{sM^{T}}ds.
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For the iteration scheme described in the next section it is essential that the associated semigroup
maps an L^{p} ‐function u with \nabla\cdot u=0 into the space of L^{p}‐functions which are divergence free. We

therefore introduce the operator \mathcal{A} by

Au :=\mathcal{L}u+(u, \nabla)f,

where u=(u^{1}, \ldots, u^{n}) . Thus \mathcal{A} is an n\times n operator matrix given by

\mathcal{A}=\mathcal{L}\mathrm{I}\mathrm{d}+(rf)

where Id denotes the identity matrix. Observe that

\nabla\cdot\{(f, \nabla)u-(u, \nabla)f\}=0 , provided \nabla\cdot u=0 and \nabla\cdot f=0.

Hence, we dene the realization A of \mathcal{A} in L_{ $\sigma$}^{p}(\mathbb{R}^{n}) as

Au := \mathcal{A}u,
(3.2) D(A) := D(L)^{n}\cap L_{ $\sigma$}^{p}(\mathbb{R}^{n}) .

By standard perturbation theory, -A generates a C_{0} ‐semigroup \{e^{-tA}\}_{t\geq 0} on L_{ $\sigma$}^{p} for all p\in(1, \infty) .

In the case where f(x)=Mx ,
the semigroup \{e^{-tA}\}_{t\geq 0} is given by

(3.3) (e^{-tA}u)(x) :=\displaystyle \frac{1}{(4 $\pi$)^{n/2}(detQ_{t})^{1/2}}e^{-tM}\int_{\mathbb{R}^{n}}u(e^{tM}x-y)e^{-\frac{1}{4}(Q_{t}^{-1}y,y)}dy.
We cannot expect to have such a formula for the semigroup \{e^{-tA}\}_{t\geq 0} ,

in general.
We are now state L^{p}-L^{q} smoothing properties for the semigroup e^{-tA} as well as gradient

estimates for e^{-tA} . Note that due to the non‐analyticity of \{e^{-tA}\}_{t\geq 0} , gradient estimates for e^{-tA}
do not follow from the general theory of semigroups (like the Stokes semigroup). Notice also that

in the special case where f(x)=x, L^{p}-L^{q} smoothing estimates as well as gradient estimates for

e^{-tA} were obtain by Gallay and Wayne [11]. For f(x)=Mx ,
these estimates were obtained in [17].

For the general case, we rely on the recent results of Lunardi and Metafune [20] and Bertholdi and

Lorenzi [4].

3.3. Proposition. [ [20] , Prop. 5.4], [ [4] ,
Thm. 4.7, Cor, 4.8]. Let n\geq 2,  1<p<\infty and  p\leq q\leq\infty.

a) Then there exist constants C>0 and  $\omega$\in \mathbb{R} such that

(3.4) \Vert e^{-tA} $\varphi$\Vert_{q} \leq  Ce^{ $\omega$ t}t^{-\frac{n}{2}(\frac{1}{p}-\frac{1}{q})}\Vert $\varphi$\Vert_{p}, t\geq 0,  $\varphi$\in L^{p} (Rn);

(3.5) \Vert\nabla e^{-tA} $\varphi$\Vert_{p} \leq Ce^{ $\omega$ t}t^{-\frac{1}{2}}\Vert $\varphi$\Vert_{p}, t\geq 0,  $\varphi$\in L^{p}(\mathbb{R}^{n}) .

b) There exist constants C^{0}>0 and $\omega$^{0}\in \mathbb{R} such that

(3.6) \Vert\nabla^{2}e^{-tA} $\varphi$\Vert_{p}\leq C^{0}e^{$\omega$'}{}^{t}t^{-1}\Vert $\varphi$\Vert_{p}, t\geq 0,  $\varphi$\in L^{p}(\mathbb{R}^{n}) .

c) Moreover, let  1<p<q\leq\infty and  $\varphi$\in L^{p}(\mathbb{R}^{n}) . Then

(3.7) t^{\frac{n}{2}(\frac{1}{p}-\frac{1}{q})}\Vert e^{-tA} $\varphi$\Vert_{q} \rightarrow  0 as t\rightarrow 0,

(3.8) t^{\frac{1}{2}}\Vert\nabla e^{-tA} $\varphi$\Vert_{p} \rightarrow  0 as t\rightarrow 0,

(3.9) t\Vert\nabla^{2}e^{-tA} $\varphi$\Vert_{p} \rightarrow  0 as t\rightarrow 0.

4. Proof 0F the Main Result

For a given globally Lipschitz continuous function f satisfying (H1), (H2), (H3), consider the sub‐

stitution u(x, t) :=U(x, t)+f(x) and \tilde{P}(x, t) :=P(x, t)+ $\Pi$(x) . Then (U, P) is a solution of (1.1)
in the classical sense if and only if (u,\tilde{P}) satises (1.3). We thus consider in the following (1.3) and

its abstract formulation in (2.3), or (2.4). We only show the proof for the case p=n ; the case p>n
is similar.
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Proof of Theorem 2.1. Let n\geq 2 and u_{0}\in L_{ $\sigma$}^{n}(\mathbb{R}^{n}) . Assume that F\in C(0, \infty;L_{ $\sigma$}^{n}(\mathbb{R}^{n})) . Recall that

\tilde{F}=F+\triangle f-(f, \nabla)f-\nabla $\Pi$ and \nabla\cdot\tilde{F}=0 . For j\geq 1 and t>0 we dene functions u_{j} successively
by

(4.1) u_{1}(t) :=e^{-tA}u_{0}+\displaystyle \int_{0}^{t}e^{-(t-s)A}\tilde{F}(s)ds,
(4.2) u_{j+1}(t) :=u_{1}(t)-\displaystyle \int_{0}^{t}e^{-(t-s)A}\mathbb{P}(u_{j}(s), \nabla)u_{j}(s)ds+2\int_{0}^{t}e^{-(t-s)A}\mathbb{P}(u_{j}(s), \nabla)fds_{:}
Since \{e^{-tA}\}_{t\geq 0} acts on L_{ $\sigma$}^{p}(\mathbb{R}^{n}) for p\in(1, \infty) ,

it follows from the denition of the Helmholtz

projection that the functions u_{j} are divergence‐free for all t>0 and all j.
For T\in(0,1] and  $\delta$\in(0,1) we dene

K_{0}:=\displaystyle \sup_{0<t\leq T}t\frac{1- $\delta$}{2}\Vert e^{-tA}u_{0}\Vert_{n/ $\delta$} and K_{0}^{0}:=\displaystyle \sup_{0<t\leq T}t^{1/2}\Vert\nabla e^{-tA}u_{0}\Vert_{n}.
By (3.7) and (3.8) in Proposition 3.3-(\mathrm{c}) , K_{0}\rightarrow 0 and K_{0}^{0}\rightarrow 0 as T\rightarrow 0 . Similarly, we dene

K_{j}:=K_{j}(T) and K_{j}^{0} :=K_{j}^{0}(T) for j\geq 1 by

K_{j}(T):=\displaystyle \sup_{0<t\leq T}t\frac{1- $\delta$}{2}\Vert u_{j}(t)\Vert_{n/ $\delta$} and K_{j}^{0}(T):=\displaystyle \sup_{0<t\leq T}t^{1/2}\Vert\nabla u_{j}(t)\Vert_{n}.
Let us estimate K_{1} and K_{1}^{0} : by denition and the L^{p}-L^{q} smoothing property (3.4), we have

K_{1}t\displaystyle \frac{1- $\delta$}{2}

\displaystyle \leq K_{0}+C\sup_{0<t\leq T}t\frac{1- $\delta$}{2}\int_{0}^{t}\Vert e^{-(t-s)A}\tilde{F}(s)\Vert_{n/ $\delta$}ds
\displaystyle \leq K_{0}+C\sup_{0<t\leq T}t\frac{1- $\delta$}{2}\int_{0}^{t}(t-s)^{-\frac{1- $\delta$}{2}}\Vert\tilde{F}(s)\Vert_{n}ds
\leq K_{0}+CT -\triangle f+(f, \nabla)f+ $\Pi$\Vert_{n}+\Vert F\Vert_{L\infty(0,T;L^{n}(\mathbb{R}^{n}))}) .

Similarly,
 K\'{i}\leq  KÓ +CT -\triangle f+(f, \nabla)f+ $\Pi$\Vert_{n}+\Vert F\Vert_{L\infty(0,T;L^{n}(\mathbb{R}^{n}))}) .

We thus have

(4.3) K_{1}, K\'{i}\rightarrow 0 as T\rightarrow 0.

Next, it follows from (4.2), the L^{p}-L^{q} smoothing of the semigroup and from the boundedness

of \mathbb{P} from L^{p}(\mathbb{R}^{n}) into L_{ $\sigma$}^{p}(\mathbb{R}^{n}) that

\Vert u_{j+1}(t)\Vert_{n/ $\delta$}

\displaystyle \leq\Vert u_{1}\Vert_{n/ $\delta$}+\int_{0}^{t}\Vert e^{-(t-s)A}\mathbb{P}(u_{j}(s), \nabla)u_{j}(s)\Vert_{n/ $\delta$}ds+2\int_{0}^{t}\Vert e^{-(t-s)A}\mathbb{P}(u_{j}(s), \nabla)f\Vert_{n/ $\delta$}ds
\displaystyle \leq t^{-}\frac{1- $\delta$}{2}K_{1}+C\int_{0}^{t}(t-s)^{-\frac{n}{2}(\frac{1}{r}-\frac{ $\delta$}{n})}\Vert(u_{j}(s), \nabla)u_{j}(s)\Vert_{r}ds+C\int_{0}^{t}\Vert u_{j}(s)\Vert_{n/ $\delta$}ds,

where r=\displaystyle \frac{n}{1+ $\delta$} . In order to estimate the second term on the right hand side of last inequality, we

apply Hölder�s inequality to conclude that

\Vert(u_{j}(s), \nabla)u_{j}(s)\Vert_{r}\leq\Vert u_{j}(s)\Vert_{n/ $\delta$}\Vert\nabla u_{j}(s)\Vert_{n}\leq K_{j}K_{j}'s^{-\frac{1- $\delta$}{2}-\frac{1}{2}}.
This implies

\displaystyle \Vert u_{j+1}(t)\Vert_{n/ $\delta$}\leq t^{-}\frac{1- $\delta$}{2}K_{1}+CK_{j}K_{j}'\int_{0}^{t}(t-s)^{-\frac{1}{2}}s^{-1+\frac{ $\delta$}{2}}ds+CK_{j}\int_{0}^{t}s^{-\frac{1- $\delta$}{2}}ds.
Multiplying with t\displaystyle \frac{1- $\delta$}{2} and taking \displaystyle \sup_{\mathrm{t}\mathrm{T}} on both sides, we obtain

K_{j+1}\leq K_{1}+C_{1}K_{j}K_{j}^{0}+C_{2}TK_{j}
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with some constants C_{1}, C_{2} , independent of j and T.

Similarly, applying \nabla to (4.2) and estimating it with respect to the  L^{n} ‐norm, it follows from (3.4)
and (3.5) that

 K_{j+1}'\leq Kí + C3KjKj� +C_{4}TK_{j}
for some constants C_{3} and C_{4} . By (4.3), for any  $\lambda$>0 there exists \tilde{T}_{0}>0 such that K_{1},  K\'{i}\leq $\lambda$ for

all  T\leq\tilde{T}_{0} . So, we fix \displaystyle \tilde{T}_{0}\leq\min(1, \frac{1}{3C_{2}}, \frac{1}{3C_{4}}) provided  $\lambda$\displaystyle \leq\min(\frac{1}{9C_{1}}, \frac{1}{9C_{3}}) . We thus obtain bounds

for K_{j}(T) and K_{j}^{0}(T) for any T\leq\tilde{T}_{0} uniformly in j provided that \tilde{T}_{0} is small enough. Indeed,

\displaystyle \sup_{j}K_{j},  K_{j}^{0}\leq 3 $\lambda$ for  T\leq\tilde{T}_{0}.
The uniform bounds of K_{j} and K_{j}^{0} imply that t^{\frac{1}{2}-\frac{n}{2q}}\Vert u_{j}(t)\Vert_{q} as well as t^{1-\frac{n}{2q}}\Vert\nabla u_{j}(t)\Vert_{q} are

bounded for  q\in[n, \infty ),  t\leq\tilde{T}_{0} and all  j\in N. The continuity of the above functions follows from

similar calculations and (3.7).
We finally derive estimates for the dierences  u_{j+1}-u_{j} . Indeed, for all j\geq 1 put

L_{j}(T):=\displaystyle \sup_{0<t\leq T}t\frac{1- $\delta$}{2}\Vert u_{j+1}(t)-u_{j}(t)\Vert_{n/ $\delta$} and L_{j}'(T):=\displaystyle \sup_{0<t\leq T}t^{1/2}\Vert\nabla u_{j+1}(t)-\nabla u_{j}(t)\Vert_{n}.
Similarly as before, we have for all j\geq 1

L_{j}(T)\leq C_{5} $\lambda$(L_{j-1}+L_{j-1}^{0})+C_{6}TL_{j-1},
L_{j}^{0}(T)\leq C_{7} $\lambda$(L_{j-1}+L_{j-1}^{0})+C_{8}TL_{j-1}

with some positive constants C_{5}, C_{6}, C_{7} and C_{8} . We now choose T_{0}\leq\tilde{T}_{0} small enough so that

T_{0}\displaystyle \leq\min(\frac{1}{8C_{6}}, \frac{1}{8C_{8}}) provided 4(C_{5}+C_{7}) $\lambda$\leq 1 . Hence we have (L_{j+1}+L_{j+1}^{0})/(L_{j}+L_{j}^{0})\leq 1/2 for

all j\geq 1 and T\leq T_{0} . This implies that L_{j} and L_{j}^{0} tend to zero as  j\rightarrow\infty . It thus follows that the

above sequences are Cauchy sequences and we conclude that there are unique limit functions

[t\mapsto t^{\frac{1}{2}-\frac{n}{2q}}u(t)]\in C([0, T_{0}];L_{ $\sigma$}^{q}) , [t\mapsto t^{1-\frac{n}{2q}}v(t)]\in C([0, T_{0}];L^{q})
of the sequences ft \displaystyle \frac{1}{2}-\frac{n}{2q}u_{j}(t)\}_{j\geq 1} (if necessary, we shall take its subsequence) and \displaystyle \{t^{1-}\frac{n}{2q}\nabla u_{j}(t)\}_{j\geq 1}.
Finally, note that v(t)=t^{1/2}\nabla u(t) and that u is a mild solution of (2.3) on [0, T_{0}].

Uniqueness of mild solutions follows from standard Gronwall�s inequality. This completes the

proof of the first assertion of Theorem 2.1. \square 
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