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Abstract

Statistical mechanics of the Navier-Stokes turbulence is described briefly, making reference to the
theory of homogeneous isotropic turbulence based on the cross-independence closure hypothesis
(Tatsumi (2001), Tatsumi et al.(2004, 2007)). In particular, the relationship between the physical
characteristics of turbulence and the mathematical structure of the governing equations is discussed.
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1. Mathematical Framework of Turbulence Theory

The velocity field of turbulence in an incompressible viscous fluid is governed by the Navier-Stokes
equation.

1.1. The Navier-Stokes equation
If we denote the fluid velocity at a point x and time 7 by u(x,f) and the pressure by p(xf), the

Navier-Stokes equation is expressed as
du/ot + (wd/ox)u — viox/a = —(1/p)dp/ox, (1)
with the incompressibility condition,
(0/ox)u =0, )

where p and v denote the density and the kinetic viscosity of the fluid respectively. Eqgs.(1) and (2)
constitute the findamental equations for the fluid motion in general, including turbulence.
The pressure p can be eliminated from Eq.(1) using the relation,

8/0x - (wdloxyu = —{o/ox*(plp) = —M(plp), (3)
which is obtained by applying the condition (2) to Eq.(1), and its solution,
plp =—A {6/0x - (woldoxyu)=(1/4m) | x—x T {&/ox' - (u"- B/Ox)u'}dx, @

where A, and A, denote the Laplacian and inverse Laplacian operators respectively and u'=u(x’).



On substitution from Eq.(4), the equation of motion (1) is written as
dw/ot +(wd/oxya —v |0/0x/>u = —@/ox)1/4m) | x—x| {0/ox" (u'" H/oxu'}dx’. )
Eq.(5) gives another expression of the firxdamental equation for the fluid motion including turbulence.
These fundamental equations, either Eqs.(1) and (2) or Eq.(5), have common mathematical features,
that is, the nonlinearity manifested by the transfer term (wd/dx)u and the pressure term —(1/p)p/ox,
and the energy dissipation due to the viscous term —v |6/0x/%u . It will be shown below that these
mathematical features give rise to physical difficulties in dealing with turbulent motions.

1.2. Statistics of turbulence

It is well known that the complete statistical description of turbulence is provided by the probability
distribution functional of the turbulent velocity field u(x,?) at all possible values of x and ¢ and
actually the equation for the characteristic functional of such a distribution functional has been
obtained by Hopf (1952) using the Navier-Stokes equation and the probability conservation law.

Since, however, no general method is available at the moment for dealing with such a functional
equation, an alternative description has to be employed. This is provided by an infinite set of the
Jjoint-probability distributions of the turbulent velocities at all possible space-time points, (Xy,/1),
(x2,£2) ... (Xnstn), n being an arbitrary positive integer.

The equations for such multi-point velocity distributions have been obtained by Lundgren (1967)
and Monin (1967) independently with each other. In this context, it should be noted that these
equations for the multi-point velocity distributions are not closed since the equation for the n-point
velocity distribution always includes the (7+1)-point velocity distribution. This is the outcome of the
nonlinearity of the Navier-Stokes equation (1) or (5), and in order to make the equations solvable, we
have to supplement the equations with a relation which expresses the (7+1)-point distribution in
terms of the lower-order distributions. This is the well-known closure problem which commonly

1.3. Velocity distributions
If we denote the velocities at the two points by w; = u(x,,f) and w,=u(x,,f), the one- and two-point
velocity distributions are defined respectively as
Svixif) = <S(urv1)»,
PPVvaxsxah) = <3urvi)durvo), ©



where v; (i =1,2) denotes the probability variable corresponding to the velocities u;, 8 the three-
dimensional delta function, and < ) the probability mean with respect to a certain initial distribution.
The homogeneity of the distributions fand /2 have been incorporated in their definitions. The higher-
order distributions /, 7>3 can be defined accordingly. ;
These distributions must satisfy the reduction conditions,
[fnxpdvi=1,
[PV x00) dvo=fvix1f),
[ Pvaxi o) dni=fvax,f), ‘ )
where dv; (i=1,2) represents the volume element in the velocity space.
In the following, we consider only homogeneous turbulence unless mentioned otherwise. Then,
Eq.(6) is written as
Svixi)=Av)), .
Porvaxixt) = Pwvir), ®)
where r = x,— X; denotes the distance between the two points.
For homogeneous turbulence, we can generally assume the zero mean velocity,
Jvifivi ) dvi=0, )
v Povies) dndn=0  (=12) @
Although there is no general relationship between the one- and two-point velocity distributions fand
12, they are related in the definite forms for large and small distances = | r | between the two points.
In the limit of large distance r — oo, the two velocities u(x;,f) and u(x,,f) become independent with
each other, leading to the separation condition,
M oo S0 = AV1I) AV2). (10)
In the opposite limit of vanishing distance » — 0, the two velocities u(xf) and u(x,,#) become
equivalent with each other, leading to the coincidence condition,
lim ;o fPVi,v2r) =fv1.)) Xvr-1). (1n

2. Equations of Turbulence
In principle, turbulence can be described in terms of the Lundgren-Monin equations for the

multi-point velocity distributions. Since, however, these equations are not closed in the sense
mentioned above, we have to introduce a closure hypothesis in order to make them solvable.



2.1. The Lundgren-Monin equations
The Lundgren-Monin equations for the one- and two-point velocity distributions are written for the
general inhomogeneous case as
[0/0t + vy - 00X ) fv1,X1,0)
= 0/, - [(1/4m) 810m [T 1 (v 810,)” 2(v1,v1,%050) v
— v lim gz (005 [v2 PV1,V2x1,%038) dva], (12)
[0/6¢ + v, - 8l0x; + V2 - 010%:) P (Vi vaxy X2if)
= 8low - [(1/4m) 910 [l xs i (v 010a) FV1,v V1 303550) ditadivs
—v1im g3 [0/0xs] V3 P V1,v2,v5%1,%2,X5:)dv3]
+ /0w, - [(1/4m) /0% [l k5] (vs 00Ks)’ V1, Va,VasXi,Xo Xs3t) dxadvs

_ — v K g0 (0053 [ V3 fO(V1, V2,953, 30, X550)dv3), 13
with the three-point velocity distribution,
P va,vsxixoXsi8) = <S(ur—vi)d(u—v2)d(us—vs)) (14)

The incompressibility condition (2) requires the following conditions for the velocity distributions:
/0% - [ vif(vi,x1f) dvi =0,
dlox; [vifwvix ) dvi=0  (=12).
3ox; [viPvivavix s dvi=0  (i=123), (15)
the first of which is identically satisfied for homogeneous turbulence.

2.2. Cross-independence hypothesis
The easiest hypothesis for closing the Lundgren-Monin equations may be the independence relation
between the two-point velocities, which is written for the two-point velocity distribution as
PV o) = fvixi)) fva%of). (16)
Eq.(14) is exactly satisfied for the normal distribution £, but otherwise only valid for large distance r =
[x,—X;| —o0 as seen from the condition (10). For an arbitrary distance 7, Eq.(16) remains only to be a
quasi-normal approximation.
On the other hand, if we take the sum and difference of the velocities u; and w,,
w=(12Yurtw), uw=_(12)ww), a”n
and introduce the distributions of these cross-velocities,
(VX1 %050 = (3(usvs)),
£2vsx,x350) = (S ve) Suv-), (18)



with the probability variables,
vi= (12)vitvy), v-=12)vrW). (19)
we can consider a new relationship between the velocities w; and u, |
The cross-velocity distributions must satisfy the reduction conditions,
| gvixixpf)dva=1,
| €PWav=sx1,%550) dv_=gu(ve;x1,X230),
| Pvnv-xi30) dvi= g (vsx,50), (20)
where dv. represent the volume elements in the cross-velocity space.
For homogeneous turbulence, Eq.(18) is written as
8(VX1,X2)=gu(Vs1 1),
LVav-x1x20)=gPVav-r ), @1
and the zero mean conditions Eq.(9) give the corresponding conditions,
| Vigvsrg) dva=0,
[ v g2(va,v=x §) Avadv-=0. 22
Like the velocity distributions /"and /2, the cross-velocity distributions g and g% must satisfy the
boundary conditions at large and small distances » between the two points.
In the limit of large distance » — oo, the cross-velocities uand u- become independent with each
other just like their constituent velocities u; and u,, and hence we have the separation condition,
i e g2V V=E ) = Go(VT 1) g-(V-T ). 23)
In the opposite limit of vanishing distance » — 0, the two velocities u; and w, become equivalent
with each other, and hence we have the coincidence condition,
lim ;o g(var) =f Vi) =Av2),
lim ;0 g(v-r.)=&v.), -
lim 0 g2VV-1) = AVLHBV-) =AV2)8(v-). vZ)

Thus, if we define the cross-independence relation between the velocities vi and v- as
LoV )=2gvsv-rs), 25)
gV v=irf) = guvarg-(v-r.p), (26)

it immediately follows from Egs.(23) and (24) that this relation is valid for both the limits of the large
and small distances » — oo and 0. Thus we use the cross-independence relation (25) and (26) as the
closure hypothesis in the present work.



2.3. Kolmogorov’s hypotheses

It should be noted that there exists a close analogy between the cross-independence hypothesis,
which assumes the independence of the velocity-difference u-from the velocity-sumu., with the local
similarity hypothesis of Kolmogorov (1941), which implies the independence of the small eddies of
turbulence represented by the velocity increment Au = u;—u; (=2u-) from the large eddies represented
by uw; and w,. The analogy is evident in this context and the both hypotheses are based upon the scale-
separation of turbulence which is common at large Reynolds numbers.

However, the way of application of the hypothesis is rather different in these theories. While in
Kolmogorov’s theory, the independence of the velocity-increment has been assumed against the large-
scale structures of turbulence and the argument has been succeeded by dimensional analyses, the
independence is assumed specifically to the pair of the cross-velocities in the present theory and the
hypothesis is incorporated into the exact (but open) set of the Lundgren-Monin equations. Conceming
the more technical variance between the theories, reference will be made in case.

2.4. Equation for one-point velocity distribution
The Lundgren-Monin equtation (12) for the one-point velocity distribution is written for homo-
geneous turbulence as
[0/6t + v, - 816x;] fv1,) = BIDwv, - [(1/4m) &lox, [T e[ (vyr Bowa) fO(vivaix £) drdvy
—v1im o |00 fv2 P vi,v2r ) dvi].
Since, however, the transfer and the pressure terms vanish according to the homogeneity, this
equation is reduced to
(0100) fiva ) =— v lim o |0/00f 010wy 2 fP(v1,v550,0) AV, 7
On substitution from the cross-independence hypothesis (25) and (26), Eq.(27) is written as
(B108) fivi.0) =— 27 v im yy0 |0/ 810V v2 gV x )g-(Vor f) dvs. 29
For small values of |r}, the distribution g on the right-hand side of Eq.(28) becomes
gV D)= fvi) =fvrt vo) = (1+ v Blon) fvi), 29
up to the linear term of v—. Then, on substitution from (29), the viscous term of Eq.(28) is written as
T,=—27v lim o |0/0rf 016w, | (vit2v- Y1+ v= 8/ov) v1,f) g(v-r.0) dv;
=—vlim yy_o [/0rf | (3+2v-+ ovX1+ v lov)) AV1.) g-(V-x) dv-
=~ 2vlim 0 [01xf’ | (v Bl6w1Y’ Av1.)) g-(v-r ) dv-,
where other terms vanish according to Egs.(20) and (22).



Taking account of the isotropic distribution of v-, the term 7,,is rewritten as
T, =~ 2v lim o |0/0xf” | (U3 )V "0l0vif’ v1.) g-(V-¥0) dv-
=—o(f) plovif v, (30)
where
o) = (23) v lim w0 [0/rT" [v-|* g (v-r.f) dv- €0
denotes a constant equivalent to &/3, € being the mean energy dissipation rate, and a function of time.
On substitution from (31), Eq.(28) gives the closed equation,
[0 + o) IOV Av.0) = O, (32)
for the one-point velocity distribution f, where the suffix of v, has been omitted for brevity.

3. One-Point Velocity Distribution

The one-point velocity distribution fis obtained by solving Eq.(32), but before that the parameter a(r)
of the equation must be specified as the function of 7.

3.1. Energy dissipation rate
On substitution from (18), the parameter a(7) defined by Eq.(31) is written as
alt) =(23) vlim o 0l6rf | v-{ g-(v-r.f) dv-
= (2/3) v lim o |0/0r} [ v-{> <S(u(r0) - v-))) dv-
=(23) v1im o [0/0r{ fu(r 0>
= (/6) v im g a0 [0/ a5, 1) — wi(s 1) >
=(U6) v lim o a0 3 y=1” (@102, (e (%) — s (x1,0)°>
=(1B)vlimpa a0y =1 < (Cuuri (Xo,f)002)>>
=(1B)v Y y=r (Ouu(xi1¥x1,). (33)
On the other hand, the energy of turbulence is defined by the probability mean of the kinetic
energy per unit mass of the fluid at the point (),

Ex) = (12X (x> (34)
The equation of the energy E is obtained from the Navier-Stokes equation (1) as
OF [0t + {u) - 0/ox {E +p/p)) =—¢, (35)

where
ex) =v Y =’ @uix,f)/ax)> (36)



denotes the energy-dissipation rate.
For homogeneous turbulence, Eqs.(34)~(36) are written as

E) = (172X u(x > (36)
dE/dt = ¢, 37
&)=Y y=1 @uxH/a5). (€2))
Hence it follows from (33) and (38) that
a®)=(13) (1), (39)

showing that the parameter off) of Eq.(32) is nothing but the energy-dissipation rate &(f).

3.2. Inviscid energy dissipation

Eq.(39) shows that time-dependence of a(?) is given by that of the energy dissipation rate &(f), and it
will be shown below that the latter follows directly from the definition of homogeneous turbulence.

It is the principal hypothesis of Kolmogorov’s theory (1941) of local isotropic turbulence that the
small-scale eddies of turbulence are in an equilibrium state which depends upon the energy dissipation
rate € and the viscosity v. Obviously, this hypothesis is preceded by the premise that the parameter € is
independent of the viscosity v for its small values,

e)=vY y=r Ou(x1)/ox)’> — constant>0  for v—0. (40)

Eq.(40) implies the inviscid catastrophe of the velocity field of turbulence in the limit of vanishing
viscosity. Although no mathematical proof is available yet for this premise, the existing large-scale
numerical simulations of turbulent flows seem to support this result.

Thus, we shall maintain this principal hypothesis in our study and assume that the whole velocity
field of homogeneous isotropic turbulence is statistically determined by the two parameters, the energy
dissipation rate & and the viscosity v. It is hoped that this assumption is mathematically shown to be
compatible with the Navier-Stokes equation.

In accordance with the fundamental hypothesis, the representative length Z and time 7" of turbulence
are expressed dimensionally in terms of € and v as

[L1="e)", [7]=ve)"?, @1
which are known as the Kolmogorov length and time respectively.

On substitution from (41), Eq.(38) is expressed dimensionally as

(e = I {LLV/IT*/IL1° = 1 (71, @
which gives the actual relation,



) ) =st”, &=vq 43)
with a positive constant ¢. Eq.(43) gives the decay law of the energy dissipation rate &(f) in time fomj
- homogeneous isotropic turbulence. t also gives from Eq,. (39) that
| a)=at?, =, )
which is the required form of the function a(f).
On substitution from (43), Eq.(37) is integrated to give the relation,
E®)=Eot’, Eo=g, @)
which is the inverse linear energy decay law for homogeneous isotropic turbulence. '
The energy decay law (45) is fairly close but not quite equivalent to the existing laws given by
several authors. The law E(f) ~ ¢ 7 was obtained by Loitsiansky (1939) assuming the existence of
the integral I, = — | #*Cuyu;)dr, and the law E(f) ~ ¢ %> was derived by Saffman (1967) from the
invariance of the integral /o =J <u;u,>dr. Apparently, these laws are at variance with the present law
(45) but, since the both integrals J, and /> vanish for homogeneous turbulence in the inviscid limit,
there is no actual contradiction. The measured exponents of the time ¢ due to the experiments and
numerical simulations are reported to be in the range of —1.0 ~—1.4, but nothing definite can be said
until the measurements at higher Reynolds numbers are performed.

3.3. Inertial normal distribution (N1)
On substitution from the expression (44) for aff) , Eq.(32) for the velocity distribution £is written as
[0/0r + aot * 0/ovf] Av.) =0 (46)

Generally speaking, Eq.(46), having a negative diffusion constant —ao¢ >, may lead to an ill-posed
initial value problem. In order to avoid such difficulty, we confine ourselves to the self-similar solutions
in time. Introducing the similarity variables in accordance with Eq.(45) as

w= vtm, W= vitm, s=rt -1/2, 47

Fw)=1720v)), Guwss)=1 Pgu(vsry), (48)
with the parameter,

a0=(2/3) v 1im o 0108’ | [w-|* G(W-8) dw-. 9)

On substitution from (47) and (48), Eq.(46) is expressed as
[(d/dw)’ + /w)d/dw +(12a0X wdldw +3)] F(w)=0,
which can be factorized as



(d/dw + 2w d/dw + wl2ap) F{w) =0, (50)
where F{w) is written as F{w) in view of the isotropy of the equations.
The solution of Eq.(50) entitled to be a probability distribution is obtained in the standard form as

F(w) = Fow) = (4mo) " expl-w/Amsc). 6}))
The corresponding one-point velocity distribution is expressed in the original variables as

SvA) = fov) = (tHAmao)* expl-v| t/Amoo], (52)
and its one-dimensional component,

Svg) = fo(vf) = (tHAmoo)"” expl-v't/Ana). (53)

Eqs.(52) and (53) represent the inertial normal distribution, N1 say, for the one-point velocity v.

The distributions N'1 change self-similarly in time. At the initial time ¢ = 0, they represent a uniform
distribution with zero probability density, grow up in time #>0 as the normal distribution with decreas-
ing variance, and eventually tend to the delta distribution around [v|= 0 in the limit of time +—c0. The
change of the one-dimensional distribution (53) of N1 in time is shown graphically in Fig 1.
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Fig1. nertial normal velocity distribution N1 (Eq.(53)). The numbers denote the time 0o .

The distributions N1 represented by Eqs.(52) and (53) have two remarkable features. One is the
inertial normality of the velocity distribution. The normality itself is not surprising since, at small Rey-
nolds numbers, the Navier-Stokes equation becomes essentially linear and the normality follows from
the “central limit theoren?” for the linear system (see Batchelor (1953), §8.2.). On the other hand, the
inertial normality is concerned with large Reynolds numbers and hence located in the opposite limit to
the linear normality. ;

Another point is that the energy dissipation oft) =e(£)/3 is expressed as the integral of the fluctuations
of small eddies as in Eq.(31). This is the manifestation of the “fluctuation-dissipation theorem” of
statistical mechanics and indicates that the predominance of the scale-separation of turbulence into the
large and small eddies at large Reynolds numbers.
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4. Two-Point Velocity Distribution

4.1. Equation for two-point velocity distribution
The closed equation for the distribution /2is obtained by substituting the cross-independence hypo-
thesis (25) and (26) into the /' terms of the Lundgren-Monin equation (13) for homogeneous isotropic
turbulence, and following the similar manipulation to that for Eq.(28) as
[0/6t + (v5—v1) - Do + a(eX|0low [ +ovovaf’)
—{01ovy: 010%, Bi(v10) + BIOVy BIOX Va3 Pvivar ) =0,  (54)
where a(f) has been given by Eq.(11) and £1(v1.f) and S(v.,f) are defined as
Biv12)=(1/4m) e (vr+2v')-dlor'y’ g-(v'r p)dv'-dr,
Povag) = (1/am) e[ (vat2v™)- Blor"y: g(v'-x" dv"-dr”". (55)

4.2. Equations for cross-velocity distributions

The two-point velocity distribution f'is practically expressed in terms of the cross-velocity distribu-
tions g:and g-. The closed equations for the distributions g.and g-are obtained by substituting (25)
and (26) into Eq.(54) and integrating the equation with respect to v-and v..respectively as

[0/t +(12)D)oVDv] go(var ) =0, (56)
[6/0t + (12)A e\ OIov-L+ 2v-+ BIor + (1/2) Dlov—{0/0%1 Bi(v-f)— DI0%2 BAV-)}] g-(v-r.H)=0. (5T)

Eq.(56) for the velocity-sum distribution g. is found to be independent of the distance r and identical
with Eq.(32) for the one-point velocity distribution f except for that the parameter o of the latter has
been replaced by (1/2)a.

On the other hand, Eq.(57) for the velocity-difference distribution g- includes the r dependent terms
in addition to the r- independent terms identical with those of Eq.(56). Since, however, it will be shown
below that these r- dependent terms give non-zero contribution only in the local similarity range of the
order of Kolmogorov’s length # = (v}/e). Thus, under the inertial similarity v—0, Eq.(57) is expressed
in the owter similarity range as

[0 + (172)a(d)olov-{] g-(v-r.) =0 for >0, (58)

4.3. Inertial normal distribution (N2)

According to the discussions in the previous subsection, the equations for the cross-velocity distribu-
tions g;and g are derived from Eqs.(56) and (58) as

11



[0/6¢ +(1/2)00f 2 |010veL) gvar ) =0, (59)

where Eq.(44) has been taken into account.
Eq.(59) is solved in the same way as for Eq.(46) to give the three-dimensional normal distribution,
gV rf) = govat) = (t12m0) " expi—{va| t/2mac], (60)
and its one~dimensional component,
gi(var ) = goVat) = (2m00)" expl—vst/2mac). (61)

Eqs.(60) and (61) give the same inertial normal distribution, N2 say, for the cross-velocity distribu-
tions g, indicating that the cross-velocities v+ and v_ are equivalent with each other in view of the
symmetry of the one-point velocity distribution 1. It may also be noted that the normal distribution N2
for the velocity-sum v.is equivalent with the convolution of the two normal distributions N1 for the
one-point velocities vy and v, , showing that the distributions g(v,,rf), Av1f) and fvof) compose a
self-consistent triplet of the inertial normal distributions.

4.4. Boundary conditions

Although the cross-velocity distributions g. have been obtained as the r- independent distributions
(60) in the whole outer range Jr] > 0, they must satisfy the respective coincidence conditions (24) in the
limit of » — 0. This implies the discontinuous changes of the distributions g:at » = 0, but if we take into
account the effect of the finite viscosity v > 0, such discontinuous changes of g. must be replaced by the
continuous changes through the local similarity range.

5. Local Similarity of Velocity Distributions

5.1. Local variables

The continuous changes in the distributions g;and gin the local similarity range are described by
means of the local variables based on Kolmogorov’s length 7 = (V/e)™ and velocity v = (ve) ™.
In homogeneous turbulence, the energy dissipation rate &(7) changes in time, so that we have to take its
value &(fo) = & fo > at a certain time = ¢ for this purpose. Then, Kolmogorov’s scales are expressed as

Length 7 =(elto)"”, Velocity = (ve()) ", (62)
and the local variables based on these scales are defined as '
xX=xn, (=tnb), wEH=uEHv, p&ELp=pxtyp’, ©63)

where the suffix * denotes the non-dimensional local variables.

12



5.2. Equations in local range
The Navier-Stokes equation (1) and the incompressibility equation (2) are written in the local
variables as

ou/or + (u™ o/ox Y’ —oxPu’= —(1p)ap fox’, (64
(@/6x") u=0, (65)

respectively , where the local viscosity v’ becomes unity,
v=wip=1R=1, (66)

together with the Reynolds number R’ for the local range.

5.3. Equations in local variables
The closed equation for the distribution /2 in the local range can be obtained from the Lundgren-
Monin equation (13) written in the local variables and following the same process as that for Eq.(54).
In this case, however, ﬂledlslamerlssosmaﬂﬂmtﬂlecmss-mdepmdemehypoﬂmwlmtobe
applied to the velocities (v 1,v ) as well.
The equation for /% thus obtained is expressed as
[P + (v ) dlor + o' (r v+ o (r f olovf
— [00v"y - FOx {1V 1)+ Y1V 1N} + B0V s BIOK B AV ) + Y oAV 2 B I
PV W £)=0,  (67)

with
&' f) = (23) lim o o 000r™ P Iv"i ] g (v o v e (68)
B =Am) [T (v r2v™)-dlor ™Y g (v )dv dr™,
BoAvat)=UAm) e T (v 2v™)-dlor Y g (v £ )dv - dr™, 69)
i) =Am) [T (v 2v™)- 9or Y (v dlov ) g-(vr " )dv - dr”,
YAV L) = (VAm) [T e T (v 2V ™)l ™Y (v "BV ) g-(v - Y ™ (70)

where the following identity holds between a"+and & or the local expression of a defined by (31):
ar )+a (' H=a(@),
(€)= (23) im oo 010X P v g-(v"x ) dv'-. ()

5.4. Equation for velocity-sum distribution

Equation for the velocity-sum distribution g.is obtained by substituting (25) and (26) into Eq.(67)
and integrating the equation with respecttov - as

13



[0/6 + &« Foiovs P— (112)000v"+ [010x 1 {8 1(v ) + (12 1V 1)}
+ 810K S {B AV )+ (12 oAV o W1 oV o 1) =0. -

Since, however, £ = 85, ' =y and d/dx’|= —0/ox'2 = —d/or in this context, the terms in [ ]
identically vanish, so that the equation is simplified as

[0 + a'ur ), Norovaf’] guv'ox' £) =0. (72)
Eq.(72) gives the closed equation for the velocity-sum distribution g for the local range, which has the
same normal form as Eq.(56) for the distribution g for the outer range but with the r'-dependent para-
meter o + instead of the constant o2 for the latter.

5.5. Velocity-sum distribution (N3)
Eq.(72) is solved like Eq.(56) to give the three-dimensional normal distribution, N3 say,

BV ) = 2oV ok F) = (C/Ama’ ol )P expliv ' f el ol )], (73)
and its one-dimensional component,

BV 1) = gy f) = (Clamal s ) explv' 2 £ ma' sl )], (74)
with the parameter,

ar )=o) > (75)

Eq.(75) gives the decay laws of the self-energy E'«(r" £') and the self dissipation &' r f ) associated
with the velocity-sum distribution g as follows:
EWr =) s ' O =Ewr) (™,
OE'r £ Yol =47’ f),
£ L) =3 ) =3 y=* @i & )oY =€lr) (76)
The parameter o+ # ) must satisfy the asymptotic conditions for very large and small distances.
In the limit of 7 —o, the velocities u'; and u’, become independent with each other and it follows from
(76) that
&l £)=(B)T y=" CARYOU 1(x 1) + (X v+ 1 1)} ox )P
— (12)F =1’ 0w 1i(x 1 Vw3 +{0u (5 21 Vx5
=(U6)% =" <{0u'1,(x 1.1 Vax y}>>
= (12) a(), (7
where the homogeneity of the distribution has been considered.
On the other hand, in the limit of ' —0, the velocities u'; and u", become identical with each other
and it follows in the same way that
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& lr )= (13)F y=r’ IU2XO{ (X 1) + e 24X+ 1 )} fox P
— (IB)T y=* <o 1i(x 11 Vx>

=a(l). )
On substitution from (77) and (78) into Eqs.(73) and (74), we find that the distribution N3 tends to
the distribution N2 represented by Eqs.(60) and (61) in the limit of #—sco and to the distribution N1
represented by Eqgs.(52) and (53) in the limit of 7" —0. This clearly shows that the discontinuous change
of the velocity-sum distribution g (v4,r/) at r = 0 is actually represented by the continuous change of
the distribution g«(v'+,r ) throughout the local range 0 < 7' < oo, The dependence of @'« ') on the
distance 7" is still indefinite at this stage, but it will be determined from the relation (71) after the
parameter o (7,1') has been determined as a function of 7. This clearly shows that the decay ofthé
self-energy E'(r' 1) and the self-dissipation € r"{) of the velocity-sum u'; representing the energy-

containing components of turbulence is obtained from Eq.(76) for arbitrary values of the distance .

5.6. Equation for velocity-difference distribution
Equation for the velocity-difference distribution g- is obtained by substituting (25) and (26) into
Eq.(67) and integrating the equation with respectto v+ as
[/ +2v' dlor™+ o' (" fNorov-"E+ (112)00ov" - [010x" {1V - )+ (12 1(v - )}
— 810K B AV )+ (12 Ay -} 1 gv-r F)=0, (79)
where the suffixes of 1,y and £, 7, are retained according to their singularities at x*; and x 5.
Eq.(79) gives the closed equation for the velocity-difference distribution g-in the local range, but it
has a serious difficulty that it does not satisfy the incompressibility condition (15). This is due to the fact
that the compressibility of a viscous fluid appears as the finite thickness of the shock wave of O(v),
which is still smaller than the local length-scale based on Kolmogorov’s length 7 = O(**). In order to
avoid this difficulty, we employ the variables (v'1,v™-) in the range of O(v) in place of the variables
(v'+v") in the range of O0**) (see §5.4. Tatsumi et al. (2007)).
Then, Eq.(79) for the velocity-difference distribution g-is replaced by the equation,
[0/6r +2v"— dlor'+ o’ (' £ Nolov-"
— (1200w BIox H{F A2V £ ) + (1R A2V N g v X f)=0,  (80)
whereas Eq.(72) for the distribution g remains unchanged only the argument v+ being replaced by v',.
Eq.(80) gives the equation for the velocity-difference distribution g- in the local range, which satisfies
the incompressibility condition (15) identically.
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5.7. Lateral and longitudinal velocity-difference distributions
In view of the axi-symmetry of Eq.(80) around the vector r’, the distribution g-can be decomposed
into the lateral and longitudinal components. Denoting the velocity arguments as v'-= (Vv L,V 11)
with r =(",0,0), we can define the one-dimensional components as
gy H)=lgvr'Hdvidv,
g )=l f)dvidv's,
gV N)=lgw_ ' Haviav.. (81)
Eq.(80) for the distribution g is written in terms of its components (81) as
(00 +2v",016r+ o (7 ) {010V} + @OV )P+ @V o)’}
—(112) 816V yolor (A2’ 1) + (1R) y AV - W gV v £) gV o7 £) gV s £) = 0. (82)

5.8. Lateral velocity-difference distribution (N4)
Integration of Eq.(82) with respect to (v'},v' 1. gives the equation for the lateral velocity-difference
distribution g, in the local range as
[0/6r' + & (" XOIov'y ] guv" 1" £) =O. ®3)
Since Eq(83) is identical with the one-dimensional version of Eq.(72) for the distribution g, its
solution is immediately derived from Eq.(74) as the one-dimensional inertial normal distribution, N4

say,

gV 7 F)=guo (Vo f) = (C1ma’ o)) P explv'f ma o )], )
with the parameter,
a‘_(r‘,t‘) = a‘.o(r‘) 2 (85

It may be interesting to note that the velocity-difference distribution g, which should be singular in
the limit of r|— 0 according to the coincidence condition (24), can be regular as far as its lateral com-
ponent g. in the local coordinate is concerned. This, however, does not exclude the possibility that the
distribution g is singular at still smaller length-scale of O(v) as mentioned in the section 5.5 .

6. Longitudinal Velocity-Difference Distribution
Unlike the lateral velocity-difference distribution g, its longitudinal counterpart g is govened by

the full equation of Eq.(82) including the r -dependent terms, so that it seems to require considerable
amount of work to clarify the behavior of this distribution in the local range.
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6.1. Equation for longitudinal velocity-difference distribution
Integration of Eq.(82) with respect to (v'. ,v'11) gives the equation for the longitudinal velocity-
difference distribution g in the local range as
[0/0r" + a"(r" £ Xalov'y)* +2v'jolor
~(112) 810V 310r M 1o i A2V 1) + (12) Y A2V £ B v £) =0, (86)
where M y1»11 denotes the mean with respect to the arguments (v'1 ,v'11). Since Eq.(86) includes
the 7 -dependent terms, its solution is generally not normal.
Eq/(85) gives the decay laws of the self-energy E'(r"£) and the self-dissipation & (r { ) associated
with the velocity-difference distribution g as follows:
E(¢ =R ' r )y =E o),
€40 F) =30 ) = T yor’ <@ -6 X )y =€r) €7 @7
The parameter o (r £ ) must satisfy the asymptotic conditions for very large and small distances.
In the limit of ¥ —o, the velocities u ; and u';become independent with each other and it follows from
(86) that
& £)=(1B)T y=* [ARYO 24(x v+ 1 f ) —u (& )} ax I
> (M12)F, y=i” {0 (& Yl )2+ {ou & 1 e 3 >
=(U6)% y=* <{ou 1u(x 1 Yo )

= (12) a'(), (89)
On the other hand, in the limit of ' —0, the velocities u’, and u",become identical with each other
and it immediately follows
& £)=(1R)T y=° MARYO U (X r ' f) —u' 1(x L)} ex I
—0. (89)

On substitution from (88) and (89) into Eq.(84), we find that the distribution N4 tends to the distribu-
tion N2 represented by Eq.(61) in the limit of ¥ —o0 and to the delta distribution in the limit of 7 —0.
This clearly shows that the discontinuous change of the velocity-difference distribution g-(v-,r) at
r=0is actually represented by the continuous change of the distribution g-(v'—,r"f ) in the local range
0 < 7' < o. The dependence of o’ (7" 1) on the distance is still indefinite at this stage, but it will be
determined by working out the longitudinal component gy numerically.

6.2. Simplified equation
Tn order to deal with Eq.(86) for the distribution g;, it may be practical to simplify the non-local £°,
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and y, terms. These terms defined (69) and (70) are rewritten assuming the isotropic distribution of
v'"_ around the vector r " as follows:

AN+ 12y A2v'S)
=(1/4m) eIV~ +2v™")- dlor P 1+H1/A)V - dlov™-)} g (v r™ v dr™
=4 [ " T BV - +2v"" | /or {1+ A4XV"—- 0lov'-)} g-(v™"~r™ £ v "-dr™

=—(1B) 8" v +2v"" P1+1/A)V"-- Blov™)} g(v"-r " £ )dv " _dr™
=—(1B) [ v +2v"" 2(1H1AYv ™" BV )S(v " )dv ™"~

=-@B)'y
= - @BV} + ViI+ vud), (90)
where the identity for the Laplacian operator,
(1/4m) 10/0x o | X3~ X o 1= 8(x 35— X ), on

has been used for the integration with respect tor " =X 3—X 2.
On substitution from (90), Eq.(86) is written as
[00r" + (" £ YOIV} ) + 2V y0lor™+ (213) DI\ 1or” (V2 + M (v 2+ v LA} gV ) =0,
which is rewritten as
(00" + &' £ XOIv')) + 2vdlor + (2/3) dlov olor” (viE+ 20’ DY gV iy £)=0, (92)
where u’1 denotes the real velocity corresponding to the variable v'. . Eq(92) gives the simplified
version of Eq.(86) for the longitudinal velocity-difference distribution gy in the local range.

6.3. Self-similar solution

Like other velocity distributions, we look for the self-similar solutions of Eq.(92) in time, using the
same similarity variables as (47) and (48),

w=vit2,  s=ri"  Gws)=t gy 1) 93)

On substitution from (93) and (85), Eq.(92) is written in the self-similar form as

[(12X(1+wd/dw—sdlds) + o fr Xoiow): +2/3) Dlds {Sw +(w* + 4a’-or )oIow}] Gw,s)=0, (94)
which gives the equation for the longitudinal velocity-difference distribution g in the local range.

The solution of the s-independent part of Eq.(94), that is,

. [(12X1+wdidw) + & -or Xd/ow)] Gw,s) =0, (95)
G(w,5) = Gow.s) = (4na o)) expl-w’/Ama’ o)), (%)

which is nothing but the one-dimensional inertial normal distribution N4 represented by Eq.(84).
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6.4. Spatially similar solutions
Although Eq.(94) for the distribution G(w,s) is only a linear partial differential equation, it is still
difficult to solve analytically. This is because, at large Reynolds numbers, the local range in the co-
ordinate s is divided into still smaller subranges having their own spatial similarity. In order to deal with
such an equation, it is convenient to express the solution G(w,s) in the spatially similar form as
Gws)=s’HY, & =wi¥, ©7)
where 8 denotes the exponent of each similarity subrange.
On substitution from (97), Eq.(94) is written for the distribution H(¢) as
(RXA+OXHAEH) + a”-r ) PH'—(108)0 & (H + EHN !
— (2B + 4aofr )5 Y RHHEH") S+ (BB da o Vs PH'=0, (98)
where the symbol ’ denotes d/d&
The parameter & () in the equation can be expressed in terms of s by taking the integral moments,
H,=["HEdE, n: positive integers, %9

a-dr)=a,  a=(12X1+O)H,, (100)
where use has been made of the conditions Ho=1, H,=H;=0.
On substitution from (100), Eq.(98) is written as
[(A2X1+6XH + EHY)+ agH"| — (2/3)0E [SH +TEH" + (& *+ dagH") =0, (101)
which gives the equation for the spatially similar distribution /(&) in each similarity subrange.

6.5. Viscous and inertial subranges

The exponent 8 in Eq.(101) can be determined for each similarity subranges by considering the
balance of the dominant terms 0of Eq.(94) in the respective ranges.
Viscous subrange:

For very small s, the distribution G tends to the delta-like distribution according to the coincidence
condition (24). In such a case, the second derivative terms dominate in Eq.(94) under the condition, w*
<4a’"_o(r"). Then, Eq(94) is approximated by the equation,

[(@/ow)Y: +(8/3) dldsdiow] Gw,s)=0, 102)

with an obvious solution,
G(w,5)=0s(w—(3/8)s), (103)
where J; denotes a delta-like distribution. Eq.(103) clearly shows that w o< s, or the exponent =1 for
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the viscous subrange at very small s.
Inertial subrange:

For much larger s than those in the viscous subrange, the second derivative terms still dominate in
Eq.(94) but the opposite condition w”> 4a"«(r )is valid there. Then, Eq.(94) is approximated by the
equation,

[0 Xolow)* +(2/3) Blds {5w + w* dlow}] G(w,s)=0. (104)
Eq.(104) is clearly satisfied by the function of the variable w /s*® so far as a”_o(r") is taken to be constant
there, showing that the exponent 8=1/3 applies to the inertial subrange associated with much larger s
than in the viscous range.

6.6. Distributions in intermediate and inertial subranges

Eq.(101) is generally composed of two parts with different dependence on s except for 6 =1
corresponding to the viscous subrange. Therefore, in the inertial subrange, in order that Eq.(101) be
satisfied for arbitrary s, the two parts must vanish identically. Thus, we obtain the following equations
for H(¢) in different domains of s in the inertial subrange:

(12X1+6XH +EH) + agH" = 0, (105)
for relatively large s, and

SH+7EH" +(&*+4agH"= 0, (106)
for relatively small s.

It may be strange that the inertial subrange should be divided into two regions governed by different
equations (105) and (106). However, if look back the origin of these equations to Eq.(94) for G and
further to Eq.(86) for g , this division may be understandable. It will be found that Eq.(105) represents
the linear part of the equation of motion Eq.(1) composed of the time-derivative and the viscous terms,
while Eq.(106) represents the nonlinear part composed of the transfer and the pressure terms. If we
consider that the linear part is mostly contributed by large-scale components of turbulence while the
nonlinear part by small-scale components, the independence of these two parts must be the natural
consequence at large Reynolds numbers. In this sense, the region governed by Eq.(106) corresponds
to the inertial range in the proper sense and that of Eq.(105) to the intermediate range between the
local and the outer ranges.

6.6.1. Distribution in intermediate subrange
In the intermediate subrange, Eq.(105) gives a solution representing a normal distribution, N5 say,
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HO=Hod) = (4nop/(1+6)) " exp[~((1+6)4op)?), (107)
with the variable parameter ay. The exponent @ in this subrange is thought to change with s from 1/3 at
the lower end of the subrange to 0 at the upper end.

The corresponding distribution G(w,s) is expressed as

G(w,5)=Gow,s) = (4me [(1+6)) * 57° exp[~((1+OYdogXwis’)}], (108)
which gives the inertial normal distribution N5,
&V =gV 1) = Gmao/(1+0)) (€7 expl((1+6¥daa)(v A 1YL, (109)
for the longitudinal velocity-difference in the intermediate subrange.

’Ihé normal similarity of the distributions (107)~(109) and the connection of Eq.(105) with the large-
scale components of turbulence clearly indicate that the distribution N5 has the intermediate nature
between those of the inertial subrange and the outer range. The distribution N5 represented by Eq.(107)
is shown graphically in Fig.2 in the standard form with unit variance.

0.6

+~Al

Fig2. Longitudinal velocity-difference distributions in the local range. N5: Inertial normal distribution Eq.(107).
Al Inertial algebraic distribution Eq.(110). A2: Viscous algebraic distribution obtained from Eq.(114) numerically
6.6.2. Distribution in inertial subrange
In the inertial subrange, Eq.(106) has a solution representing an algebraic distribution, A1 say,
H@)=H{Y= 12m (> + dai) (110)
with the exponent 6=1/3.
The corresponding distribution G(w,s) is expressed as

G(w,5) = Gw,s) =12mons{(w/s"?) 2 + days} ™2, (111)
which gives the inertial algebraic distribution A1,
gV ) =gV ) =22V Y 1D Y+ daua 2, (112)

for the longitudinal velocity-difference in the inertial subrange.
The independence of the distributions (110)~(112) from those of (107)~(109) and the connection of
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Eq.(106) with the small-scale components of turbulence clearly indicate the canonical character of the
distribution A1 in the inertial subrange.
The distribution A1 represented by Eq.(110) is shown graphically in Fig.2 in the standard form with
unit variance. It may be seen that the distribution A1 has algebraic tails,
HO=~1" for | — oo, (113)
so that A1 has no finite integral moments H,, for n>4.

6.7. Distribution in viscous subrange
For the viscous subrange, Eq.(101) gives the single equation with the exponent =1,
{1-(10B3)3 H +{1-(143)8EH" +{a(1-83)) (23)E}H" =0, (114)
where the parameter a; is determined using the moment relations as @;=9/128. Eq.(114) has a
singularity at the zero-point of the H"term, &= &;=0.28909, and two asymptotic solutions,
HO=47 and |4 for Yoo (115)
Among the two asy;rnptoﬁc solutions (115), only the first is qualified for a distribution and identical to
that of the distribution A1 expressed by (113).

Eq.(114) is solved numerically by integrating the equation from certain points around &in both
directions, adjusting the initial value of H" at the points to attain the asymptotic solutions H(&) ~|¢] ~ for
1§ — oo. Thedismbuﬁmﬂmsobtahwdmaybemﬂedﬂlewm&gebraicd'shibwimm. The
distribution A2, which is shown graphically in Fig.2 in the standard form, is generally similar to A1 but
a little asymmetric with respect to £ and also has the divergent moments H, for n>4.

7. Overview of Two-point Velocity Distributions

The various two-point velocity distributions obtained here may be clearly overviewed in the diagram
representing the dependence of their variance upon the distance » = r/n. Fig.3 shows graphically the
experimental results of the longitudinal cross-velocity correlations, <u'+>, <u'2> and <u'+ u'>,
measured by Makita et al. (2005) using their intensive turbulence wind-tunnel. It may be noted that the
curve of <u'+®> indicated by 0 makes a clear mirror image of that of <u'-2> indicated by A with respect
to a horizontal line between them. Actually this reflects the relation Eq.(71) between the self-
dissipations o +(r £ ) (=<u 20 Yand o - (7" 1) (=¥’ /2(’). The curve of <u'+>> for the velocity-sum
distribution N3 coincides with <u',2> for the one-point velocity distribution N1 at # = 0 and decreases
monotonically with increasing 7 to coincide with <u 12>/2 for the velocity-sum distribution N2 in the
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outer range. On the other hand, the curve of <u"-%> representing the velocity-difference distribution
starts from zero of the delta distribution at #"= 0 and increases monotonically with 7 to coincide with
<u' 212 for the velocity-sum distribution N2. During this change, the longitudinal velocity-difference
distribution begins as the viscous algebraic distribution A2 and changes successively through the
inertial algebraic distribution A1 and the intermediate normal distribution NS to the distribution N2.

)  inertial » i
viscous subrange ° [;  subrange _lg  subrange outer range

0.4 S R Ll L BRI e e L m A B AL BELELRALL
] 1
«—(NI) : H ]
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8, . A Wm a & N2
= N N A
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' (N4)A£AA?
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—® (A2 : (A
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Fig 3. Overview of the two-point velocity distributions on the figure of the longitudinal cross-velocity correlations
measured by Makita et al(2005) at R;=350. 0:<uD, A:<u' D, o :<uu->.

8. Summary and Discussions

8.1. Statistical mechanics of turbulence

The present theory of the Navier-Stokes turbulence can be summarized as follows.
1) Turbulence at large Reynolds numbers is in the state of dynamical equilibrium govemed by two
parameters: the mean energy dissipation rate ¢ and the viscosity v. (Kolmogorov’s first hypothesis)
2) The two parameters are subject to the inviscid catastrophe, or the finite energy dissipation rate ¢ >0
in the limit of vanishing viscosity v — 0. (Kolmogorov’s premice)
3) In homogeneous turbulence, it follows from 1) and 2) that the energy dissipation rate decays in time
as eoct 2, and thus the kinetic energy decays as Eoct ™.
4) Then, the one-point velocity distribution /', the velocity-sum distribution g, and the velocity-
difference distribution g_ are expressed as the inertial normal distributions including only parameter
&(to) for £, and &(#,)/2 for g+and g_at all finite distance 7> 0, where fydenotes a certain initial time.
5) The distributions g:and g must change discontinuously at » =0 in order to coincide with f'and the
delta distribution respectively.
6) If we use the local coordinate '= rfy, 5 = O(v'/e)™*) being Kolmogorov’s length, g+and the lateral
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component of g_are expressed as the inertial normal distributions in the local variables, which satisfy
the coincidence conditions at the boundaries of the local range.

7) The longitudinal component of g_takes three different similarity forms in the local range, the inertial
normal distribution in the intermediate subrange and the algebraic distributions in the inertial and the
viscous subranges.

8.2. Mathematical physics of turbulence

It should be noted that the statistical information on homogeneous isotropic turbulence described
above has been obtained only through mathematical analyses of the equations for the velocity distribu-
tions, which have been derived from the Navier-Stokes equation. Otherwise, we have to be satisfied by
physical conjectures based on dimensional arguments.

Historically speaking, fluid mechanics has been the representative field of mathematical physics, but
such a good tradition seems to have been terminated by the appearance of Kolmogorov’s revolutionary
theory of turbulence which uses only dimensional analysis. It is eagerly hoped that this small piece of
work would be able to reopen this good tradition by showing how nicely Kolmogorov’s idea can be
incorporated with modem mathematical physics.
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