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Abstract

We describe the asymptotic equivariant index, an avatar of M.F. Atiyah�s index theory
for relatively elliptic equivariant pseudodierential operators, which makes sense for Toeplitz
operators.

These notes are an account of part of lectures given in the R.I.M.S., Kyoto, at Keio

University (october 2007), and in the C.I.R.M., Marseille (january 2008). We describe

the asymptotic equivariant trace and index of Toeplitz operators invariant under the

action of a compact group G.
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This theory is an avatar of M.F. Atiyah�s index theory for relatively elliptic pseu‐

dodierential operators [1] on a G‐manifold. Atiyah�s theory does not apply directly to

Toeplitz operators on a contact manifold, because the function space on which they act

(Toeplitz space) is only dened up to a space of finite dimension from symbolic calculus,
so the absolute index or trace do not make much sense. The G‐asymptotic trace and

index are weaker forms (Atiyah�s trace or index is a distribution on G ,
the asymptotic

trace or index is its singularity). The advantage of the asymptotic index is that it is well

dened for Toeplitz operators, whereas the \backslash absolute� index is not, and it still contains

useful information. We have recently used it with E. Leichtnam, X. Tang, A. Weinstein

[7], to give a new
\backslash 

simple� proof of the Atiyah‐Weinstein conjecture. We refer to loc.

cit. for further details about this formula, for which a proof was recently given by C.

Epstein [12], using
\backslash 

Heisenberg pseudodierential calculus�

§1. Toeplitz operators

In this section we recall the mechanism of generalized Szegö projectors and Toeplitz

operators. We refer to [6, 9, 10] for more details.

As in [6, 9, 10], we call symplectic cone a smooth (paracompact) manifold which

is a principal \mathbb{R}_{+}^{\times} bundle, equipped with a symplectic form  $\omega$ homogeneous of degree 1.

The Liouville form is its horizontal primitive  $\lambda$= $\rho$\lrcorner $\omega$( $\omega$=d $\lambda$) ,
where  $\rho$ denotes the

radial (Euler) vector field, innitesimal generator of homotheties. The basis  X= $\Sigma$/\mathbb{R}_{+}^{\times}
is an oriented contact manifold; its contact form $\lambda$_{X} (any pull‐back of  $\lambda$ by a smooth

section) is dened up to a smooth positive factor, and  $\Sigma$ is canonically identied with

the set of positive multiples of  $\lambda$_{X} in T^{*}X.

§1.1. Microlocal model

We first describe the microlocal model for generalized Szegö projectors given in [2].
Let (x, y)=(x_{1}, . ::, x_{p}, y_{1}, . . :; y_{q}) denote the variable in \mathbb{R}^{p+q} . We consider the system
of pseudodierential operators D=(D) with

D_{j}=\partial_{y_{j}}+|D_{x}|y_{j}(j=1, \ldots, q)

The D_{j} commute; the complex involutive variety char D is dened by the complex

equations $\eta$_{j}-i| $\xi$|y_{j}=0 ; it is \gg 0 ,
in the sense of [14, 15]. Its real part is the

symplectic manifold  $\Sigma$ : \{$\eta$_{j}=y_{j}=0\}.
The kernel of D in L^{2} is the range of the Hermite operator H (in the sense of [2])

dened by its partial Fourier transform:

f\in L^{2}(\mathbb{R}^{p})\mapsto Hf with FHf(; y)=($\pi$^{-1}| $\xi$|)^{\frac{q}{4}}e^{-\frac{1}{2}| $\xi$|y^{2}}\hat{f}( $\xi$)
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The orthogonal projector on \mathrm{k}\mathrm{e}\mathrm{r}D is S=HH^{*} :

 f\displaystyle \mapsto(2 $\pi$)^{-p}\int_{\mathbb{R}^{2p+q}}e^{i(<x-x', $\xi$>+i\frac{| $\xi$|}{2}(y^{2}+y^{\prime 2}))}($\pi$^{-1}| $\xi$|)^{\frac{q}{2}}f(x', y')dx^{0}dy^{0}d $\xi$
It is a Fourier integral operator, so as  H ; its complex canonical relation \mathrm{i}\mathrm{s}\gg 0 ,

with real

part the graph of Id  $\Sigma$ (Fourier integral operators are described in [13], Fourier integral

operators with complex canonical relation are described in [14, 15]).

§1.2. Generalized Szegö projectors

Let  M be a compact manifold, and  $\Sigma$\subset T^{\cdot}M a symplectic subcone (T^{\cdot}M denotes

T^{*}M deprived of its zero section). A generalized Szegö projector associated to  $\Sigma$ (or
 $\Sigma$‐Szegö projector) is a self adjointl elliptic Fourier integral projector  S of degree 0

(S=S^{*}=S^{2}) ,
whose complex canonical relation C\mathrm{i}\mathrm{s}\gg 0 ,

with real part the diagonal

diag  $\Sigma$ (elliptic means that the principal symbol of  S does not vanish on  $\Sigma$ ).

From [6, 9, 10], we recall:

1) A  $\Sigma$‐Szegö projector  S always exists. It is microlocally isomorphic (\mathrm{m}\mathrm{o}\mathrm{d} . some

elliptic FIO transformation) to the model above.

We will denote \mathbb{H}\subset C^{-\infty}(M) its range. Modulo C^{\infty} ,
it denes a sheaf  $\mu$ \mathbb{H} on $\Sigma$_{-}

a subsheaf supported by  $\Sigma$ of the sheaf of microfunctions on  T^{\cdot}M.

2) Toeplitz operators dened by S are the operators on \mathbb{H} of the form  u\in \mathbb{H}\mapsto

 T_{P}(u)=SPS(u) with P a pseudodierential operator on M . More generally, if P

is any FIO whose canonical relation is complex positive, with real part containing

diag  $\Sigma$
,

then SPS is a Toeplitz operator.

Modulo operators of degree -\infty (smoothing operators), Toeplitz operators form a

sheaf \mathcal{A}_{ $\Sigma$} of algebras on  $\Sigma$
, acting on  $\mu$ \mathbb{H};(\mathcal{A}_{ $\Sigma$},  $\mu$ \mathbb{H}) is locally isomorphic to the

sheaf of pseudodierential operators in p real variables (2p=\dim $\Sigma$) , acting on the

sheaf of microfunctions. The principal symbol (principal part) of T_{P} is  $\sigma$(P)_{| $\Sigma$}.

3) If S, S' are two  $\Sigma$‐Szegö projectors with range \mathbb{H}, \mathbb{H}', S' induces a quasi isomorphism
\mathbb{H}\rightarrow \mathbb{H}' (the restriction of SS' to \mathbb{H} is a positive (\geq 0) elliptic Toeplitz operator).

More generally, if  $\Sigma$\subset T^{\cdot}M, $\Sigma$'\subset T^{\cdot}M' are two symplectic cones and f :  $\Sigma$\rightarrow

$\Sigma$' a homogeneous symplectic isomorphism, there always exists a Fourier integral

operator F from M to M'
, inducing an

\backslash 

elliptic� Fredholm map \mathbb{H}\rightarrow \mathbb{H}'
, e.g. there

exists a complex canonical relation C\gg 0 with real part the graph of f ,
and we

may take F=S'\circ F' where F' is any elliptic FIO with canonical relation C (such
elliptic FIO exist, they were called \backslash 

adapted� in [6, 9

lthe requirement that S be self adjoint is convenient but not essential
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Thus the pair (\mathcal{A}_{ $\Sigma$},  $\mu$ \mathbb{H}) consisting of the sheaf of micro Toeplitz operators (i.e. mod

smoothing operators), acting on  $\mu$ \mathbb{H} is well dened, up to (non unique) isomorphism: it

only depends on the symplectic cone  $\Sigma$
,

not on the embedding.

§1.3. Holomorphic case

A first example of Toeplitz structure is  $\Sigma$=T^{\cdot}M (M a compact manifold), S=\mathrm{I}\mathrm{d} :

the Toeplitz algebra is the algebra of pseudodierential operators acting on the sheaf of

microfunctions on M.

In general, as noted above, the basis X= $\Sigma$/\mathbb{R}_{+}^{\times} of  $\Sigma$ is a contact manifold, and

 $\Sigma$ can be canonically embedded in  T^{\cdot}X as the set of positive multiples of the contact

form. An important particular case is the holomorphic case: X is the smooth, strictly

pseudoconvex boundary of a Stein complex manifold; the contact form of X is the form

induced by {\rm Im} @  $\phi$ where  $\phi$ is any dening function ( $\phi$=0, d $\phi$\neq 0 on X,  $\phi$<0 inside ‐

e.g. if X is the unit sphere bounding the unit ball of \mathbb{C}^{n} ,
with dening function \overline{z}\cdot z-1,

the contact form is {\rm Im}\overline{z}\cdot dz_{|X} ). Then the Szegö projector S is the orthogonal projector
on the space of boundary values of holomorphic functions in L^{2}(X) (the fact that it is

Fourier integral operator as above was proved in [3]).
The pseudodierential algebra is a special case of holomorphic Toeplitz algebra: if

M is a manifold, it has a real analytic compact manifold; if M^{c} is a complexication
of M

,
small tubular neighborhoods of M in M^{c} (for some hermitian metric) are Stein

manifold with strictly complex boundary X\sim S^{*}M ,
and the pseudodierential algebra

of M acting on microfunctions is isomorphic to the Toeplitz algebra of X acting on H.

In fact there exists an adapted Fourier integral operator from M to X which denes an

isomorphism from C^{-\infty}(M) to \mathbb{H}(X)^{2} and interchanges pseudodierential operators on

M and Toeplitz operators on X.

Note: the Atiyah‐Weinstein problem can be described as follows: If X is a compact

contact manifold, and S, S' two Szegö projectors dened by two embeddable CR struc‐

tures giving the same contact structure, then the restriction of S' to \mathbb{H} is a Fredholm op‐

erator \mathbb{H}\rightarrow \mathbb{H}' (SS' induces an elliptic Toeplitz operator on H). The Atiyah‐Weinstein

conjecture computes the index in terms of topological data of the situation (topology
of the holomorphic fillings of which X is the boundary).

§2. Equivariant trace and index

§2.1. Equivariant Toeplitz algebra

Let G be a compact Lie group, dg its Haar measure (\displaystyle \int dg=1) , \mathfrak{g} its Lie algebra.

2e.g. e^{i $\epsilon$ A} with A=\sqrt{-\triangle} for some real analytic Riemannian metric on M
,

cf [4].
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Let  $\Sigma$ be a  G‐symplectic cone (with compact basis),  $\omega$ its (invariant) symplectic

form,  $\lambda$ the Liouville form ( $\omega$=d $\lambda$) . As mentioned above, the basis X= $\Sigma$/\mathbb{R}_{+}^{\times} is a

G‐compact oriented contact manifold; replacing it by its G‐mean, we may choose an

invariant form $\lambda$_{X} dening the contact structure, and  $\Sigma$ is canonically identied with

the set of positive multiples of  $\lambda$_{X} in T^{*}X.

As was shown in [6, 9], the statements of §1 allow a compact group action: if M is

a compact G‐manifold and  $\Sigma$ is embedded as an invariant symplectic subcone of  T^{\cdot}M,
there exists a G‐invariant generalized Szegö projector associated to  $\Sigma$ 3_{;} if S' is another

one, it induces an equivariant Fredholm map \mathbb{H}\rightarrow \mathbb{H}'
,

and more generally if u is an

equivariant isomorphism  $\Sigma$\subset T^{\cdot}M\rightarrow$\Sigma$'\subset T^{\cdot}M' ,
there exists an equivariant adapted

FIO F inducing an equivariant elliptic Toeplitz FIO \mathbb{H}\rightarrow \mathbb{H}'

If S is an equivariant generalized Szegö projector, G acts on \mathbb{H} and on the Toeplitz

algebra, so as on their microlocalization  $\mu$ \mathbb{H}, \mathcal{A}_{ $\Sigma$} . The innitesimal generators of G

(vector fields image of elements  $\xi$\in \mathfrak{g} ) dene Toeplitz operators T_{ $\xi$} of degree 1 on H.

The elements of G act as unitary Fourier integral operators‐or \backslash \backslash \mathrm{T}\mathrm{o}\mathrm{e}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{z}-\mathrm{F}\mathrm{I}\mathrm{O}' \mathrm{s}
�

The Toeplitz space \mathbb{H} (and its Sobolev counterparts) splits according to the ir‐

reducible representations of G : \mathbb{H}=\oplus \mathbb{H}_{ $\alpha$}\wedge (the same will hold for the equivariant

�Toeplitz bundles� below).

§2.2. Equivariant trace

The  G‐trace and G‐index (relative index in [1]) were introduced by M.F. Atiyah in

[1] for equivariant pseudo‐dierential operators on a G‐manifold. The G‐trace of P is a

distribution on G , describing tr (go P). Here we adapt this to Toeplitz operators.

Below we will use the following extension: an equivariant Toeplitz bundle is the

range of an equivariant Toeplitz projector P of degree 0 on some \mathbb{H}^{N} . The symbol of \mathrm{E}

is the range of the principal symbol of P ; it is an equivariant vector bundle on X ; any

equivariant vector bundle on X is the symbol of an equivariant Toeplitz bundle. We

will denote by \mathrm{E}^{(s)} its space of Sobolev H^{s} sections.

If \mathrm{E}, \mathrm{F} are two equivariant Toeplitz bundles, there is an obvious notion of Toeplitz

(matrix) operator P : \mathrm{E}\rightarrow \mathrm{F}
,

and of its principal symbol $\sigma$_{d}(P) if it is of degree d,
which is a homogeneous vector‐bundle homomorphism E\rightarrow F on  $\Sigma$. P is elliptic if its

symbol is invertible; then it is a Fredholm operator \mathrm{E}^{(s)}\rightarrow \mathrm{F}^{(s-d)} and has an index

which does not depend on s.

Denition 2.1. We denote Char \mathfrak{g} (characteristic set of \mathfrak{g} ) the closed subcone of

 $\Sigma$ where all symbols of innitesimal operators  T_{ $\xi$},  $\xi$\in \mathfrak{g} vanish.

3e.g. the Szegö projector of an invariant embeddable CR structure is invariant.
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char \mathfrak{g} contains the fixed point set $\Sigma$^{G}
,
whose basis is the fixed point set X^{G} (because

G is compact). The base Z of char \mathfrak{g} is the set of points of X where all Lie generators

L_{ $\xi$},  $\xi$\in \mathfrak{g} are orthogonal to $\lambda$_{X} . Note that $\Sigma$^{G} is always a smooth symplectic cone and

its base X^{G} a smooth contact manifold; Char \mathfrak{g} and Z may be singular.

Let \mathrm{E} be an equivariant Toeplitz bundle. If P : \mathrm{E}\rightarrow \mathrm{E} is a Toeplitz operator of

trace class (\deg P<-n) ,
the trace function \mathrm{T}\mathrm{r}_{P}^{G}(g)=\mathrm{t}\mathrm{r}(g\circ P) is well dened; it is a

continuous function on G . It is smooth if P is of degree -\infty(P\sim 0) . If P is equivariant,
its Fourier coecient for the representation  $\alpha$ is \displaystyle \frac{1}{d}\mathrm{t}\mathrm{r}P_{1\mathbb{H}_{ $\alpha$}} $\alpha$ (  d_{ $\alpha$} the dimension of  $\alpha$ ).

The following result is an immediate adaptation of the similar result of [1] for

pseudo‐dierential operators.

Proposition 2.2. Let  P:\mathrm{E}\rightarrow \mathrm{E} be a Toeplitz operator, with P\sim 0 near char\mathfrak{g}.
Then Tr_{P}^{G}(g)=trg\circ P is well dened as a distribution on G. If P is equivariant, trP_{1\mathbb{H}_{ $\alpha$}}
is well dened (nite), and we have, in distribution sense:

(2.1)  $\tau$ r_{r_{P}^{G}}=\displaystyle \sum\frac{1}{d_{ $\alpha$}}trP_{1\mathbb{H}_{ $\alpha$}}$\chi$_{ $\alpha$}
where  $\alpha$ runs over the set of irreducible representation of  G ,

with dimension d_{ $\alpha$} and

character $\chi$_{ $\alpha$}.

We have seen above that this is true if P is of trace class. Let D_{G} be a bi‐invariant

elliptic operator of order m>0 on G , e.g. the Casimir of a faithful representation

(with m=2 ); its image D_{X} on X denes an invariant Toeplitz operator \mathrm{E}\rightarrow \mathrm{F}
,

with

characteristic set Char \mathfrak{g}.

If P\sim 0 near  $\Sigma$
,

we can divide it repeatedly by  D_{X} ( \mathrm{m}\mathrm{o}\mathrm{d} . smoothing operators)
and get for any N :

P=D_{X}^{N}Q+R with \mathrm{R}\sim 0

The degree of Q is \deg P-mN ,
so it is of trace class if N is large enough. We set

\mathrm{T}\mathrm{r}_{P}^{G}=D_{G}^{N}\mathrm{T}\mathrm{r}_{Q}^{G}+\mathrm{T}\mathrm{r}_{R}^{G} : this is well dened as a distribution; the fact that it does not

depend on the choice of D_{G}, N, Q, R is immediate.

Formula 2.1 for equivariant operators, obviously follows. Note that the series con‐

verges in distribution sense, i.e. the coecients have at most polynomial growth (with
respect to the eigenvalues of D_{G} ).

More generally assume that we have an equivariant Toeplitz complex of finite

length:

(\mathrm{E}, d) : . . . \rightarrow \mathrm{E}_{j}\rightarrow d\mathrm{E}_{j+1}\rightarrow\ldots
i.e. \mathrm{E} is a finite sequence \mathrm{E}_{k} of equivariant Toeplitz bundles, d= (d_{k} : \mathrm{E}_{k}\rightarrow \mathrm{E}_{k+1})\mathrm{a}
sequence of Toeplitz operators such that d^{2}=0 . Then for a Toeplitz operator  P:\mathrm{E}\rightarrow
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\mathrm{E}, P\sim 0 near char \mathfrak{g} , its equivariant supertrace \displaystyle \mathrm{T}\mathrm{r}_{P}^{G}=\sum(-1)^{k}\mathrm{T}\mathrm{r}_{P_{k}}^{G} is well dened; it

vanishes if P is a supercommutator.

§2.3. Equivariant index

Let \mathrm{E}_{0}, \mathrm{E}_{1} be two equivariant Toeplitz bundles. We will say that an equivariant

Toeplitz operator P : \mathrm{E}_{0}\rightarrow \mathrm{E}_{1} is G‐elliptic (relatively elliptic in [1]) if it is elliptic on

char \mathfrak{g} , i.e. the principal symbol  $\sigma$(P) ,
which is a homogeneous equivariant vector bundle

homomorphism E_{0}\rightarrow E_{1} ,
is invertible on Char \mathfrak{g} . Then there exists an equivariant

Q : \mathrm{E}_{0}\rightarrow \mathrm{E}_{1} such that QP\sim 1_{\mathrm{E}_{0}}, PQ\sim 1_{\mathrm{E}_{1}} near char \mathfrak{g} . The G‐index \mathrm{I}\mathrm{n}\mathrm{d}I_{P}^{G} is then

dened as the distribution \mathrm{T}\mathrm{r}_{1-QP}^{G}-\mathrm{T}\mathrm{r}_{1-PQ}^{G}.
More generally, an equivariant complex (\mathrm{E}, d) as above is G‐elliptic if the principal

symbol  $\sigma$(d) is exact on Char \mathfrak{g} . Then there exists an equivariant Toeplitz operator

s= (s_{k} : \mathrm{E}_{k}\rightarrow \mathrm{E}_{k-1}) such that 1-[d, s]\sim 0 near char \mathfrak{g}([d, s]=ds+sd) . The index

(Euler characteristic) is the super trace I = supertr (1-[d, s])=\displaystyle \sum(-1)^{j}\mathrm{T}\mathrm{r}_{(1-[d,s])_{j}}^{G}.
If P is G‐elliptic, for any irreducible representation  $\alpha$

,
the restriction  P_{ $\alpha$} : \mathrm{E}_{0, $\alpha$}\rightarrow

\mathrm{E}_{1, $\alpha$} is a Fredholm operator: its kernel, cokernel and index I_{ $\alpha$} are finite dimensional

(resp. more generally the cohomology H_{ $\alpha$}^{*} of d_{|\mathrm{E}_{ $\alpha$}} is finite dimensional), and we have

(2.2) \displaystyle \mathrm{I}\mathrm{n}\mathrm{d}I_{P}^{G}=\sum\frac{I_{ $\alpha$}}{d_{ $\alpha$}}$\chi$_{ $\alpha$} (resp. \displaystyle \mathrm{I}\mathrm{n}\mathrm{d}I_{(\mathrm{E},d)}^{G}=\sum(-1)^{j}\frac{\dim H_{ $\alpha$}^{j}}{d_{ $\alpha$}}$\chi$_{ $\alpha$} )

§2.4. Asymptotic index

The G‐index \mathrm{I}\mathrm{n}\mathrm{d}I_{P}^{G} is obviously invariant under compact perturbation and defor‐

mation, so for fixed \mathrm{E}_{j} it only depends on the homotopy class of the symbol  $\sigma$(P) .

However it does depend on the choice of Szegö projectors: as mentioned, the Toeplitz
bundles \mathrm{E}_{j} are known in practice only through their symbols E_{j} ,

and are only deter‐

mined up to a space of finite dimension, so as the Toeplitz spaces H. However if \mathrm{E}, \mathrm{E}' are

two equivariant Toeplitz bundles with the same symbol, there exists an equivariant el‐

liptic Toeplitz operator U:\mathrm{E}\rightarrow \mathrm{E}^{0} with quasi‐inverse V (i.e. VU\sim 1_{\mathrm{E}} , UV \sim 1É). This

may be used to transport equivariant Toeplitz operators from \mathrm{E} to \mathrm{E}^{0}:P\mapsto Q=UPV.
Then if P\sim 0 on X_{0}, Q=UPV and VUP have the same G‐trace, and since P\sim VUP,
we have T_{P}^{G}-T_{Q}^{G}\in C^{\infty}(G) . Thus the equivariant G‐trace or index are ultimately well

dened up to a smooth function on G.

Denition 2.3. We dene the asymptotic G‐trace \mathrm{A}\mathrm{s}\mathrm{T}\mathrm{r}_{P}^{G} as the singularity of

the distribution \mathrm{T}\mathrm{r}_{P}^{G} (i.e. \mathrm{T}\mathrm{r}_{P}^{G}\mathrm{m}\mathrm{o}\mathrm{d}. C^{\infty}(G) ).

If P\sim 0 ,
we have \mathrm{T}\mathrm{r}_{P}^{G}\sim 0 ,

i.e. the sequence of Fourier coecients is of rapid

decrease, O(c_{ $\alpha$})^{-m} for all m
,

where c_{ $\alpha$} is the eigenvalue of D_{G} in the representation  $\alpha$

(where  D_{G} is as above a bi‐invariant elliptic operator on G).
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Denition 2.4. If P is elliptic on Char \mathfrak{g} , the asymptotic G‐index \mathrm{A}\mathrm{s}\mathrm{I}\mathrm{n}\mathrm{d}_{P}^{G} is

dened as the singularity of \mathrm{I}\mathrm{n}\mathrm{d}_{P}^{G}.

It only depends on the homotopy class of the principal symbol  $\sigma$(P) ,
and since it

is obviously additive we get :

Theorem 2.5. The asymptotic index denes an additive map fr om K_{X-Z}^{G}(X)
to Sing (G)=C^{-\infty}/C^{\infty}(G) (Z\subset X denotes the basis of char\mathfrak{g}).

K_{X-Z}^{G}(X) denotes the equivariant \mathrm{K}‐theory of X with compact support in X-Z,
i.e. the group of stable classes of triples (E, F, u) where E, F are equivariant G‐bundles

on X, u an equivariant isomorphism E\rightarrow F dened near Z
,
with the usual equivalence

relations ((E, F, a)\sim 0 if a is stably homotopic near Z to an isomorphism on the whole

of X) . The asymptotic index is also dened for equivariant Toeplitz complexes, exact

near Z.

Note the sequence of Fourier coecients \displaystyle \frac{1}{d_{ $\alpha$}} tr P_{ $\alpha$} is at most of polynomial growth
with respect to the eigenvalues of D_{G} ; if P\sim 0 it is of rapid decrease. The Fourier

coecients of the asymptotic index are integers, so they are completely determined,

except for a finite number of them, by the asymptotic index: \mathrm{A}\mathrm{s}\mathrm{I}\mathrm{n}\mathrm{d}_{P}^{G}=0 means that

the Fourier series of \mathrm{I}\mathrm{n}\mathrm{d}_{P}^{G} has finite support.

Example : let  $\Sigma$ be a symplectic cone, with free positive elliptic action of  U(1) ,

i.e. the Toeplitz generator A=\displaystyle \frac{1}{i} @  $\theta$ is elliptic with positive symbol (this is the situation

studied in [6]). Then the algebra of invariant Toeplitz operators (\mathrm{m}\mathrm{o}\mathrm{d}. C^{\infty}) is a

deformation star algebra, setting as deformation \backslash \backslash 

parameter� \hbar=A^{-1}. Char \mathfrak{g} is empty
and the asymptotic trace or index is always dened.

The asymptotic trace of any element a is the series \displaystyle \sum_{-\infty}^{\infty}a_{k}e^{ki $\theta$}, a_{k}= tr a_{1\mathbb{H}_{k}},
\mathrm{m}\mathrm{o}\mathrm{d} . smooth functions of  $\theta$

,
i.e. the sequence (a) is known \mathrm{m}\mathrm{o}\mathrm{d} . rapidly decreasing

sequences. It is standard knowledge that the sequence (a) has an asymptotic expansion:

(2.3) a_{k}\displaystyle \sim\sum_{k\leq k_{0}}$\alpha$_{j}k^{-j}.
In this case the asymptotic trace isjust as well dened by this asymptotic expansion,

which encodes essentially the same thing as the residual trace.

Remark. For a general the circle group action, with generator A=e^{i $\theta$}
,

all

simple representations are powers of the identity representation, denoted T
,

and all

representations occurring as indices can be written as sums.

(2.4) \displaystyle \sum_{k\in \mathbb{Z}}n_{k}T^{k} ( \mathrm{m}\mathrm{o}\mathrm{d} . finite sums)



Asymptotic equivariant index 0F Toeplitz operators 41

In fact, using the sphere embedding below, it can be seen that the positive and negative

parts of the series have a weak periodicity property: they are of the form

\displaystyle \frac{P_{\pm}(T,T^{-1})}{(1-T^{\pm k})^{k}}
for a suitable polynomial  P\pm and some integer  k ; in other words they represent rational

functions whose poles are roots of 1, and whose Taylor series have integral coecients.

§3. \mathrm{K}‐theory and embedding

It will be convenient (even though not technically indispensable) to reformulate

some constructions above in terms of sheaves of Toeplitz algebras and modules, in

particular to follow the index in an embedding (x3.3).

§3.1. A short digression on Toeplitz algebras and modules

As above we use the following notation: for distributions, f\sim g means that f-g
is C^{\infty} ; for operators, A\sim B (or A=B\mathrm{m}\mathrm{o}\mathrm{d}. C^{\infty} ) means that A-B is of degree -\infty,

i.e. has a smooth Schwartz kernel. If M is a manifold, T^{\cdot}M denotes the cotangent
bundle deprived of its zero section; it is a symplectic cone with base the cotangent

sphere S^{*}M=T^{\cdot}M/\mathbb{R}_{+}.

As pointed out above, if  $\Sigma$ is a  G‐symplectic cone, the micro sheaf \mathcal{A}_{ $\Sigma$} of Toeplitz

operators acting on  $\mu$ \mathbb{H} are well dened with the action of G , up to (non unique)
isomorphism, independently of any embedding  $\Sigma$\rightarrow T^{\cdot}M . The asymptotic trace \mathrm{A}\mathrm{s}\mathrm{T}\mathrm{r}_{P}^{G}
resp. index \mathrm{A}\mathrm{s}\mathrm{I}\mathrm{n}\mathrm{d}_{P}^{G} are well dened for a section P of \mathcal{A}_{ $\Sigma$} vanishing (resp. invertible)
near Char \mathfrak{g}.

If M is a G‐manifold and X=S^{*}M( $\Sigma$=T^{\cdot}M) , \mathcal{A}_{ $\Sigma$} identies with the sheaf of

pseudodierential operators acting on the sheaf  $\mu$ \mathbb{H} of microfunctions on X (note that

even in that case the exact index problem does not make sense: a Toeplitz bundle \mathrm{E}

on X corresponds to a vector bundle on the cotangent E on X
,

not necessarily the

pull‐back of a vector bundle on M
,

so \mathrm{E} is in general at best dened up to a space of

finite dimension).

It will be convenient to use the language of \mathcal{E}‐modules. In the C^{\infty} category \mathcal{E} is

not coherent and general \mathcal{E}‐module theory is not practical. We will just stick to two

useful examples.4

4\mathrm{I}\mathrm{n} proof of the Atiyah‐Weinstein conjecture we need to patch together two smooth embedded

manifolds near their boundaries: this cannot be done in the real analytic category, where things
work slightly better
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If \mathcal{M} is an \mathcal{A}‐module, resp. a complex of \mathcal{A} modules, it corresponds to a system of

pseudodierential (resp. Toeplitz) operators, whose sheaf of solutions is \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{A}}(\mathcal{M},  $\mu$ \mathbb{H}) .

E.g. a locally free complex of (\mathcal{E}, d) ‐modules denes a Toeplitz complex (\mathrm{E}, D)=
\mathrm{H}\mathrm{o}\mathrm{m}(L, \mathbb{H}) .

More generally we will say that a \mathcal{E}‐module \mathcal{M} is \backslash \backslash \mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}
� if it is finitely generated,

equipped with a filtration \mathcal{M}=\cup \mathcal{M}_{k} (i.e. \mathcal{E}_{p}\mathcal{M}_{q}=\mathcal{M}_{p+q}, \cap \mathcal{M}_{k}=0 ) such that the

symbol gr \mathcal{M} has a finite locally free resolution. We denote  $\sigma$(\mathcal{M})=\mathcal{M}_{0}/\mathcal{M}_{-1} ,
which

is a sheaf of C^{\infty} modules on the basis X ; since there exist global elliptic sections of \mathcal{E},

gr \mathcal{M} is completely determined by the symbol, so as the resolution.

It is elementary that a resolution of  $\sigma$(M) lifts to a
\backslash \backslash 

good resolution� of \mathcal{M} ,
i.e.

a good finite locally free resolution of \mathcal{M}^{5} . It is also standard that two resolutions of

 $\sigma$(M) are homotopic, and if  $\sigma$(M) has locally finite locally free resolutions it also has a

global one (because we are working in the C^{\infty} category on a compact manifold or cone

with compact support, and dispose of partitions of unity); this lifts to a global good
resolution of \mathcal{M}.

If \mathcal{M} is \backslash \backslash \mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}
�

,
it denes a \mathrm{K}‐theoretical element [\mathcal{M}]\in K_{Y}(X)(Y= supp  $\sigma$(\mathcal{M})) ,

viz. the \mathrm{K}‐theoretical element dened by the symbol of any good resolution (this does

not depend on the resolution of  $\sigma$(M) since any two such are homotopic).

This works just as well in presence of a G‐action (one must choose invariant filtra‐

tions etc.).

The asymptotic trace and index extend in an obvious manner to endomorphisms
of good complexes or modules:

\bullet if \mathcal{M}=\mathcal{A}^{N} is free, End \mathcal{A}(M) identies with the ring of N\times N matrices with

coecients in the opposite ring \mathcal{A}^{op} ,
and if A=(A_{ij}) vanishes near Char \mathfrak{g} we set

AsTr(A) =\displaystyle \sum \mathrm{A}\mathrm{s}\mathrm{T}\mathrm{r}^{G}(A_{jj}) .

\bullet If \mathcal{M} is isomorphic to the range P\mathcal{N} of a projector P in a free module \mathcal{N} (this
does not depend on the choice of \mathcal{N}), or if A\in \mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{A}}(M) we set AsTr(A) =

\mathrm{A}\mathrm{s}\mathrm{T}\mathrm{r}^{G}(PA) .

\bullet If (L, d) is a locally free complex and A is a A=(A) endomorphism, vanishing near

Char \mathfrak{g} , we set AsTr(A) =\displaystyle \sum(1) AsTr ( \mathrm{A}) (the Euler characteristic or super

trace; if A, B are endomorphisms of opposite degrees m, -m
,
we have \mathrm{A}\mathrm{s}\mathrm{T}\mathrm{r}^{G}[A, B]=

0 ,
where [A, B]=AB-(-1)^{m^{2}}BA is the superbracket).

5the converse is not true: if d is a locally free resolution of \mathcal{M} its symbol is not necessarily a

resolution of the symbol of \mathcal{M}- if only because filtrations must be dened to dene the symbol
and can be modied rather arbitrarily.
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\bullet If \mathcal{M} is a good \mathcal{A}‐module, (L, d) a good locally free resolution of \mathcal{M},  A\in End \mathcal{A}(\mathcal{A} $\phi$,
we set AsTr(A) =\mathrm{A}\mathrm{s}\mathrm{T}\mathrm{r}^{G}(\overline{A}) ,

where \overline{A} is any extension of A to (L, d) (such an

extension exists, and is unique up to homotopy i.e. up to a supercommutator).

\bullet Finally if \mathcal{M} is a locally free complex with symbol exact on char \mathfrak{g} , or a good \mathcal{A}-

module with support outside of Char \mathfrak{g} , it denes a \mathrm{K}‐theoretical element [\mathcal{M}]\in
 K_{Z}^{G}(X) ,

and its asymptotic index (the supertrace of the identity), is the image of

[M] by the index map of Theorem 2.5.

Remark. The equivariant trace or index are dened just as well for modules

admitting a projective resolution (projective meaning direct summand of some \mathcal{A}^{N},
with a projector not necessarily of degree 0 ). What does not work for these more

general objects is the relation to topological \mathrm{K}‐theory.

§3.2. Embedding

Let  $\Sigma$ be a  G‐symplectic cone, embedded equivariantly in T^{\cdot}M with M a compact

G‐manifold, and S an equivariant Szegö projector. As recalled in §1, the range  $\mu$ \mathbb{H} of S

is the sheaf of solutions of an ideal I\subset \mathcal{E}_{M} . The corresponding \mathcal{E}_{M} ‐module \mathcal{M}=\mathcal{E}_{M}/I
is good as one can see on the microlocal model.

We have \mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{E}}(\mathcal{M})=[I:I] ,
the set of  $\psi$ \mathrm{D}\mathrm{O} a such that Ia\subset I , acting on the

right. The map a\mapsto \mathrm{T}\mathrm{r}_{a}^{G}(\mathrm{T}\mathrm{r}_{a}^{G}f(1)=fa(1)) is an isomorphism from End \mathcal{E}(M) to the

algebra of Toeplitz operators \mathrm{m}\mathrm{o}\mathrm{d}. C^{\infty}. \mathcal{M} is a \mathcal{E}, \mathcal{E}' bimodule.

If \mathcal{P} is \mathrm{a} (good) \mathcal{E}'‐module, the transfered module is \mathcal{M}\otimes_{\mathcal{E}'}\mathcal{P} , which has the same

solution sheaf (\mathrm{H}\mathrm{o}\mathrm{m}(\mathcal{M}\otimes \mathcal{P}, \mathbb{H})=\mathrm{H}\mathrm{o}\mathrm{m}(\mathcal{P}, \mathrm{H}\mathrm{o}\mathrm{m}(\mathcal{M}, \mathrm{H})) and \mathrm{H}\mathrm{o}\mathrm{m}(\mathcal{M}, \mathbb{H})=\mathbb{H} Thus

the transfer preserves traces and indices.

This extends obviously to the case where  $\Sigma$ is embedded equivariantly in another

symplectic cone  $\Sigma$\subset$\Sigma$' : the small Toeplitz sheaf  $\mu$ \mathbb{H} is realized as \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{A}_{ $\Sigma$}}(\mathcal{M},  $\mu$ \mathbb{H}^{0}) ,

with \mathcal{M}=\mathcal{E}/I and I\subset \mathcal{E} is the annihilator of the Szegö projector S of  $\Sigma$.

Theorem 3.1. Let X', X be two compact contact G ‐manifolds and f : X\rightarrow X'

be an equivariant embedding. Then the K‐theoretical push‐forward (Bott homomor‐

phism) K_{X-Z}^{G}(X)\rightarrow K_{X-Z}^{G}, (X') commutes with the asymptotic G index.

Let F : \mathcal{A}_{ $\Sigma$}\rightarrow \mathcal{A}_{ $\Sigma$}' be an equivariant embedding of the corresponding Toeplitz

algebras (above f ), and let \mathcal{M} be the \mathcal{A}_{ $\Sigma$}' ‐module associated with the Szegö projector

S_{ $\Sigma$} . We have seen that transfer \mathcal{P}\mapsto \mathcal{M}\otimes \mathcal{P} preserves the asymptotic index.

Lemma 3.2. The K‐theoretical element (with support in  $\Sigma$) [\mathcal{M}]\in K_{ $\Sigma$}^{G}(T^{\cdot}M)
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is precisely the Bott element used to dene the Bott isomorphism K^{G}(X)\rightarrow K_{X}^{G} (X0).6

Proof: We have already noticed that \mathcal{M} is good; it has, locally (and globally), \mathrm{a}

good resolution. Its symbol is a locally free resolution of  $\sigma$(\mathcal{M})=C^{\infty}(X)/ $\sigma$(I) . Let us

identify a small equivariant tubular neighborhood of  $\Sigma$ with the normal tangent bundle

 N of  $\Sigma$ in  $\Sigma$^{0};N is a symplectic bundle; the ideal I endows it with a compatible positive

complex structure N^{c}
,

i.e. the first order jet of elements of  $\sigma$(I) are holomorphic in

the fibers of N^{c} ; if a, b are such symbols we have \displaystyle \{a, b\}_{N}=0;\frac{1}{i}\{a, \overline{a}\}_{N}\gg 0 . In such a

neighborhood a good symbol resolution is homotopic to the Koszul complex: the Koszul

complex is the complex (E, d) with E_{p}=\wedge^{-p}(N^{c*}) ( 0 if p>0 ), the dierential d at a

point with complex coordinates z of N is the interior product (contraction) d $\omega$=z\lrcorner $\omega$.

The \mathrm{K}‐theoretical element [(E, d)]\in G_{ $\Sigma$}^{G}($\Sigma$') is precis! ely the Bott element.

E.g. if $\Sigma$^{0}=\mathbb{C}^{N}-\{0\} ,
with Liouville form {\rm Im}\overline{z}.dz7

,
with basis the unit sphere

X=S^{2N-1}, \mathbb{H} the space of holomorphic functions on the sphere X'=S^{2N-1}, X\subset X

the diameter z_{1}=\cdots=z_{k}=0, $\Sigma$', \mathbb{H}'= the functions independent of z_{1} ,
. :.

; z_{k}, I is

the ideal spanned by the Toeplitz operators T_{\partial_{k}} . The transfer module \mathcal{M} is \mathcal{A}/I with

I=\displaystyle \sum_{0}^{k}z_{j}\mathcal{A} , its resolution is the standard Koszul complex.

Remark. It is always possible to embed a compact contact manifold in a canonical

contact sphere with linear \mathrm{G}‐action:

Lemma 3.3. Let  $\Sigma$ be a  G cone (with compact base),  $\lambda$ a horizontal 1‐form

homogeneous of degree 1, i.e.  L_{ $\rho$} $\lambda$= $\lambda$,  $\rho$\lrcorner $\lambda$=0 ,
where  $\rho$ is the radial vector field,

generating homotheties. Then there exists a homogeneous embedding  x\mapsto Z(x) of  $\Sigma$ in

a complex representation  V^{c} of G such that  $\lambda$=Im\overline{Z}.dZ

In this construction, Z must be homogeneous of degree \displaystyle \frac{1}{2} as above. This applies of

course if  $\Sigma$ is a symplectic cone,  $\lambda$ its Liouville form (the symplectic form is  $\omega$=d $\lambda$ and

 $\lambda$= $\rho$\lrcorner $\omega$) . We first choose a smooth equivariant function Y= (Yj), homogeneous of

degree \displaystyle \frac{1}{2} , realizing an equivariant embedding of  $\Sigma$ in  V-\{0\} ,
where V is a real unitary

G‐vector space (this always exists if the basis is compact). Then there exists a smooth

function X=(X) homogeneous of degree \displaystyle \frac{1}{2} such that  $\lambda$=2X.dY . We can suppose X

equivariant, replacing it by its mean \displaystyle \int g.X(g^{-1}x)dg if need be. Since Y is of degree \displaystyle \frac{1}{2}
we have 2 $\rho$\lrcorner dY=Y hence X.Y= $\rho$\lrcorner=0 . Finally we get

 $\lambda$={\rm Im}\overline{Z}.dZ with Z=X+iY

6if f : X\rightarrow Y is a map between manifolds (or suitable spaces), the \mathrm{K}‐theoretical push‐forward is the

topological translation of the Grothendieck direct image in \mathrm{K}‐theory (for algebraic or holomorphic
spaces). Its denition requires a spinc structure on the virtual normal of f (cf [8], §1.3) and this

always exists (canonically) if X, Y are almost symplectic or almost complex, or as here if f is an

immersion whose normal tangent bundle is equipped with a symplectic or complex structure.

7the coordinates zj are homogeneous of degree \displaystyle \frac{1}{2}.
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(the coordinates z_{j} on V are homogeneous of degree \displaystyle \frac{1}{2} so that the canonical form

{\rm Im}\overline{Z}.dZ is of degree 1)
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