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Birkhoff normal forms for superintegrable systems

By

Hidekazu Ito *

Abstract

We study the convergence problem of Birkhoff normalization for holomorphic Hamiltonian

systems, and show that there exists a convergent Birkhoff normalization if the number of

integrals is balanced with the resonance degree of the equilibrium point.

§1. Introduction

In this paper, we study the Birkhoff normalization for Hamiltonian systems. Let

H be a holomorphic function of z\in \mathrm{C}^{2n} near the origin:

(1.1)  H=H_{2}+H_{3}+H_{4}+\cdots ;

where  H_{j} are homogeneous polynomials in z=(z\mathrm{l}, . ::, z_{2n}) with z_{i}=x_{i}, z_{n+i}=y_{i}.

Let X_{H} denote the Hamiltonian vector field

\dot{z}=JH_{z}, J=\left(\begin{array}{ll}
O & I\\
-I & O
\end{array}\right),
where \dot{z}=dz/dt, H_{z}= {}^{t}(H_{z_{1}}, \ldots

;  H_{z_{2n}} ) is the gradient vector of H and I is the identity
matrix of degree n . The Poisson bracket is dened for any functions f and g as follows:

\{f, g\}=\langle f_{z},  Jg_{z}\rangle \rangle is the Euclidean inner product):

After a linear symplectic transformation, we may assume that

(1.2)  H_{2}=S+N, S=\displaystyle \sum_{k=1}^{n}$\lambda$_{k}x_{k}y_{k}, \{S, N\}=0,
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where N is the quadratic form with the property that the coecient matrix of X_{N}

is nilpotent. We allow here the degenerate situation where some of $\lambda$_{k} are equal to

zero. Here and in what follows, a transformation is called symplectic if it preserves the

standard symplectic structure \displaystyle \sum_{k=1}^{n}dy_{k}\wedge dx_{k}.

Denition 1.1. The Hamiltonian H is in Birkhoff normal fo rm (or we call H

itself Birkhoff normal form) if the identity \{H, S\}=0 holds. We also say generally that

a function f is in S ‐normal form if the identity \{f, S\}=0 holds.

Since \{H, S\}=X_{S}H=-X_{H}S ,
the relation \{H, S\}=0 implies

\bullet  H is invariant under the flow of X_{S} , i.e., H is averaged along orbits of X_{S}.
\bullet  S is invariant under the flow of X_{H} , i.e., S is an integral of X_{H}.

One can find a formal symplectic transformation  $\varphi$:z\mapsto z+O(|z|^{2}) such that  H\circ $\varphi$
is in Birkhoff normal form. More precisely, we have

Theorem 1.2. Let  H=H_{2}+H_{3}+\cdots be a Hamiltonian with  H_{2}=S+N

satisfy ing (1.2). Then,

(1) For any integer N\geq 2 ,
there exists a holomorphic symplectic transfO rmation  $\varphi$:z\mapsto

 z+O(|z|^{2}) such that

(1.3) H\circ $\varphi$(z)=h(z)+O(|z|^{N+1}) , \{h, S\}=0.

Hence there exists a formal symplectic transfO rmation  $\varphi$ such that \{H\circ $\varphi$, S\}=0.

(2) Let k=(k_{1}, . ::, k_{n})\in \mathrm{Z}^{n}, |k|=\displaystyle \sum_{j=1}^{n}|k_{j}|,  $\lambda$=($\lambda$_{1}, . :. ; $\lambda$_{n}) . If the condition

(1.4) \langle k,  $\lambda$\displaystyle \rangle(=\sum_{j=1}^{n}k_{j}$\lambda$_{j})=0 (|k|\leq N)\Rightarrow k=0

holds for some integer N\geq 4 ,
then the Birkhoff normal form h(z) is a function

(polynomial of degree \leq[N/2] ) of n variables $\omega$_{k}=x_{k}y_{k}(k=1, . . :, n) .

In the case (1.3) above, we say that H\circ $\varphi$(z) is in Birkhoff normal form up to

order N . The near‐to‐identity transformation  $\varphi$ is called Birkhoff transfO rmation. One

can prove item (1) using the generating function or Lie series technique to dene a

desired Birkhoff transformation. Furthermore, item (2) follows from comparison of the

coecients in both sides of the identity \{h, S\}=0 . See Lemma 3.1 in §3.
Under condition (1.4), which we call non‐resonance condition (up to order N), the

vector field X_{h} is solved explicitly. In fact, since h is a function of  $\omega$= ($\omega$_{1}, . . :; $\omega$_{n}) ,

\displaystyle \dot{x}_{k}=\frac{\partial h}{\partial$\omega$_{k}}x_{k}, \mathrm{y}_{k}=-\frac{\partial h}{\partial$\omega$_{k}}y_{k} (k=1, \ldots, n) ,
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where

\displaystyle \frac{d}{dt}$\omega$_{k}(t)=\dot{x}_{k}y_{k}+x_{k}\mathrm{y}_{k}=0
and therefore $\omega$_{k} are integrals of X_{h} . Hence the solution is expressed as

x_{k}(t)=e^{t$\Omega$_{k}}x_{k}(0) , y_{k}(t)=e^{-t$\Omega$_{k}}y_{k}(0) ($\Omega$_{k}=\displaystyle \frac{\partial h}{\partial$\omega$_{k}}( $\omega$(0)))
This means that the Birkhoff normal form under the non‐resonance condition (1.4) gives
a local approximation of a given Hamiltonian by integrable one.

If the Hamiltonian H is real analytic, one can dene the real Birkhoff normal form in

the same way as in Denition 1.1 with S replaced by a real quadratic normal form. Then

one can choose a transformation  $\varphi$ in Theorem 1.2 to be real analytic. In particular,
when the origin is an elliptic equilibrium point of  X_{H} ,

the Birkhoff normal form h under

the non‐resonance condition (1.4) becomes a function of n variables \displaystyle \hat{ $\omega$}_{k}=\frac{1}{2}(x_{k}^{2}+y_{k}^{2}) .

Therefore, the flow of the vector field X_{h} gives rise to periodic or quasi‐periodic motions

on a real torus \hat{ $\omega$}_{k}= const. (k=1, \ldots, n) ,
and hence KAM theory and Nekhoroshev

estimates can be applied to the Hamiltonian (1.3) with N\geq 4 (see [1]).
We consider complex normal form again because it is convenient to deal with also

for real analytic Hamiltonians. We note that, in the non‐resonance case, namely, when

$\lambda$_{1} ,
. :.

; $\lambda$_{n} are rationally independent (i.e,  N=\infty in (1.4)), there exists a formal Birkhoff

transformation  $\varphi$ such that

 H\circ $\varphi$(z)=h( $\omega$) ,  $\omega$= (!_{;}::. , $\omega$_{n}) .

Therefore, if  $\varphi$ is convergent, the vector field  X_{H} is integrable in the sense to be dened

below. However, there does not exist in general a convergent Birkhoff transformation

as C.L. Siegel [12] (more recently Pérez‐Marco [10]) showed. Then the question arises:

\mathrm{Q} : When does there exist a convergent Birkhoff transformation ?

One may relate this question to integrability of the original vector field. In fact, the

following holds.

Theorem 1.3 ([4]). Let  H=H_{2}+H_{3}+\cdots be a holomorphic Hamiltonian with

 H_{2}=S+N satisfy ing (1.2) and assume that $\lambda$_{1} ,
. . .

, $\lambda$_{n} are rationally independent.

Suppose that X_{H} has n integrals G_{1}(=H) , G_{2} ,
. .

:, G_{n} which are holomorphic and func‐

tionally independent near the origin. Then, there exists a holomorphic Birkhoff trans‐

formation  $\varphi$ . Furthermore, for any integral  G of X_{H},  G\circ $\varphi$ is a function of  n variables

$\omega$_{1} ,
. . .

, $\omega$_{n}.

In the above, the functions G_{1} ,
.

::, G_{n} are functionally independent if the gradi‐
ent vectors @G =@z;. ::, @G =@z are linearly independent on a dense open subset of
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the domain considered. Since  G_{k}\circ $\varphi$ are functions of !;: \cdot

:; $\omega$_{n} ,
we have \{G_{i}, G_{j}\}=

\{G_{i}\circ $\varphi$, G_{j}\circ $\varphi$\}=0 for any i, j=1 ,
.

::,
n. A 2n‐dimensional Hamiltonian vector field

X_{H} is called Liouville‐integrable or completely integrable if it has n integrals which are

functionally independent and Poisson commuting. In the case above, X_{H} is called ana‐

lytically Liouville‐integrable since the integrals G_{1} ,
. .

:; G_{n} are holomorphic. In the real

case, the well‐known Liouville‐Arnold theorem gives the description of the phase space

of smooth integrable system as the foliation of n‐dimensional invariant tori on which

the flow is periodic or quasi‐periodic. The case above with elliptic equilibrium point

corresponds to this situation.

Theorem 1.3 is a generalization of the previous results by Rüssmann [11] and Vey

[13] under some nondegeneracy condition. Its proof is constructive and uses the struc‐

ture of simultaneous normalization of n integrals. It is extended to simple resonance

cases [5, 7]. More recently, Zung [15] generalized Theorem 1.3 to general resonance cases

by developing new geometric method based on the toric characterization of Birkhoff nor‐

malization.

Theorem 1.4 ([15]). Let  H=H_{2}+H_{3}+\cdots be a holomorphic Hamiltonian with

 H_{2}=S+N satisfy ing (1.2). Suppose that X_{H} is analytically Liouville‐integrable. Then,
there exists a holomorphic Birkhoff transfO rmation  $\varphi$ . Furthermore, for any integral  G

of X_{H},  G\circ $\varphi$ is in  S ‐normal form.

Under the assumption of commuting relations among integrals, this theorem in‐

cludes Theorem 1.3 as a special case. In resonance cases, however, Theorem 1.4 does

not claim any further information about the Birkhoff normal  H\circ $\varphi$ ,
such as whether

 X_{H\circ $\varphi$} can be solved explicitly or not.

The aim of this note is to clarify this situation in resonance cases. To proceed fur‐

ther, we summarize dierent features with Birkhoff normal forms between non‐resonance

and resonance cases.

In non‐resonance case:

\bullet The Birkhoff normal form  H\circ $\varphi$ is uniquely determined independently of the choice

of the transformation  $\varphi$ ,
while  $\varphi$ is not uniquely determined. It is a power series in

 n variables $\omega$_{k}=x_{k}y_{k}.

\bullet The vector field  X_{H\circ $\varphi$} admits n Poisson commuting integrals $\omega$_{1} ,
. . .

, $\omega$_{n} and can

be solved explicitly in the new coordinates.

\bullet The number of functionally independent integrals of  X_{H} is at most n.

In resonance case:

\bullet The Birkhoff normal form  H\circ $\varphi$ depends on the choice of the transformation  $\varphi$ . It
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generally contains other \backslash resonant� terms in addition to those terms consisting of

$\omega$_{1} ,
. . .

, $\omega$_{n}.

\bullet The existence of a convergent Birkhoff transformation does not necessarily imply
the integrability of  X_{H} if the resonance degree q dened in §2 is greater than 1.

\bullet The Birkhoff normal form becomes more complicated in general as the resonance

degree  q increases.

\bullet It is possible that the number of functionally independent integrals exceeds  n.

Our purpose is to show that the non‐resonance feature holds true also in resonance

case if the number of integrals and the resonance degree are balanced. It leads to the

study of Birkhoff normal forms for the so‐called superintegrable (non‐commutatively
integrable) systems. Superintegrability is characterized by the existence of integrals
whose number is more than one half the dimension of the phase space. There are

many examples of such systems in classical mechanics, such as the Kepler problem, the

free rigid body motion (Euler‐Poinsot system) and etc. Nevertheless, it seems that the

Birkhoff normal form for superintegrable system has not been studied in detail until

now.

In the rest of the paper, we state the results in §2 and describe in §3 the idea of

the proof of the main theorem. We refer to [6] for the detailed proof.

§2. Statement of the results

\mathrm{a} . The main result Let \mathcal{R} be the discrete subgroup of \mathrm{Z}^{n} dened by

\displaystyle \mathcal{R} :=\{k= (k\mathrm{l}, . . . , k_{n})\in \mathrm{Z}^{n}|\langle k,  $\lambda$\rangle=0\}, \langle k,  $\lambda$\rangle=\sum_{j=1}^{n}k_{j}$\lambda$_{j}.
We call this group \mathcal{R} the resonance lattice for the quadratic form S=\displaystyle \sum_{k=1}^{n}$\lambda$_{k}x_{k}y_{k} . If

\dim_{\mathrm{Z}}\mathcal{R}=q ,
we say that the quadratic form S (or the equilibrium point z=0 ) is of

resonance degree q and call the discrete group \mathcal{R} the resonance lattice of degree q . Here

0\leq q\leq n-1 ,
and the cases q=0 and q=1 correspond to the non‐resonance and the

simple resonance cases respectively.
Let $\rho$^{(1)} ,

. .

:, $\rho$^{(q)}\in \mathrm{Z}^{n} be the generators of the resonance lattice \mathcal{R} . Then, there

exist n-q linearly independent vectors $\rho$^{(q+1)} ,
.

::, $\rho$^{(n)}\in \mathrm{Z}^{n} such that

(2.1) \langle$\rho$^{(i)}, $\rho$^{(j)}\rangle=0 (i=1, . . :;q, j=q+1, \ldots, n) .

We set

(2.2) $\omega$_{k}=x_{k}y_{k}, $\tau$_{k}=\displaystyle \sum_{j=1}^{n}$\rho$_{j}^{(k)}$\omega$_{j} (k=1, \ldots, n) ,



120 Hidekazu \mathrm{I}\mathrm{t}\mathrm{O}

where $\rho$^{(k)}=($\rho$_{1}^{(k)}, \ldots, $\rho$_{n}^{(k)}) . Furthermore, writing $\rho$^{(k)}=$\rho$_{+}^{(k)}-$\rho$_{-}^{(k)} with $\rho$_{+}^{(k)} and $\rho$_{-}^{(k)}
being vectors whose components are nonnegative integers, we dene the monomial $\omega$_{n+k}

by

(2.3) $\omega$_{n+k}=x^{$\rho$_{+}^{(k)}}y^{$\rho$_{-}^{(k)}} (k=1, \ldots, q) ,

where we used multi‐index notations. One can easily see that $\omega$_{1} ,
. . .

, $\omega$_{n+q} are in S‐

normal form. For example, if $\lambda$_{k}=0 ,
one may take $\rho$^{(k)}=e_{k} (the unit vector) and

then $\omega$_{n+k}=x_{k} . If $\lambda$_{k}\neq 0 for all k=1
,

. . .

;
n

,
then $\omega$_{n+1} ,

.

::, $\omega$_{n+q} are of degree \geq 2.

We now state our main result.

Theorem 2.1. Let  H=H_{2}+H_{3}+\cdots be a holomorphic function with  H_{2}=

S+N satisfy ing (1.2) and assume that S is of resonance degree q . Suppose that there

exist n+q integrals of X_{H} which are holomorphic and functionally independent near

the origin. Then there exists a holomorphic Birkhoff transfO rmation  $\varphi$ such that the

Hamiltonian  H\circ $\varphi$ becomes a function of  n-q variables $\tau$_{q+1} , :::; $\tau$_{n} . Furthermore the

following holds:

(1) The function  H\circ $\varphi$ is a convergent power series in  $\omega$_{1} ,
. .

:; $\omega$_{n} that is uniquely de‐

termined independently of the choice of  $\varphi$ . In particular, the nilpotent part of  H_{2}

vanishes, i.e., N=0.

(2) The functions $\omega$_{1} ,
. .

:; $\omega$_{n+q} are n+q functionally independent integrals of X_{H\circ $\varphi$} .

(3) For any integral G of X_{H},  G\circ $\varphi$ is in  S ‐normal form. It is a function of n+q

variables $\omega$_{1} ,
. .

:, $\omega$_{n+q} and can be written as Laurent series in those variables.

Remarks. (i) Items (1) -(3) are direct consequences of the fact that  H\circ $\varphi$ is a

function of the nq variables  $\tau$_{q+1} ,
:.

:; $\tau$_{n} . Apart from these items, we have the converse

assertion to Theorem 2.1: If there exists a holomorphic BirkhoHi transfO rmation  $\varphi$ such

that  H\circ $\varphi$ is a fu nction of the  n-q variables $\tau$_{q+1} ,
. .

:; $\tau$_{n} , then there exist n+q integrals
of X_{H} that are holomorphic and fu nctionally independent near the origin.

(ii) Theorem 2.1 is a natural generalization of Theorem 1.3, which corresponds to

the case q=0.

(iii) We do not assume any Poisson commuting relations among integrals. There‐

fore, Theorem 1.4 does not apply and the existence of a convergent Birkhoff transfor‐

mation is not trivial at all. Actually, $\omega$_{1} ,
. :.

; $\omega$_{n} are n Poisson commuting integrals of

X_{H\circ $\varphi$} and therefore X_{H} is Liouville‐integrable near the origin. However it is not the

assumption but a consequence of the theorem.

In Theorem 2.1, the vector field X_{H\circ $\varphi$} can be solved explicitly for the new sym‐

plectic coordinates (Birkhoff coordinates), and those solutions are conned on the
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level set of the map F(z)=($\omega$_{1}, \ldots, $\omega$_{n+q}) . The map F(z) can be taken also as

F(z)=(F_{1}, . :. ; F_{n+q}) with

\left\{\begin{array}{l}
F_{i}=$\tau$_{q+i}\\
F_{n-q+i}=$\tau$_{i}\\
F_{n+i}=$\omega$_{n+i}
\end{array}\right.
Then one can prove (see Lemma 3.1) that

(i=1, \ldots, n-q) ,

(i=1, \ldots, q) ,

(i=1, \ldots, q) .

\{F_{i}, F_{j}\}=0 for i=1
,

. . .

, n-q, j=1 ,
. . .

, n+q.

In this case, we have n-q commuting vector fields X_{F_{1}} ,
. .

:, X_{F_{n-q}} as well as their

integrals F_{1} ,
. . .

, F_{n+q} . Since H is a function of $\tau$_{q+1} ,
. . .

, $\tau$_{n} ,
one may replace one of

$\tau$_{q+1} ,
. .

:, $\tau$_{n} by H . This corresponds to the situation that were first studied as superin‐

tegrable systems by Nekhoroshev [9], and more recently is reformulated as the extended

integrability by Bogoyavlenski [2]. Furthermore, the case with F(z)=($\omega$_{1}, . :. , $\omega$_{n+q})
can be considered as a complex analytic version of superintegrable system with singu‐
larities in the sense of Michenko‐Fomenko [8] (see also [3]). See [6] for details.

\mathrm{b} . Relations between the number of integrals and the resonance degree
We can derive from Theorem 2.1 the following consequence for generally non‐integrable

systems. Here and in what follows, the number of integrals, denoted by ](integrals),
means the number of integrals of X_{H} which are holomorphic and functionally indepen‐
dent near the origin.

Corollary 2.2. Let  H=H_{2}+H_{3}+\cdots be a holomorphic function with  H_{2}=

S+N satisfy ing (1.2) and let q be a nonnegative integer. Then the following holds:

(1) If S is of resonance degree q ,
then ](integrals) \leq n+q.

(2) If ](integrals) =n+q ,
then S is of resonance degree \geq q.

(3) If ](integrals) =2n-1
,

then S is of resonance degree n-1 and the Birkhoff
normal form  H\circ $\varphi$ in Theorem 2.1 is a convergent power series in one variable

 S=\displaystyle \sum_{k=1}^{n}$\lambda$_{k}x_{k}y_{k}.

The proof of this corollary is straightforward. In fact, items (1) and (2) follow from

the item (3) of Theorem 2.1. Item (3) follows from (2) since the resonance degree q is

at most n-1 and $\tau$_{n} is an integer multiple of H_{2}=S in the case q=n-1.
It seems very special that an n degrees of freedom system possesses 2n-1 integrals,

but there are some well‐known examples such as the Kepler problem and the Calogero
model. The latter is a model describing the motions of interacting particles on the line
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and is dened by the Hamiltonian

H(x, y)=\displaystyle \sum_{k=1}^{n}(y_{k}^{2}+$\alpha$^{2}x_{k}^{2})+\sum_{1\leq k<l\leq n}\frac{1}{(x_{k}-x_{l})^{2}} ( $\alpha$\in \mathrm{R}\backslash \{0\}) ,

to which item (3) above can be applied near equilibria.

\mathrm{c} . Real analytic case When the Hamiltonian is real analytic, Theorem 2.1

can be stated in real analytic category with S replaced by real quadratic normal form.

We state it here only in the case of elliptic equilibrium point, where the real quadratic
normal form is given by

\displaystyle \hat{S}=\sum_{k=1}^{n}\frac{$\alpha$_{k}}{2}(x_{k}^{2}+y_{k}^{2}) ($\alpha$_{k}\in \mathrm{R}) .

We say that \hat{S} is of resonance degree q if the resonance lattice

\mathcal{R}:=\{k\in \mathrm{Z}^{n}|\langle k,  $\alpha$\rangle=0\},  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{n}) ,

is of dimension q over Z. Correspondingly, we replace $\omega$_{k} and $\tau$_{k} by

\left\{\begin{array}{ll}
!_{k}=\frac{1}{2}(x_{k}^{2}+y_{k}^{2}) , & \hat{ $\tau$}_{k}=\sum_{j=1}^{n}$\rho$_{j}^{(k)}!_{j} (k=1, \ldots, n) ,\\
\hat{ $\omega$}_{n+k}={\rm Im} f_{k}(x, y) & (k=1, \ldots, q)
\end{array}\right.
with

f_{k}(x, y)=$\omega$_{n+k}(\displaystyle \frac{x+iy}{\sqrt{2}}, \frac{y+ix}{\sqrt{2}})=\prod_{j=1}^{n}(\frac{x_{j}+iy_{j}}{\sqrt{2}})^{$\rho$_{+j}^{(k)}}(\frac{y_{j}+ix_{j}}{\sqrt{2}})^{$\rho$_{-j}^{(k)}},
where i=\sqrt{-1} and {\rm Im} f_{k}(x, y) denotes the imaginary part of the complex‐valued
function f_{k}(x, y) in the real variable (x, y)\in \mathrm{R}^{2n} . Then we have

Theorem 2.3. In the assumptions of Theorem 2.1, suppose that H is real ana‐

lytic near the origin and that S is replaced by the real polynomial \hat{S} . Then there exists

a real analytic symplectic transfO rmation  $\varphi$:z\mapsto z+O(|z|^{2}) such that \{H\circ $\varphi$, \hat{S}\}=0
and items (1), (2) and (3) of Theorem 2.1, except the second assertion of (3), hold with

$\omega$_{k}, $\tau$_{j} replaced by \hat{ $\omega$}_{k} and \hat{ $\tau$}_{j} . Moreover, each connected component of the regular level

set of the real map F(z)=(\hat{ $\omega$}_{1}, \ldots,\hat{ $\omega$}_{n+q}) is a torus of dimension n-q.

Remark. This theorem holds also when \hat{ $\omega$}_{n+k} are dened as the real parts of

f_{k}(x, y) .
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§3. Sketch of the proof of Theorem 2.1

We give a sketch of the proof of Theorem 2.1 in two steps. For details, we refer to

[6].

\mathrm{a} . First we describe the idea of the proof of the existence of a convergent Birkhoff

transformation. The proof is purely constructive and uses the rapidly convergent itera‐

tion technique. First of all, we note the following

Lemma 3.1. Let S=\displaystyle \sum_{j=1}^{n}$\lambda$_{j}x_{j}y_{j} and \mathcal{R} the resonance lattice of degree qfor
S. Let f be a power series written as f=\displaystyle \sum_{ $\alpha,\ \beta$\in \mathrm{Z}_{+}^{n}}c_{ $\alpha \beta$}x^{ $\alpha$}y^{ $\beta$} . Then the following holds:

(1) f is in S ‐normal form if and only if

c_{ $\alpha \beta$}=0 if  $\alpha$- $\beta$\not\in \mathcal{R}.

(2) Let $\tau$_{1} ,
. . .

, $\tau$_{n} be the functions given by (2.2). Then f is in S ‐normal form if and

only if the following n-q identities hold:

\{f, $\tau$_{k}\}=0 (k=q+1, \ldots n) .

(3) The monomials !;:::; $\omega$_{n+q} given by (2.2) and (2. 3) are in S ‐normal form and

functionally independent.

In fact, direct calculations yield the following formulae:

\displaystyle \{f, S\}=\sum_{ $\alpha,\ \beta$\in \mathrm{Z}_{+}^{n}}c_{ $\alpha \beta$}\langle $\alpha$- $\beta$,  $\lambda$\rangle x^{ $\alpha$}y^{ $\beta$}, \displaystyle \{f, $\tau$_{k}\}=\sum_{ $\alpha,\ \beta$\in \mathrm{Z}_{+}^{n}}c_{ $\alpha \beta$}\langle $\alpha$- $\beta$, $\rho$^{(k)}\rangle x^{ $\alpha$}y^{ $\beta$}.

Then, it is straightforward to prove items (1) -(3) except the functional independence of

!;::. ; $\omega$_{n+q} . The last assertion can be shown by carrying out elementary transforma‐

tions for the Jacobian matrix @ (!;. :. ; $\omega$_{n+q})/\partial(z_{1}, . . :; z_{2n}) .

We have the following crucial fact about the algebra of all power series in S‐normal

form.

Lemma 3.2. Let S=\displaystyle \sum_{j=1}^{n}$\lambda$_{j}x_{j}y_{j} be a quadratic form of resonance degree q

and let \mathcal{B} be the set of all power series of z\in \mathrm{C}^{2n} in S ‐normal form. Then \mathcal{B} is the Lie

algebra generated by a finite number of monomials v_{1} ,
. . .

, v_{N}(N\geq n+q) such that

(1) v_{i}=$\omega$_{i} fori=1 ,
.

::, n+q,

(2) v_{n+q+1} ,
.

::, v_{N} can be written as the quotients of two monomials in $\omega$_{1} ,
.

::, $\omega$_{n+q}.
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Proof. By Lemma 3.1 (2), the S‐normal forms are invariant under the \mathrm{T}^{n-q} ‐action

generated by the vector fields X_{i$\tau$_{q+1}} ,
. .

:; X_{i$\tau$_{n}} with i=\sqrt{-1} (This fact played a key
role in proving Zung�s theorem [15]). This implies that \mathcal{B} is finitely generated. See [6]
for its elementary proof without using the knowledge of invariant theory.

Let us choose the generators v_{1} ,
. .

:; v_{N} satisfying (1). To see item (2), let x^{ $\alpha$}y^{ $\beta$} be

a monomial in S‐normal form. Then, since

 $\alpha$- $\beta$=\displaystyle \sum_{j=1}^{q}c_{j}$\rho$^{(j)}\in \mathcal{R} (c_{j}\in \mathrm{Z}) ,

we have

x^{ $\alpha$}y^{ $\beta$}=x^{ $\alpha$- $\beta$}(xy)^{$\beta$_{;}} x^{ $\alpha$- $\beta$}=\displaystyle \prod_{j=1}^{q}(x^{$\rho$^{(j)}})^{c_{j}},
where (xy)^{ $\beta$}=\displaystyle \prod_{j=1}^{n}(x_{j}y_{j})^{$\beta$_{j}} . Here x^{$\rho$^{(j)}} can be expressed as

( j ) ( j ) x^{$\rho$_{+}^{(j)}}y^{$\rho$_{-}^{(j)}}
x^{$\rho$^{(j)}}=x^{ $\rho$}+-$\rho$_{-}=\displaystyle \overline{(xy)^{$\rho$_{-}^{(j)}}}=\frac{$\omega$_{n+j}}{(xy)^{$\rho$_{-}^{(j)}}}.

This proves item (2). \square 

The desired Birkhoff transformation is obtained as the composition of innite num‐

ber of symplectic transformations. Each step is described in the following lemma. Below,

P_{N}W denotes the sum of all terms in S‐normal form contained in W.

Lemma 3.3. Let  H=H_{2}+H_{3}+\cdots be a holomorphic function with  H_{2}=S+N

satisfy ing (1.2). Assume that it is in Birkhoff normal form up to order s_{1}+d-1

(s_{1}=2, d\geq 1) . Then there exists a unique polynomial W of the form

(3.1) W=W^{d+2}+\cdots+W^{2d+1} with P_{N}W=0,

W^{l} being homogeneous polynomials of degree l
,

such that the time‐1 map  $\varphi$=\exp X_{W}
takes H into Birkhoff normal form up to order s_{1}+2d-1.

This proves the existence of a formal Birkhoff transformation as the limit of iteration

procedure. We will give a proof of this lemma below in describing the simultaneous

normalization of integrals.
In the following, for any power series f=f(z) with f(0)=0 ,

we use the notation

 f=f^{0}+f^{1}+\cdots ;  f^{0}\not\equiv 0 (\deg f^{0}=s\geq 1) ,

where f^{d} (d=0,1, . . :) denotes the homogeneous polynomial of degree s+d . We say

that f is in S ‐normal form up to order s+d if the polynomial f^{0}+f^{1}+\cdots+f^{d} is in

S‐normal form.

The structure of the simultaneous normalization is described as follows:
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Lemma 3.4. Let  H=H_{2}+H_{3}+\cdots be a holomorphic function with  H^{0}=H_{2}=
S+N satisfy ing (1.2). Let G be an integral of X_{H} . Assume that H is in S ‐normal

form up to order s_{1}+d-1(s_{1}=\deg H^{0}=2) . Then G is in S ‐normal form up to order

s+d-1(s=\deg G^{0}) .

This lemma can be proved by comparing homogeneous parts of the identity \{G, H\}=
0([6,5]) .

Let G_{1}=H, G_{2} ,
. .

:; G_{n+q} be integrals of the vector field X_{H} that are holomorphic
and functionally independent near the origin. By Ziglin�s lemma ([14, 4]), we may

assume that the lowest order parts G_{1}^{0} ,
. . .

, G_{n+q}^{0} are functionally independent.
Let \deg G_{i}^{0}=s_{i}\geq 1(s_{1}=2) . In view of Lemma 3.4, assume that G_{i}(i=

1
,

. . .

, n+q) are in S‐normal form up to order s_{i}+d-1 . Then they can be written in

the form

(3.2) G_{i}(z)=g_{i}(z)+\hat{G}_{i}(z) ; g_{i}=P_{N}g_{i}, \hat{G}_{i}=O(|z|^{s_{i}+d}) .

We call g_{i} and \hat{G}_{i} the normal form part of G_{i} and the remainder part of G_{i} respectively.
Let  $\varphi$=\exp X_{W} be a symplectic transformation with W of the form (3.1). Then

it can be written in the form

 $\varphi$(z)=z+JW_{z}(z)+O(|z|^{2d+1})

and hence we have

G_{i}\circ $\varphi$(z)=g_{i}(z)+\{g_{i}(z), W(z)\}+\hat{G}_{i}(z)+O(|z|^{s_{i}+2d}) .

It turns out that  G_{i}\circ $\varphi$ are in  S‐normal form up to order s_{i}+2d-1 if and only if W

satises equations

\{g_{i}(z), W(z)\}=-P_{R}\hat{G}_{i}(z)+O(|z|^{s_{i}+2d}) (i=1, . . :; n+q) ,

where P_{R}=I-P_{N} , namely P_{R}\hat{G}_{i}=\hat{G}_{i}-P_{N}\hat{G}_{i} . By comparing homogeneous parts of

degree s_{i}+l ,
we obtain the recursive relations

(3.3) \displaystyle \{g_{i}^{0}, W^{l+2}\}=-P_{R}\hat{G}_{i}^{l}-\sum_{ $\nu$=1}^{l-d}\{g_{i}^{ $\nu$}, W^{l+2- $\nu$}\} (i=1, . . :, n+q)
for l=d, d+1 ,

. .

:;
2d-1 . We note that g_{1}^{0}=H_{2}=S+N . Assuming W^{ $\nu$}(v=

d+2 ,
. :.

; l+1) to be determined in such a way that P_{N}W^{ $\nu$}=0 ,
one can determine

a unique polynomial W^{l+2} satisfying (3.3) with i=1 and the condition P_{N}W^{l+2}=0.
See [6] ([5]) for its proof. In the case when H_{2} is semi‐simple, i.e., H_{2}=S ,

this can be

easily checked. In fact, setting W^{l+2}=\displaystyle \sum_{ $\alpha,\ \beta$}c_{ $\alpha \beta$}x^{ $\alpha$}y^{ $\beta$} ,
the equation above reads

\displaystyle \sum_{ $\alpha,\ \beta$\in \mathrm{Z}_{+}^{n}}c_{ $\alpha \beta$}\langle $\beta$- $\alpha$,  $\lambda$\rangle x^{ $\alpha$}y^{ $\beta$}= known terms
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Then, the coecients c_{ $\alpha \beta$} are uniquely determined if  $\beta$- $\alpha$\not\in \mathcal{R} . This proves the claim.

We now estimate the polynomial W determined above by using the fact that W

satises the system of n+q equations (3.3). Since g_{i}^{ $\nu$} are functions of n+q variables

!;::. ; $\omega$_{n+q} ,
we have

\displaystyle \{g_{i}^{ $\nu$}, W^{l+2- $\nu$}\}=\sum_{j=1}^{n+q}\frac{\partial g_{i}^{ $\nu$}}{\partial$\omega$_{j}}\{$\omega$_{j}, W^{l+2- $\nu$}\} (v=0,1, \ldots, l-d) .

Here \partial g_{i}^{ $\nu$}/\partial$\omega$_{j} is not generally holomorphic at the origin. However it turns out that

a_{ij}^{ $\nu$}(z):=M(z)\displaystyle \frac{@g_{i}^{ $\nu$}}{\partial$\omega$_{j}}, M(z)=\prod_{j=1}^{n+q}$\omega$_{j},
are polynomials in z for any i, j, v

,
and hence holomorphic at the origin. Multiplying

the both sides of (3.3) by M(z) ,
we have the system of n+q equations

\displaystyle \sum_{j=1}^{n+q}a_{ij}^{0}(z)\{$\omega$_{j}, W^{l+2}\}=F_{i}^{l}(z) (i=1, \ldots, n+q) ,

where

F_{i}^{l}(z)=-M(z)P_{R}\displaystyle \hat{G}_{i}^{l}-\sum_{ $\nu$=1}^{l-d}\sum_{j=1}^{n+q}a_{ij}^{ $\nu$}(z)\{$\omega$_{j}, W^{l+2- $\nu$}\}.
The functional independence of the lowest order parts g_{1}^{0} ,

. . .

, g_{n+q}^{0} is equivalent to the

condition

\det(a_{ij}^{0}(z))_{i,j=1,\ldots,n+q}\neq 0 on a dense open subset $\Omega$' of \mathrm{C}^{2n}.

One can prove the following

Lemma 3.5. Let G_{i} (i=1, . ::, n+q) be holomorphic functions of the form

(3.2), and assume that their lowest order parts are functionally independent. Let W be

the polynomial given in Lemma 3.3. Then D_{k}W^{l+2}:=\{$\omega$_{k}, W^{l+2}\} can be expressed as

follows:

(3.4) D_{k}W^{l+2}=\displaystyle \frac{q_{k}^{l}(z)}{p(z)} (k=1, . ::, n+q;l=d, . . :, 2d-1)
with

\left\{\begin{array}{l}
p(z)=\det(a_{ij}^{0}(z))_{i,j=1,\ldots,Q},\\
q_{k}^{l}(z)=\det (a_{Q1}^{0}a_{11}^{0} \dot{F}_{Q}^{l}F_{1}^{l}(k)
\end{array}\right. . . . a_{QQ}^{0}a_{1,.Q}^{0}:) ,

(Q=n+q) .
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Here the polynomials q_{k}^{l}(z) are divisible by p(z) .

The formula (3.4) plays a key role in making estimate of W . To explain it, let r>0

be a small parameter and dene a polydisk

$\Omega$_{r} :=\{z\in \mathrm{C}^{2n}||z_{i}|<$\delta$_{i}r (i=1, \ldots, 2n)\}

with some constants 0<$\delta$_{i}<1 . Here we can choose the constants $\delta$_{i} in such a way that

|p(z)|\geq c_{1}r^{s} on \triangle_{r} :=\{z\in \mathrm{C}^{2n}||z_{i}|=$\delta$_{i}r (i=1, \ldots, 2n)\},

where z=(z\mathrm{l}, . ::, z_{2n}) , s=\deg p(z) and c_{1}>0 is a constant which is independent of

r.

Let A() be the space of power series in z which are absolutely convergent on \overline{ $\Omega$}_{r},
where \overline{ $\Omega$}_{r} is the closure of $\Omega$_{r} . For a function f=f^{0}+f^{1}+\cdots\in A($\Omega$_{r}) ,

we introduce

the notations

|f|_{r}:=z\displaystyle \in \mathrm{m}_{\frac{\mathrm{a}}{ $\Omega$}}\mathrm{x}r|f(z)|, \Vert f\Vert_{r}:=\sum_{d=0}^{\infty}|f^{d}|_{r}, \Vert f\Vert_{r,m}:=\frac{\Vert f\Vert_{r}}{r^{m}},
where m is an arbitrary integer. We note that the holomorphic function f\in A()
attains the maximum |f|_{r} at a point belonging to \triangle_{r} . Then, using the formula (3.4),
we have

\displaystyle \Vert D_{k}W^{l+2}\Vert_{r}\leq\frac{\Vert q_{k}^{l}(z)||_{r}}{\min_{z\in\triangle_{r}}|p(z)|}\leq\frac{1}{c_{1}}\Vert q_{k}^{l}(z)\Vert_{r,s}.
This is the fundamental step leading to the estimate of W in the form

\Vert W\Vert_{r}\leq c_{2}\Vert|\hat{G}\Vert|_{r},

where c_{2}>0 is a constant independent of r
,

and

\displaystyle \Vert|\hat{G}\Vert|_{r}:=\sum_{i=1}^{n+q}\Vert\hat{G}_{i}\Vert_{r,s_{i}-2}-.
Here the notation \hat{G}_{i} denotes the majorant series of \hat{G}_{i} . See [6] for the proof as well as

proofs of the later part.

Let us introduce the notation

\displaystyle \Vert|g\Vert|_{r}:=\sum_{i=1}^{n+q}\Vert\overline{g}_{i}\Vert_{r,s_{i}-2}.
Then, the final estimate of one iteration step is given as follows:
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Lemma 3.6. In addition to the assumption of Lemma 3.5, assume that  G_{i}\in

 A($\Omega$_{r})(i=1, . :. ; n+q) . Then, there exists a suciently small r_{0}>0 such that, for any

0<r'<r<r_{0},  $\sigma$=r-\displaystyle \frac{2}{5}(r-r') and  $\rho$=r-\displaystyle \frac{1}{5}(r-r the symplectic transfo rmation

 $\varphi$=\exp X_{W} described in Lemma 3.3 is holomorphic on the domain $\Omega$_{ $\sigma$} and takes $\Omega$_{ $\sigma$}
into $\Omega$_{ $\rho$} . Moreover, the normal form part g_{i}^{0} and the remainder part \hat{G}_{i}^{0} of  G_{i}^{0}=G_{i}\circ $\varphi$
satisfy the following estimates:

\displaystyle \Vert|g'\Vert|_{r'}\leq(\frac{r'}{r})^{2}\{\Vert|g\Vert|_{r}+\Vert|\hat{G}\Vert|_{r}(\frac{r'}{r})^{d}\},

\displaystyle \Vert|\hat{G}'\Vert|_{r'}\leq c_{3}\Vert|\hat{G}\Vert|_{r}\{\frac{\Vert|\hat{G}\Vert|_{r}}{r^{2}(1-\frac{r}{r})^{2n+5}}+\frac{(\frac{5r^{0}}{4r+r})^{2d+2}}{(1-\frac{r'}{r})^{2n+2}}\}
Here C3 is a positive constant independent of r, r^{0}

This estimate is good enough to prove uniform convergence of the iteration proce‐

dure. For the proof of this lemma and the uniform convergence, we refer to [6].

\mathrm{b} . We give a brief sketch of the proof of the fact that the Birkhoff normal form

 H\circ $\varphi$ depends only on  n-q variables $\tau$_{q+1} ,
. .

:, $\tau$_{n} and is uniquely determined.

Let us denote H and G_{k} in place of H\circ $\varphi$,  G_{k}\circ $\varphi$ . By Lemma 3.2,  H and G_{k} are

functions of n+q variables $\omega$_{1} ,
.

::, $\omega$_{n+q} . Since G_{1} ,
. . .

; G_{n+q} are integrals of X_{H} ,
we

have the identities \{H, G_{k}\}=0 (k=1, \ldots; n+q) . Then we have

\displaystyle \{H, G_{k}\}=\sum_{i=1}^{n+q}(\sum_{j=1}^{n+q}\frac{\partial G_{k}}{\partial$\omega$_{j}}\{$\omega$_{i}, $\omega$_{j}\})\frac{@H}{\partial$\omega$_{i}}=0 (k=1, \ldots, n+q) ,

which can be written in vector form

DG( $\omega$)AH_{ $\omega$}=0.

Here

DG( $\omega$)=(\displaystyle \frac{@G_{i}}{\partial$\omega$_{j}})_{i,j=1,\ldots,n+q}, A=(\{$\omega$_{i}, $\omega$_{j}\})_{i,j=1,\ldots,n+q}, H_{ $\omega$}=\left(\begin{array}{l}
H_{$\omega$_{1}}\\
\vdots\\
 H_{$\omega$_{n+q}}
\end{array}\right) .

The functional independence of G_{1} ,
.

::, G_{n+q} implies that DG( $\omega$) is nonsingular for a

generic set of variables, and then we have the identity

(3.5) AH_{ $\omega$}=0.
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By simple computations, we see that

\left\{\begin{array}{ll}
\{$\omega$_{i}, $\omega$_{j}\}=0 & (i, j=1, \ldots, n) ,\\
(j) & \\
\{$\omega$_{i}, $\omega$_{n+j}\}=-$\rho$_{i}$\omega$_{n+j} & (i=1, . :. , n, j=1, \ldots, q) .
\end{array}\right.
Using these relations and the linear independence of $\rho$^{(1)} ,

. . .

, $\rho$^{(q)} ,
one can deduce from

comparison of the first n rows of (3.5) that

\displaystyle \frac{\partial H}{\partial$\omega$_{n+j}}=0 (j=1, \ldots, q) .

Furthermore, comparing (n+j) ‐th rows of (3.5) for j=1 ,
. . .

; q ,
one can prove (see [6]

for details) that

\displaystyle \frac{\partial H}{\partial$\tau$_{j}}=0 (j=1, \ldots, q) .

Hence  H\circ $\varphi$ depends only on the variables  $\tau$_{q+1} ,
.

::, $\tau$_{n} and in particular, the quadratic
form H_{2} does not have the nilpotent part.

Finally, the proof of the uniqueness of the Birkhoff normal form goes as follows.

Let $\varphi$_{1} be a convergent Birkhoff transformation such that H\circ$\varphi$_{1} can be written as a

convergent power series in n-q variables $\tau$_{q+1} ,
. . .

, $\tau$_{n} . Suppose that H is taken into

Birkhoff normal form by another Birkhoff transformation $\varphi$_{2} . Then the transformation

 $\varphi$=$\varphi$_{1}^{-1}\circ$\varphi$_{2} takes the Birkhoff normal form K_{1}=H\circ$\varphi$_{1} into another Birkhoff normal

form K_{2}=H\circ$\varphi$_{2} . Our aim is to prove K_{1}=K_{2}.

Lemma 3.7. Let h(z) be a power series in z which depends only on $\tau$_{q+1} ,
. :.

, $\tau$_{n},

and let W be a power series with W(0)=0 in S ‐normal form. Then h is invariant

under the map \exp X_{W}.

Proof. First we note that \{h, W\}=0 . In fact, by Lemma 3.1 (2), we have

\displaystyle \{h, W\}=\sum_{k=q+1}^{n}\frac{\partial h}{\partial$\tau$_{k}}\{$\tau$_{k}, W\}=0.
We recall the Baker‐Cambell‐Hausdorff formula

h\displaystyle \circ\exp X_{W}=\sum_{m=0}^{\infty}\frac{1}{m!}ad_{W}^{m}h ; ad_{W}^{0}h=h, ad_{W}^{m}h=\{ad_{W}^{m-1}h, W\}(m=1,2, \ldots) .

Then we see that the identity \{h, W\}=0 implies the identity h\circ\exp X_{W}=h. \square 

We note that the transformation  $\varphi$:z\mapsto z+O(|z|^{2}) can be written in the form

\left\{\begin{array}{l}
 $\varphi$=$\varphi$^{( $\nu$)}\circ $\psi$; $\varphi$^{( $\nu$)}=$\varphi$_{1}\circ \cdots\circ$\varphi$_{ $\nu$}, $\varphi$_{ $\nu$}=\exp X_{W_{ $\nu$}} (v=1,2, \ldots)\\
 $\psi$(z)=z+O(|z|^{2^{ $\nu$}+1}) ,
\end{array}\right.
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where v is an arbitrary positive integer and W_{ $\nu$} is a polynomial of the form W_{ $\nu$}=W^{d+2}+
. . . +W^{2d+1} with d=2^{ $\nu$-1} (v=1,2, . . :) . Then, one can prove that each polynomial
W_{ $\nu$} is in S‐normal form. In fact, suppose that W_{1} ,

. :.

, W_{ $\nu$} are in S‐normal form. Then,

using Lemma 3.7, we have K_{1}\circ$\varphi$^{( $\nu$)}=K_{1} because K_{1} depends only on $\tau$_{q+1} ,
. . .

, $\tau$_{n}.

Let h=K_{1}\circ$\varphi$^{( $\nu$)}(=K_{1}) and $\varphi$_{ $\nu$+1}=\exp X_{W_{ $\nu$+1}} with W_{ $\nu$+1}=W^{d+2}+\cdots+W^{2d+1}
(d=2^{ $\nu$}) . Then we have

h\circ$\varphi$_{ $\nu$+1}=h(z)+\{h, W_{ $\nu$+1}\}+O(|z|^{s_{0}+2d})

Since this function is in S‐normal form at least up to order s_{0}+2d-1, \{h, W_{ $\nu$+1}\} has

to be in S‐normal form up to order s_{0}+2d-1 . In particular, its lowest order part

\{h^{0}, W^{d+2}\} is in S‐normal form. Since h^{0}=S ,
this implies that \{S, W^{d+2}\}=0 and

hence W^{d+2} is in S‐normal form. One can also prove inductively that W^{d+3} ,
.

::, W^{2d+1}

(and hence W_{ $\nu$+1} ) are in S‐normal form. Then it follows from Lemma 3.7 that h\circ$\varphi$_{ $\nu$+1}=
h . By induction, it leads to the proof of K_{1}=K_{2} and completes the proof of (1) of

Theorem 2.1.
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