Difference algebra associated to the q-Painlevé equation of type $A_7^{(1)}$

By

Seiji Nishioka*

Abstract

In this article we will see the notion of decomposable extension and a property of solutions of q-Painlevé equation of type $A_7^{(1)}$ as its example. We also show that difference fields are completely different from differential ones.

§1. Introduction

In his [7] the author defined the decomposable extension, a sort of difference extensions, and studied a property of solutions of q-Painlevé equation of type $A_7^{(1)}$. In this paper we introduce the decomposable extension.

The notations on difference algebra are referred to Cohn [2]. A difference field $\mathcal{K} = (K, \tau)$ is a pair of a field K and an isomorphism τ of K into K. A difference field $\mathcal{K}' = (K', \tau')$ is a difference overfield of a difference field $\mathcal{K} = (K, \tau)$ if $K' \supset K$ and $\tau'|_K = \tau$.

The following is the definition of the decomposable extension, a difference analogue of K. Nishioka's in [5].

Definition 1.1. Let \mathcal{U} be a difference field, \mathcal{L}/\mathcal{K} be a difference field extension in \mathcal{U} of finite transcendence degree and $n = \text{tr.} \deg L/K$. We define \mathcal{U} -decomposable extensions inductively.

1. If n = 0 or 1 then \mathcal{L}/\mathcal{K} is \mathcal{U} -decomposable.

Received February 11, 2008. Revised July 10, 2008. Accepted July 18, 2008.

²⁰⁰⁰ Mathematics Subject Classification(s): 12H10, 39A05, 39A13

Key Words: difference algebra, strongly normal extension, q-Painlevé equations

^{*}Research Fellow of the Japan Society for the Promotion of Science, Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914, Japan.

Seiji Nishioka

2. When n > 1, \mathcal{L}/\mathcal{K} is \mathcal{U} -decomposable if there exists a difference overfield $\mathcal{E} \subset \mathcal{U}$ of \mathcal{K} such that tr. deg $E/K < \infty$, E is free from L over K and there exists a difference intermediate field \mathcal{M} of \mathcal{LE}/\mathcal{E} such that tr. deg $LE/M \ge 1$, tr. deg $M/E \ge 1$, \mathcal{LE}/\mathcal{M} is \mathcal{U} -decomposable and \mathcal{M}/\mathcal{E} is \mathcal{U} -decomposable.

The transcendence degree is related to the order of algebraic difference equations. On the one hand a solution of an algebraic difference equation of order n over a difference field \mathcal{K} is an element of some difference overfield \mathcal{L} of \mathcal{K} satisfying tr. deg $L/K \leq n$. On the other hand, for a difference field extension \mathcal{L}/\mathcal{K} of tr. deg L/K = n, every element of \mathcal{L} satisfies an algebraic difference equation over \mathcal{K} of order not exceeding n.

An additional requirement $\mathcal{E} = \mathcal{K}$ in the definition let us take a glance at a basic notion of the decomposable extension. In that case a \mathcal{U} -decomposable extension \mathcal{L}/\mathcal{K} of tr. deg $L/K \geq 2$ is divisible by some difference intermediate field \mathcal{M} of \mathcal{L}/\mathcal{K} into two \mathcal{U} decomposable extensions \mathcal{L}/\mathcal{M} and \mathcal{M}/\mathcal{K} of positive transcendence degree. Repeating this operation we obtain a chain of difference field extensions

$$\mathcal{K} = \mathcal{N}_0 \subset \mathcal{N}_1 \subset \cdots \subset \mathcal{N}_n = \mathcal{L},$$

where tr. deg $N_i/N_{i-1} = 1$ for all i $(1 \leq i \leq n)$. Let f be a transcendence basis of N_i/N_{i-1} . Then f satisfies some algebraic difference equation of order 1, and \mathcal{N}_i is a algebraic overfield of $\mathcal{N}_{i-1}\langle f \rangle = \mathcal{N}_{i-1}(f, \tau f, \tau^2 f, \ldots)$, where τ is the operator of \mathcal{L} . Hence the extension \mathcal{L}/\mathcal{K} seems to be an extension constructed of solutions of algebraic difference equations of order 1. The extension \mathcal{E}/\mathcal{K} extends the set from which we choose the coefficients of the algebraic difference equations.

$\S 2$. Properties and examples of decomposable extensions

In this section we introduce some properties and examples of decomposable extensions. We will mention some relations between decomposable extensions and strongly normal extensions.

A solution of algebraic difference equations over a difference field \mathcal{K} is an element of some difference overfield \mathcal{L} of \mathcal{K} satisfying the equations.

Example 2.1. Let f be a solution of an algebraic difference equation of order 1 over a difference field \mathcal{K} . Then $\mathcal{K}\langle f \rangle / \mathcal{K}$ is $\mathcal{K}\langle f \rangle$ -decomposable because tr. deg $K\langle f \rangle / \mathcal{K} \leq$ 1. Note that the difference Riccati equations over \mathcal{K} are algebraic difference equations of order 1 over \mathcal{K} .

Lemma 2.2. Let \mathcal{U} be a difference field and \mathcal{L}/\mathcal{K} a \mathcal{U} -decomposable extension. For any difference overfield \mathcal{U}' of \mathcal{U} the extension \mathcal{L}/\mathcal{K} is \mathcal{U}' -decomposable.

Proof. We inductively prove this. Let $n = \text{tr.} \deg L/K$. When n = 0 or 1 we find the extension \mathcal{L}/\mathcal{K} is \mathcal{U}' -decomposable by definition. Let $n \geq 2$. There exists a difference overfield $\mathcal{E} \subset \mathcal{U} \subset \mathcal{U}'$ of \mathcal{K} such that $\text{tr.} \deg E/K < \infty$, E is free from L over K and there exists a difference intermediate field \mathcal{M} of \mathcal{LE}/\mathcal{E} such that $\text{tr.} \deg LE/M \geq$ 1, $\text{tr.} \deg M/E \geq 1$, \mathcal{LE}/\mathcal{M} is \mathcal{U} -decomposable and \mathcal{M}/\mathcal{E} is \mathcal{U} -decomposable. From the induction hypothesis we find that the extensions \mathcal{LE}/\mathcal{M} and \mathcal{M}/\mathcal{E} are both \mathcal{U}' decomposable. Hence we conclude the extension \mathcal{L}/\mathcal{K} to be \mathcal{U}' -decomposable. \Box

Lemma 2.3. Let \mathcal{U} be a difference field, \mathcal{N}/\mathcal{K} a difference field extension in \mathcal{U} , and \mathcal{L} and difference intermediate field of \mathcal{N}/\mathcal{K} . If the extensions \mathcal{N}/\mathcal{L} and \mathcal{L}/\mathcal{K} are \mathcal{U} -decomposable then \mathcal{N}/\mathcal{K} is \mathcal{U} -decomposable.

Proof. This is also proved by induction.

The Galois theory of differential fields was originated and developed by Kolchin ([4]). In his [1] Bialynicki-Birula defined a strongly normal extension, by which he extended the Kolchin's Galois theory to the Galois theory for fields with operators, where a field with operators means a field together with a family of "automorphisms" and derivations of the field. We introduce the definition of strongly normal extensions with one operator.

Definition 2.4. Let $\mathcal{K} = (K, \tau_K)$ be a difference field whose operator τ_K is an automorphism of K and $\mathcal{L} = (L, \tau_L)$ a difference overfield of \mathcal{K} whose operator τ_L is an automorphism of L. Then we say that \mathcal{L} is a strongly normal extension of \mathcal{K} if

- 1. The field L is a regular extension of the field K
- 2. The field L is finitely generated over the field K
- 3. $C_{\mathcal{L}} = C_{\mathcal{K}}$ and $C_{\mathcal{K}}$ is algebraically closed
- 4. $\langle \mathcal{L} \otimes_K \mathcal{L} \rangle = (\mathcal{L} \otimes_K 1) C_{\langle \mathcal{L} \otimes_K \mathcal{L} \rangle},$

where $C_{\mathcal{K}} = \{a \in K | \tau_{K} a = a\}$ is the subfield of invariants and $\langle \rangle$ denotes the quotient field.

This type of strongly normal extension \mathcal{L}/\mathcal{K} is \mathcal{U} -decomposable for some difference field extension \mathcal{U} of \mathcal{L} . We need several lemmas to prove it.

Let (K, τ) and (K', τ') be difference fields. A mapping ϕ is a difference isomorphism of (K, τ) into (onto) (K', τ') if ϕ is an isomorphism of K into (onto) K' and $\phi \tau = \tau' \phi$.

Lemma 2.5. Let \mathcal{U} and \mathcal{V} be difference fields, \mathcal{L}/\mathcal{K} and \mathcal{N}/\mathcal{J} difference field extensions in \mathcal{U} and \mathcal{V} respectively, and $\phi: \mathcal{U} \to \mathcal{V}$ difference isomorphism of \mathcal{U} into \mathcal{V} satisfying $\phi(\mathcal{L}) = \mathcal{N}$ and $\phi(\mathcal{K}) = \mathcal{J}$. If the extension \mathcal{L}/\mathcal{K} is \mathcal{U} -decomposable then \mathcal{N}/\mathcal{J} is \mathcal{V} -decomposable. *Proof.* This is straightforward.

We need the following

Lemma 2.6 (Corollary 1 in [1]). Let \mathcal{L}/\mathcal{K} be a difference field extension such that the operators of \mathcal{L} and \mathcal{K} are surjective and $\mathcal{L} = \mathcal{KC}_{\mathcal{L}}$. If L is finitely generated over K as field then $C_{\mathcal{L}}$ is finitely generated over $C_{\mathcal{K}}$.

Proposition 2.7. Any strongly normal extension \mathcal{L}/\mathcal{K} with tr. deg $L/K \geq 2$ is \mathcal{U} -decomposable for some difference overfield \mathcal{U} of \mathcal{L} such that \mathcal{U} and $\langle \mathcal{L} \otimes_K \mathcal{L} \rangle$ are isomorphic as difference field by an extension of the naturally defined difference isomorphism of \mathcal{L} onto $1 \otimes_K \mathcal{L}$.

Proof. Put $\mathcal{L}_1 = \mathcal{L} \otimes_K 1$ and $\mathcal{L}_2 = 1 \otimes_K \mathcal{L}$. The fields L_1 and L_2 are linearly disjoint over K, so they are free over K. By definition L_2/K is finitely generated as field, which implies the extension L_1L_2/L_1 is also finitely generated as field. Since we have $\mathcal{L}_1\mathcal{L}_2 = \mathcal{L}_1C_{\mathcal{L}_1\mathcal{L}_2}$, we obtain by using Lemma 2.6 that the extension $C_{\mathcal{L}_1\mathcal{L}_2}/C_{\mathcal{L}_1}$ is finitely generated.

Let $C_{\mathcal{L}_1\mathcal{L}_2} = C_{\mathcal{L}_1}(x_1, \ldots, x_k)$ and $\mathcal{N}_i = \mathcal{L}_1(x_1, \ldots, x_i)$ for all $i \ (0 \le i \le k)$. We find that

$$\mathcal{L}_1 = \mathcal{N}_0 \subset \mathcal{N}_1 \subset \cdots \subset \mathcal{N}_k = \mathcal{L}_1 C_{\mathcal{L}_1 \mathcal{L}_2} = \mathcal{L}_1 \mathcal{L}_2$$

is a finite chain of difference field extensions. Since tr. deg $N_i/N_{i-1} \leq 1$ for all i $(1 \leq i \leq k)$, there exists an integer i_0 such that tr. deg $L_1L_2/N_{i_0} \geq 1$ and tr. deg $N_{i_0}/L_1 \geq 1$. From the definition of decomposable extensions and Lemma 2.3 we find the extensions $\mathcal{L}_1\mathcal{L}_2/\mathcal{N}_{i_0}$ and $\mathcal{N}_{i_0}/\mathcal{L}_1$ are $\mathcal{L}_1\mathcal{L}_2$ -decomposable, which implies the extension $\mathcal{L}_2/\mathcal{K}$ is $\mathcal{L}_1\mathcal{L}_2$ -decomposable.

Let $\phi: \mathcal{L}_2 \xrightarrow{\sim} \mathcal{L}$ be the naturally defined difference isomorphism and $\{a_1, a_2, \ldots, a_l\}$ be a transcendence basis of L_1/K . Since L_1 and L_2 are free over K, a_i $(1 \le i \le l)$ are algebraically independent over L_2 . Choose b_1, b_2, \ldots, b_l to be algebraically independent over L. We extend the surjective isomorphism $\phi: L_2 \xrightarrow{\sim} L$ to a surjective isomorphism $\phi_1: L_2(a_1, \ldots, a_l) \xrightarrow{\sim} L(b_1, \ldots, b_l)$ sending a_i to b_i . Then we extend ϕ_1 to a surjective isomorphism

$$\overline{\phi_1} \colon \overline{L_1 L_2} = \overline{L_2(a_1, \dots, a_l)} \xrightarrow{\sim} \overline{L(b_1, \dots, b_l)},$$

where overlined fields are algebraic closures. A restricted mapping $\tilde{\phi} = \overline{\phi_1}|_{L_1L_2}$ is an isomorphism of L_1L_2 into $\overline{L(b_1, \ldots, b_l)}$ and an extension of ϕ .

Let τ be the operator of the difference field $\mathcal{L}_1\mathcal{L}_2$. We define an operator τ' of $\tilde{\phi}(L_1L_2)$ as $\tau' = \tilde{\phi} \circ \tau \circ \tilde{\phi}^{-1}$. In fact τ' is an isomorphism of $\tilde{\phi}(L_1L_2)$ into $\tilde{\phi}(L_1L_2)$ because $\tilde{\phi}$, τ and $\tilde{\phi}^{-1}$ are injective homomorphisms. Then $\tilde{\phi}$ is a difference isomorphism of $\mathcal{L}_1\mathcal{L}_2 = (L_1L_2, \tau)$ onto $(\tilde{\phi}(L_1L_2), \tau')$.

We will see $\tau'|_L = \tau_L$, where τ_L is the original operator of the difference field \mathcal{L} . Put $\tau_2 = \tau|_{L_2}$ for convenience. Since the map ϕ is a difference isomorphism, we have $\phi \tau_2 = \tau_L \phi$. Hence for any $x \in L$ we find

$$\tau' x = \tilde{\phi} \circ \tau \circ \tilde{\phi}^{-1}(x) = \tilde{\phi} \circ \tau(\phi^{-1}(x))$$
$$= \tilde{\phi}(\tau_2 \circ \phi^{-1}(x)) = \phi \circ \tau_2 \circ \phi^{-1}(x)$$
$$= \tau_L x,$$

which means $\tau'|_L = \tau_L$. Therefore $(\tilde{\phi}(L_1L_2), \tau')$ is a difference overfield of $\mathcal{L} = (L, \tau_L)$. By Lemma 2.5 we obtain that the strongly normal extension \mathcal{L}/\mathcal{K} is $(\tilde{\phi}(L_1L_2), \tau')$ -decomposable.

Corollary 2.8. Let \mathcal{L}/\mathcal{K} be a strongly normal extension of tr. deg $L/K \ge 2$ and \mathcal{U} a difference overfield of \mathcal{L} as in Proposition 2.7. Then the difference field extensions \mathcal{U}/\mathcal{L} and \mathcal{U}/\mathcal{K} are \mathcal{U} -decomposable.

Proof. Put $\mathcal{L}_1 = \mathcal{L} \otimes_K 1$ and $\mathcal{L}_2 = 1 \otimes_K \mathcal{L}$. By $\mathcal{L}_1 \mathcal{L}_2 = \mathcal{L}_1 C_{\mathcal{L}_1 \mathcal{L}_2}$ and a surjective difference isomorphism $\mathcal{L} \otimes_K \mathcal{L} \xrightarrow{\sim} \mathcal{L} \otimes_K \mathcal{L}$ sending $x \otimes y$ to $y \otimes x$ we obtain $\mathcal{L}_1 \mathcal{L}_2 = \mathcal{L}_2 C_{\mathcal{L}_1 \mathcal{L}_2}$. From Lemma 2.6 we find that the difference field extension $C_{\mathcal{L}_1 \mathcal{L}_2}/C_{\mathcal{L}_2}$ is finitely generated.

Put $C_{\mathcal{L}_1\mathcal{L}_2} = C_{\mathcal{L}_2}(x_1, \ldots, x_n)$ and $\mathcal{N}_i = \mathcal{L}_2(x_1, \ldots, x_i)$ for all $i \ (0 \le i \le n)$. We find that

$$\mathcal{L}_2 = \mathcal{N}_0 \subset \mathcal{N}_1 \subset \cdots \subset \mathcal{N}_n = \mathcal{L}_2 C_{\mathcal{L}_1 \mathcal{L}_2} = \mathcal{L}_1 \mathcal{L}_2$$

is a finite chain of difference field extensions. Since tr. deg $N_i/N_{i-1} \leq 1$ for all i $(1 \leq i \leq n)$ the extensions $\mathcal{N}_i/\mathcal{N}_{i-1}$ $(1 \leq i \leq n)$ are all $\mathcal{L}_1\mathcal{L}_2$ -decomposable, and so $\mathcal{L}_1\mathcal{L}_2/\mathcal{L}_2$ is also $\mathcal{L}_1\mathcal{L}_2$ -decomposable. By Lemma 2.5 we obtain \mathcal{U}/\mathcal{L} is \mathcal{U} -decomposable, which implies \mathcal{U}/\mathcal{K} is \mathcal{U} -decomposable. \Box

A strongly normal differential field extension is a decomposable differential field extension in the sense defined in [5], moreover a chain of strongly normal differential field extensions and algebraic ones are decomposable by grace of the universal differential field extension defined by Kolchin in [4]. However we do not have such a useful "universal" difference field extension (refer to Section 4 Appendix), instead we introduce a way of constructing somewhat similar decomposable chains.

Although the operator of a difference field is not always an automorphism, the following shows some kind of algebraically closed difference field has an automorphism operator.

Lemma 2.9. Let $\mathcal{K} = (K, \tau_K)$ be a difference field whose operator τ_K is an automorphism of K and \mathcal{L} a difference overfield of \mathcal{K} such that tr. deg $L/K < \infty$. Then algebraic closure \overline{L} of L is a difference overfield of \mathcal{L} with some automorphism of \overline{L} .

Proof. From the theorem of Steinitz.

Example 2.10. If a chain of difference field extensions $\mathcal{K} = \mathcal{N}_0 \subset \mathcal{N}_1 \subset \cdots \subset \mathcal{N}_n$ satisfies one of the following for each i $(1 \leq i \leq n)$, then $\mathcal{N}_n/\mathcal{K}$ is \mathcal{N}_n -decomposable.

- 1. tr. deg $N_i / N_{i-1} \le 1$.
- 2. \mathcal{N}_i is the difference overfield \mathcal{U} in Proposition 2.7 for some strongly normal extension \mathcal{L} of \mathcal{N}_{i-1} such that tr. deg $L/N_{i-1} \geq 2$.

Strongly normal extensions are defined for difference fields whose operator is an automorphism. If the operator of \mathcal{K} is an automorphism, for Lemma 2.9, we may take an algebraic closure of N_i to make the operator surjective.

§ 3. q-Painlevé equation of type $A_7^{(1)}$

In [7] the author studied a property of solutions of q-Painlevé equation of type $A_7^{(1)}$,

$$q - P(A_7): \quad \overline{f}f^2 f = t(1 - f),$$

where $\overline{f} = f(qt)$ and $\underline{f} = f(t/q)$, and proved that $q - P(A_7)$ has no solution in any decomposable extension of $\mathbb{C}(t)$ if $q \in \mathbb{C}^{\times}$ is not a root of unity. In this section we sketch the proof.

q-Painlevé equations are q-defference equations which are discrete analogs of the Painlevé equations. Grammaticos, Ramani and Papageorgiou presented in their [3] a notion called singularity confinement, by which they obtained an integrability criterion for discrete-time systems that is a discrete counter part of the Painlevé property for systems of a continuous variable. Ramani, Grammaticos and Hietarinta made several discrete Painlevé equations using the method of singularity confinement (see [9]). q- $P(A_7)$ appears in the paper of Ramani and Grammaticos ([10]).

In his [11] Sakai introduced a geometric approach to theory of the Painlevé equations, and showed both classifications of Painlevé equations and discrete Painlevé equations by rational surfaces. The notation q- $P(A_7)$ is determined by the type $A_7^{(1)}$ of the rational surface of the equation. The list of discrete Painlevé equations and their notations can be seen in the paper of H. Sakai ([12]). In addition q- $P(A_7)$ has symmetry $A_1^{(1)}$.

For the beginning of the proof we prove the following Lemma independent of equations. **Lemma 3.1.** Let \mathcal{K} be a difference field, \mathcal{U} a difference overfield of \mathcal{K} , \mathcal{D}/\mathcal{K} a \mathcal{U} decomposable extension and $f \in D$. Suppose f satisfies the following; for any difference
overfield $\mathcal{L} \subset \mathcal{U}$ of \mathcal{K} such that tr. deg $L/K < \infty$ and tr. deg $L\langle f \rangle/L \leq 1$, the element fis algebraic over L. Then f is algebraic over K.

Proof. Assume that f is transcendental over K. Choose $(\mathcal{L}, \mathcal{N})$ be an element of

 $\{(\mathcal{L}, \mathcal{N}) \mid \mathcal{K} \subset \mathcal{L} \subset \mathcal{N}, \text{ tr. deg } L/K < \infty, \mathcal{N}/\mathcal{L} \text{ is } \mathcal{U} \text{-decomposable}, f \in N, f \text{ is transcendental over } L\}$

which has the minimal transcendence degree. The choice is guaranteed because $(\mathcal{K}, \mathcal{D})$ satisfies the conditions. Since f is transcendental over L, by the hypothesis we find tr. deg $N/L \geq 2$. By the definition of decomposable extensions there exists a difference overfield $\mathcal{E} \subset \mathcal{U}$ of \mathcal{L} such that tr. deg $E/L < \infty$, E is free from N over L and there exists a difference intermediate field \mathcal{M} of \mathcal{NE}/\mathcal{E} such that \mathcal{NE}/\mathcal{M} and \mathcal{M}/\mathcal{E} are both \mathcal{U} -decomposable extensions of positive transcendence degree.

Then we have $f \in NE$ and tr. deg NE/M < tr. deg N/L, which imply f is algebraic over M. Thus we obtain $\mathcal{M}\langle f \rangle / \mathcal{E}$ is \mathcal{U} -decomposable by Lemma 2.3. Hence we find fis algebraic over E from tr. deg $M\langle f \rangle / E < \text{tr. deg } N/L$, which contradicts the fact that N and E are free over L. Therefore f is algebraic over K.

From here C denotes an algebraically closed field of characteristic 0, t an element transcendental over C and q an element of C^{\times} which is not a root of unity. Furthermore let \mathcal{K} be a difference overfield of $(C(t), t \mapsto qt)$ whose operator is surjective, and \mathcal{U} a difference overfield of \mathcal{K} . We may take the field of Puiseux series or \mathcal{N}_n in Example 2.10 as \mathcal{U} for example.

The author proved in [6] that solutions of $q \cdot P(A_7)$ are all transcendental over C(t)in the case q is not a root of unity. Hence the following theorem shows that if q is not a root of unity then $q \cdot P(A_7)$ has no solution in any \mathcal{U} -decomposable extension of $(C(t), t \mapsto qt)$, where \mathcal{U} is an arbitrary difference overfield of $(C(t), t \mapsto qt)$.

Theorem 3.2. Let \mathcal{D}/\mathcal{K} be a \mathcal{U} -decomposable extension and $f \in D$ a solution of q- $P(A_7)$. Then f is algebraic over K.

This is proved from Lemma 3.1 and the following proposition.

Proposition 3.3. Let $f \in U$ be a solution of $q \cdot P(A_7)$ and $\mathcal{L} \subset \mathcal{U}$ a difference overfield of \mathcal{K} with finite transcendence degree. If tr. deg $L\langle f \rangle / L \leq 1$ then f is algebraic over L.

Proof. It is enough to prove this for algebraically closed L. Then we find the operator of \mathcal{L} is surjective by Lemma 2.9. Let τ be the operator of \mathcal{U} . For a polynomial $F = \sum a_{ij} Y^i Y_1^j \in L[Y, Y_1]$, we define $F^* = \sum (\tau a_{ij}) Y^i Y_1^j$.

Seiji Nishioka

Assume that $f \notin L$. Then the transformations $f_i = \tau^i f$ (i = 0, 1, 2, ...) are all transcendental over L. From tr. deg $L\langle f \rangle / L \leq 1$ we find that f and f_1 are algeraically dependent over L. Take an irreducible polynomial $F \in L[Y, Y_1]$ such that $F(f, f_1) = 0$.

Put

$$F_0 = (Y_1 Y^2)^{n_0} F\left(\frac{qt(1-Y)}{Y_1 Y^2}, Y\right)$$

and

$$F_1 = (Y_1^2 Y)^{n_1} F^* \left(Y_1, \frac{qt(1-Y_1)}{Y_1^2 Y} \right),$$

where $n_0 = \deg_Y F$ and $n_1 = \deg_{Y_1} F$. We easily find that $F_0, F_1 \in L[Y, Y_1] \setminus \{0\}$. From

$$F_0(f_1, f_2) = (f_2 f_1^2)^{n_0} F\left(\frac{qt(1-f_1)}{f_2 f_1^2}, f_1\right) = (f_2 f_1^2)^{n_0} F(f, f_1) = 0$$

and

$$F_1(f, f_1) = (f_1^2 f)^{n_1} F^*\left(f_1, \frac{qt(1-f_1)}{f_1^2 f}\right) = (f_1^2 f)^{n_1} F^*(f_1, f_2) = 0$$

we obtain $F^* \mid F_0$ and $F \mid F_1$, where we note that all the f_i are transcendental over L.

However we find the nonexistence of such a polynomial F from the subsequent lemma, a statement analogous to Theorem 1 in the paper of Noumi and Okamoto ([8]), where they defined an invariant divisor by a polynomial like F. Hence f is an element of L.

Lemma 3.4. Let $q \in C^{\times}$ be not a root of unity, (L, τ) be a difference overfield of $(C(t), t \mapsto qt)$ whose operator τ is surjective, Y and Y₁ algebraically independent over L, ϕ_0 an isomorphism such that

$$\phi_0 \colon L(Y, Y_1) \longrightarrow L(Y, Y_1)$$

$$Y \longmapsto \frac{qt(1-Y)}{Y_1 Y^2}$$

$$Y_1 \longmapsto Y$$

$$L \ni x \longmapsto x \in L$$

and ϕ_1 an isomorphism such that

$$\phi_1 \colon L(Y, Y_1) \longrightarrow L(Y, Y_1).$$

$$Y \longmapsto Y_1$$

$$Y_1 \longmapsto \frac{qt(1 - Y_1)}{Y_1^2 Y}$$

$$L \ni x \longmapsto \tau x \in L$$

For a polynomial $F \in L[Y, Y_1]$ we define F^* as in the proof of Proposition 3.3. Then there is no irreducible polynomial $F \in L[Y, Y_1] \setminus (L[Y] \cup L[Y_1])$ such that $F^* \mid (Y_1Y^2)^{n_0} \phi_0 F$ and $F \mid (Y_1^2Y)^{n_1} \phi_1 F$, where $n_0 = \deg_Y F$ and $n_1 = \deg_{Y_1} F$.

Proof. Assume there exists such F. Put $F_0 = (Y_1Y^2)^{n_0}\phi_0F$ and $F_1 = (Y_1^2Y)^{n_1}\phi_1F$. Then it follows that

$$n_1 = \deg_{Y_1} F^* \le \deg_{Y_1} F_0 \le n_0 = \deg_Y F \le \deg_Y F_1 \le n_1,$$

which implies $n_0 = n_1$. Put $n = n_0 = n_1 \ge 1$.

From $F | F_1$ there exists a polynomial $P \in L[Y, Y_1] \setminus \{0\}$ such that $F_1 = PF$. Since $\deg_Y P = \deg_Y F_1 - \deg_Y F = 0$, we find $P \in L[Y_1]$. Hence we express F as

$$F = \sum_{i,j} a_{ij} Y^i Y_1^j, \quad a_{ij} \in L,$$

and we obtain the following equations by comparing the coefficients of powers of Y in $F_1 = PF$,

$$(qt)^{n-j}(1-Y_1)^{n-j}Y_1^{2j}\left(\sum_{i=0}^n \tau a_{i,n-j}Y_1^i\right) = P(Y_1)\sum_{i=0}^n a_{ji}Y_1^i, \quad (0 \le j \le n).$$

Calculation shows $P = pY_1^n(1-Y_1)^{\frac{n}{2}}$, where n/2 is a positive integer. Then comparing the coefficients in the above equations, we obtain $q^{\frac{n}{2}} = 1$, which is a contradiction. \Box

§4. Appendix

The universal differential field extension is defined as follows, and its existence is proved for any differential field by Kolchin in [4].

Definition 4.1. A necessary and sufficient condition for a differential field extension \mathcal{U}/\mathcal{K} to be universal is that for every finitely generated differential field extension \mathcal{K}_1 of \mathcal{K} with $\mathcal{K}_1 \subset \mathcal{U}$ and every finitely generated differential field extension \mathcal{L} of \mathcal{K}_1 there exists an differential isomorphism of \mathcal{L} over \mathcal{K}_1 into \mathcal{U} .

On the contrary the following theorem is proved.

Theorem 4.2. Let \mathcal{K} be a difference field of characteristic 0. Then there does not exist such a difference overfield \mathcal{U} of \mathcal{K} that for any finitely generated difference overfield $\mathcal{K}_1 \subset \mathcal{U}$ of \mathcal{K} and any finitely generated difference overfield \mathcal{L} of \mathcal{K}_1 there exists a difference isomorphism of \mathcal{L} over \mathcal{K}_1 into \mathcal{U} .

Proof. Assume there exists such $\mathcal{U} = (U, \tau)$. Choose x to be transcendental over K. The field K(x) equipped with an extension τ' of $\tau|_K$ sending x to x is a finitely generated difference overfield of \mathcal{K} . By the hypothesis there exists an difference isomorphism ϕ of $(K(x), \tau')$ into \mathcal{U} over \mathcal{K} . Put $y = \phi x$. Then we obtain $\phi(K(x)) = K(y)$ and $\tau y = \tau \circ \phi(x) = \phi(x) = y$.

Seiji Nishioka

Difference fields $K(y^{\frac{1}{2}})$ equipped with extensions of $\tau|_{K}$,

$$\begin{array}{ccc} \tau_i \colon \ K(y^{\frac{1}{2}}) \longrightarrow & K(y^{\frac{1}{2}}), \\ y^{\frac{1}{2}} & \longmapsto (-1)^{i-1}y^{\frac{1}{2}} \end{array} (i=1,2) \end{array}$$

respectively are finitely generated difference overfields of $\mathcal{K}(y)$. By our assumption there exists a difference isomorphism ϕ_i (i = 1, 2) of $(K(y^{\frac{1}{2}}), \tau_i)$ into \mathcal{U} over $\mathcal{K}(y)$. Since $(\phi_i(y^{\frac{1}{2}}))^2 = \phi_i(y) = y$, we have expressions,

$$\phi_i(y^{\frac{1}{2}}) = (-1)^{k_i} z, \ k_i \in \mathbb{Z} \quad \text{for } i = 1, 2,$$

where $z \in U$ denotes a square root of y.

By the definition of ϕ_i we have $\phi_i \circ \tau_i = \tau \circ \phi_i$. Hence we obtain

$$\tau(z) = (-1)^{k_i} \tau(\phi_i(y^{\frac{1}{2}})) = (-1)^{k_i} \phi_i \circ \tau_i(y^{\frac{1}{2}})$$
$$= (-1)^{k_i} \phi_i((-1)^{i-1}y^{\frac{1}{2}}) = (-1)^{i-1}z \quad \text{for } i = 1, 2.$$

However this contradicts that the characteristic of K is 0.

References

- Bialynicki-Birula, A., On Galois theory of fields with operators, Amer. J. Math., 84 (1962), 89–109.
- [2] Cohn, R. M., Difference Algebra, Interscience Publ., 1965.
- [3] Grammaticos, B., Ramani, A. and Papageorgiou, V., Do Integrable Mappings Have the Painlevé Property?, Phys. Rev. Lett., 67 (1991), 1825–1828.
- [4] Kolchin, E. R., Galois Theory of Differential Fields, Amer. J. Math., 75 (1953), 753-824.
- [5] Nishioka, K., A note on the transcendency of Painlevé's first transcendent, Nagoya Math. J., 109 (1988), 63–67.
- [6] Nishioka, S., Transcendence of Solutions of q-Painlevé Equation of Type $A_7^{(1)}$, Preprint, 2007.
- [7] Nishioka, S., On Solutions of q-Painlevé Equation of Type $A_7^{(1)}$, To appear in Funkcial. Ekvac..
- [8] Noumi, M. and Okamoto, K., Irreducibility of the Second and the Fourth Painlevé Equations, Funkcial. Ekvac., 40 (1997), 139–163.
- [9] Ramani, A., Grammaticos, B. and Hietarinta, J., Discrete Versions of the Painlevé Equations, Phys. Rev. Lett., 67 (1991), 1829–1832.
- [10] Ramani, A. and Grammaticos, B., Discrete Painlevé equations: coalescences, limits and degeneracies, Physica A, 228 (1996), 160–171.
- [11] Sakai, H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys., 220 (2001), 165–229.
- [12] Sakai, H., Problem : Discrete Painlevé equations and their Lax forms, RIMS Kôkyûroku Bessatsu, B2 (2007), 195–208.

176