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Dierence algebra associated to the q‐Painlevé

equation of type A_{7}^{(1)}
By

Seiji NISHIOKA *

Abstract

In this article we will see the notion of decomposable extension and a property of solutions

of q‐Painlevé eqation of type A_{7}^{(1)} as its example. We also show that dierence fields are

completely dierent from dierential ones.

§1. Introduction

In his [7] the author dened the decomposable extension, a sort of dierence exten‐

sions, and studied a property of solutions of q‐Painlevé equation of type A_{7}^{(1)} . In this

paper we introduce the decomposable extension.

The notations on dierence algebra are refered to Cohn [2]. A dierence field

\mathcal{K}=(K,  $\tau$) is a pair of a field K and an isomorphism  $\tau$ of  K into K . A dierence field

\mathcal{K}'=(K', $\tau$') is a dierence overeld of a dierence field \mathcal{K}=(K,  $\tau$) if K'\supset K and

$\tau$'|_{K}= $\tau$.
The following is the denition of the decomposable extension, a dierence analogue

of K. Nishioka�s in [5].

Denition 1.1. Let \mathcal{U} be a dierence field, \mathcal{L}/\mathcal{K} be a dierence field extension

in \mathcal{U} of finite transcendence degree and n= tr. \deg L/K . We dene \mathcal{U}‐decomposable
extensions inductively.

1. If n=0 or 1 then \mathcal{L}/\mathcal{K} is \mathcal{U}‐decomposable.
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2. When n>1, \mathcal{L}/\mathcal{K} is \mathcal{U}‐decomposable if there exists a dierence overeld \mathcal{E}\subset \mathcal{U} of

\mathcal{K} such that tr. \deg E/K<\infty, E is free from L over K and there exists a dierence

intermediate field \mathcal{M} of \mathcal{L}\mathcal{E}/\mathcal{E} such that tr. \deg LE/M\geq 1 ,
tr. \deg M/E\geq 1, \mathcal{L}\mathcal{E}/\mathcal{M}

is \mathcal{U}‐decomposable and \mathcal{M}/\mathcal{E} is \mathcal{U}‐decomposable.

The transcendence degree is related to the order of algebraic dierence equations.
On the one hand a solution of an algebraic dierence equation of order n over a dierence

field \mathcal{K} is an element of some dierence overeld \mathcal{L} of \mathcal{K} satisfying tr. \deg L/K\leq n . On

the other hand, for a dierence field extension \mathcal{L}/\mathcal{K} of tr. \deg L/K=n , every element

of \mathcal{L} satises an algebraic dierence equation over \mathcal{K} of order not exceeding n.

An additional requirement \mathcal{E}=\mathcal{K} in the denition let us take a glance at a basic

notion of the decomposable extension. In that case a \mathcal{U}‐decomposable extension \mathcal{L}/\mathcal{K} of

tr. \deg L/K\geq 2 is divisible by some dierence intermediate field \mathcal{M} of \mathcal{L}/\mathcal{K} into two \mathcal{U}-

decomposable extensions \mathcal{L}/\mathcal{M} and \mathcal{M}/\mathcal{K} of positive transcendence degree. Repeating
this operation we obtain a chain of dierence field extensions

\mathcal{K}=\mathcal{N}_{0}\subset \mathcal{N}_{1}\subset. . . \subset \mathcal{N}_{n}=\mathcal{L},

where tr. \deg N_{i}/N_{i-1}=1 for all i(1\leq i\leq n) . Let f be a transcendence basis of

N_{i}/N_{i-1} . Then f satises some algebraic dierence equation of order 1, and \mathcal{N}_{i} is a

algebraic overeld of \mathcal{N}_{i-1}\langle f\rangle=\mathcal{N}_{i-1}(f,  $\tau$ f, $\tau$^{2}f, . :. ) ,
where  $\tau$ is the operator of \mathcal{L}.

Hence the extension \mathcal{L}/\mathcal{K} seems to be an extension constructed of solutions of algebraic
dierence equations of order 1. The extension \mathcal{E}/\mathcal{K} extends the set from which we choose

the coecients of the algebraic dierence equations.

§2. Properties and examples of decomposable extensions

In this section we introduce some properties and examples of decomposable exten‐

sions. We will mention some relations between decomposable extensions and strongly
normal extensions.

A solution of algebraic dierence equations over a dierence field \mathcal{K} is an element

of some dierence overeld \mathcal{L} of \mathcal{K} satisfying the equations.

Example 2.1. Let f be a solution of an algebraic dierence equation of order 1

over a dierence field \mathcal{K} . Then \mathcal{K}\langle f\rangle/\mathcal{K} is \mathcal{K}\langle f\rangle ‐decomposable because tr. \deg K\langle f\rangle/K\leq
 1 . Note that the dierence Riccati equations over \mathcal{K} are algebraic dierence equations
of order 1 over \mathcal{K}.

Lemma 2.2. Let \mathcal{U} be a dierence field and \mathcal{L}/\mathcal{K}a\mathcal{U} ‐decomposable extension.

For any dierence overeld \mathcal{U}' of \mathcal{U} the extension \mathcal{L}/\mathcal{K} is \mathcal{U}' ‐decomposable.
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Proof. We inductively prove this. Let n= tr. \deg L/K . When n=0 or 1 we

find the extension \mathcal{L}/\mathcal{K} is \mathcal{U}' ‐decomposable by denition. Let n\geq 2 . There exists a

dierence overeld \mathcal{E}\subset \mathcal{U}\subset \mathcal{U}^{0} of \mathcal{K} such that tr. \deg E/K<\infty, E is free from L over

K and there exists a dierence intermediate field \mathcal{M} of \mathcal{L}\mathcal{E}/\mathcal{E} such that tr. \deg LE/M\geq
 1

,
tr. \deg M/E\geq 1, \mathcal{L}\mathcal{E}/\mathcal{M} is \mathcal{U}‐decomposable and \mathcal{M}/\mathcal{E} is \mathcal{U}‐decomposable. From

the induction hypothesis we find that the extensions \mathcal{L}\mathcal{E}/\mathcal{M} and \mathcal{M}/\mathcal{E} are both \mathcal{U}'-

decomposable. Hence we conclude the extension \mathcal{L}/\mathcal{K} to be \mathcal{U}' ‐decomposable. \square 

Lemma 2.3. Let \mathcal{U} be a dierence field, \mathcal{N}/\mathcal{K} a dierence field extension in \mathcal{U},
and \mathcal{L} an dierence intermediate field of \mathcal{N}/\mathcal{K} . If the extensions \mathcal{N}/\mathcal{L} and \mathcal{L}/\mathcal{K} are

\mathcal{U} ‐decomposable then \mathcal{N}/\mathcal{K} is \mathcal{U} ‐decomposable.

Proof. This is also proved by induction. \square 

The Galois theory of dierential fields was originated and developed by Kolchin

([4]). In his [1] Bialynicki‐Birula dened a strongly normal extension, by which he

extended the Kolchin�s Galois theory to the Galois theory for fields with operators,

where a field with operators means a field together with a family of \backslash \backslash 

automorphisms�
and derivations of the field. We introduce the denition of strongly normal extensions

with one operator.

Denition 2.4. Let \mathcal{K}=(K, $\tau$_{K}) be a dierence field whose operator $\tau$_{K} is an

automorphism of K and \mathcal{L}=(L, $\tau$_{L}) a dierence overeld of \mathcal{K} whose operator $\tau$_{L} is an

automorphism of L . Then we say that \mathcal{L} is a strongly normal extension of \mathcal{K} if

1. The field L is a regular extension of the field K

2. The field L is finitely generated over the field K

3. C_{\mathcal{L}}=C_{\mathcal{K}} and C_{\mathcal{K}} is algebraically closed

4. \langle \mathcal{L}\otimes_{K}\mathcal{L}\rangle=(\mathcal{L}\otimes_{K}1)C_{\langle \mathcal{L}\otimes_{K}\mathcal{L}\rangle},
where C_{\mathcal{K}}=\{a\in K|$\tau$_{K}a=a\} is the subeld of invariants and \langle\rangle denotes the quotient
field.

This type of strongly normal extension \mathcal{L}/\mathcal{K} is \mathcal{U}‐decomposable for some dierence

field extension \mathcal{U} of \mathcal{L} . We need several lemmas to prove it.

Let (K,  $\tau$) and (K', $\tau$') be dierence fields. A mapping  $\phi$ is a dierence isomorphism
of (K,  $\tau$) into (onto) (K', $\tau$') if  $\phi$ is an isomorphism of  K into (onto) K' and  $\phi \tau$=$\tau$' $\phi$.

Lemma 2.5. Let \mathcal{U} and \mathcal{V} be dierence fields, \mathcal{L}/\mathcal{K} and \mathcal{N}/\mathcal{J} dierence field
extensions in \mathcal{U} and \mathcal{V} respectively, and  $\phi$:\mathcal{U}\rightarrow \mathcal{V} dierence isomorphism of \mathcal{U} into \mathcal{V}

satisfy ing  $\phi$(\mathcal{L})=\mathcal{N} and  $\phi$(\mathcal{K})=\mathcal{J} . If the extension \mathcal{L}/\mathcal{K} is \mathcal{U} ‐decomposable then \mathcal{N}/\mathcal{J}
is \mathcal{V} ‐decomposable.
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Proof. This is straightforward. \square 

We need the following

Lemma 2.6 (Corollary 1 in [1]). Let \mathcal{L}/\mathcal{K} be a dierence field extension such

that the operators of \mathcal{L} and \mathcal{K} are surjective and \mathcal{L}=\mathcal{K}C_{\mathcal{L}} . If L is finitely generated
over K as field then C_{\mathcal{L}} is finitely generated over C_{\mathcal{K}}.

Proposition 2.7. Any strongly normal extension \mathcal{L}/\mathcal{K} with tr. \deg L/K\geq 2 is

\mathcal{U} ‐decomposable foor some dierence overeld \mathcal{U} of \mathcal{L} such that \mathcal{U} and \langle \mathcal{L}\otimes_{K}\mathcal{L}\rangle are

isomorphic as dierence field by an extension of the naturally dened dierence isomor‐

phism of \mathcal{L} onto 1\otimes_{K}\mathcal{L}.

Proof. Put \mathcal{L}_{1}=\mathcal{L}\otimes_{K}1 and \mathcal{L}_{2}=1\otimes_{K}\mathcal{L} . The fields L_{1} and L_{2} are linearly

disjoint over K
,

so they are free over K . By denition L_{2}/K is finitely generated as

field, which implies the extension L_{1}L_{2}/L_{1} is also finitely generated as field. Since we

have \mathcal{L}_{1}\mathcal{L}_{2}=\mathcal{L}_{1}C_{\mathcal{L}_{1}\mathcal{L}_{2}} ,
we obtain by using Lemma 2.6 that the extension C_{\mathcal{L}_{1}\mathcal{L}_{2}}/C_{\mathcal{L}_{1}} is

finitely generated.
Let C_{\mathcal{L}_{1}\mathcal{L}_{2}}=C_{\mathcal{L}_{1}} (x_{1}, . . :; x_{k}) and \mathcal{N}_{i}=\mathcal{L}_{1}(x_{1}, . . :; x_{i}) for all i(0\leq i\leq k) . We find

that

\mathcal{L}_{1}=\mathcal{N}_{0}\subset \mathcal{N}_{1}\subset. . . \subset \mathcal{N}_{k}=\mathcal{L}_{1}C_{\mathcal{L}_{1}\mathcal{L}_{2}}=\mathcal{L}_{1}\mathcal{L}_{2}

is a finite chain of dierence field extensions. Since tr. \deg N_{i}/N_{i-1}\leq 1 for all  i(1\leq
 i\leq k) ,

there exists an integer i_{0} such that tr. \deg L_{1}L_{2}/N_{i_{0}}\geq 1 and tr. \deg N_{i_{0}}/L_{1}\geq 1.
From the denition of decomposable extensions and Lemma 2.3 we find the extensions

\mathcal{L}_{1}\mathcal{L}_{2}/\mathcal{N}_{i_{0}} and \mathcal{N}_{i_{0}}/\mathcal{L}_{1} are \mathcal{L}_{1}\mathcal{L}_{2} ‐decomposable, which implies the extension \mathcal{L}_{2}/\mathcal{K} is

\mathcal{L}_{1}\mathcal{L}_{2} ‐decomposable.
Let  $\phi$:\mathcal{L}_{2}\rightarrow\sim \mathcal{L} be the naturally dened dierence isomorphism and \{a_{1}, a_{2}, . ::, a_{l}\}

be a transcendence basis of L_{1}/K . Since L_{1} and L_{2} are free over K, a_{i}(1\leq i\leq l) are

algebraically independent over L_{2} . Choose b_{1}, b_{2} ,
. . .

; b_{l} to be algebraically independent
over L . We extend the surjective isomorphism  $\phi$:L_{2}\rightarrow\sim L to a surjective isomorphism

$\phi$_{1}:L_{2}(\mathrm{a}_{1}, \ldots, a_{l})\rightarrow\sim L(b_{1}, \ldots, b_{l}) sending a_{i} to b_{i} . Then we extend $\phi$_{1} to a surjective

isomorphism

\overline{$\phi$_{1}}:\overline{L_{1}L_{2}}=\overline{L_{2}(\mathrm{a}_{1},\ldots,a_{l})}\rightarrow\sim\overline{L(b_{1},\ldots,b_{l})},

where overlined fields are algebraic closures. A restricted mapping \tilde{ $\phi$}=\overline{$\phi$_{1}}|_{L_{1}L_{2}} is an

isomorphism of L_{1}L_{2} into \overline{L(b_{1},\ldots,b_{l})} and an extension of  $\phi$.
Let  $\tau$ be the operator of the dierence field \mathcal{L}_{1}\mathcal{L}_{2} . We dene an operator $\tau$' of

\tilde{ $\phi$}(LL) as $\tau$'=\tilde{ $\phi$}\circ $\tau$\circ\tilde{ $\phi$}^{-1} . In fact $\tau$' is an isomorphism of \tilde{ $\phi$}(LL) into \tilde{ $\phi$}(LL)
because \tilde{ $\phi$},  $\tau$ and \tilde{ $\phi$}^{-1} are injective homomorphisms. Then \tilde{ $\phi$} is a dierence isomorphism
of \mathcal{L}_{1}\mathcal{L}_{2}=(L_{1}L_{2},  $\tau$) onto (\tilde{ $\phi$}(L_{1}L_{2}),  $\tau$
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We will see $\tau$^{0}|_{L}=$\tau$_{L} ,
where $\tau$_{L} is the original operator of the dierence field \mathcal{L}.

Put $\tau$_{2}= $\tau$|_{L_{2}} for convenience. Since the map  $\phi$ is a dierence isomorphism, we have

 $\phi \tau$_{2}=$\tau$_{L} $\phi$ . Hence for any  x\in L we find

$\tau$^{0}x=\tilde{ $\phi$}\circ $\tau$\circ\tilde{ $\phi$}^{-1}(x)=\tilde{ $\phi$}\circ $\tau$($\phi$^{-1}(x))
=\tilde{ $\phi$}($\tau$_{2}\circ$\phi$^{-1}(x))= $\phi$\circ$\tau$_{2}\circ$\phi$^{-1}(x)
=$\tau$_{L^{X}},

which means $\tau$'|_{L}=$\tau$_{L} . Therefore (\tilde{ $\phi$}(L_{1}L_{2}), $\tau$') is a dierence overeld of \mathcal{L}=(L, $\tau$_{L}) .

By Lemma 2.5 we obtain that the strongly normal extension \mathcal{L}/\mathcal{K} is (\tilde{ $\phi$}(L_{1}L_{2}),  $\tau$

decomposable. \square 

Corollary 2.8. Let \mathcal{L}/\mathcal{K} be a strongly normal extension of tr. \deg L/K\geq 2 and

\mathcal{U} a dierence overeld of \mathcal{L} as in Proposition 2. 7. Then the dierence field extensions

\mathcal{U}/\mathcal{L} and \mathcal{U}/\mathcal{K} are \mathcal{U} ‐decomposable.

Proof. Put \mathcal{L}_{1}=\mathcal{L}\otimes_{K}1 and \mathcal{L}_{2}=1\otimes_{K}\mathcal{L} . By \mathcal{L}_{1}\mathcal{L}_{2}=\mathcal{L}_{1}C_{\mathcal{L}_{1}\mathcal{L}_{2}} and a surjective
dierence isomorphism \mathcal{L}\otimes_{K}\mathcal{L}\rightarrow\sim \mathcal{L}\otimes_{K}\mathcal{L} sending x\otimes y to y\otimes x we obtain \mathcal{L}_{1}\mathcal{L}_{2}=

\mathcal{L}_{2}C_{\mathcal{L}_{1}\mathcal{L}_{2}} . From Lemma 2.6 we find that the dierence field extension C_{\mathcal{L}_{1}\mathcal{L}_{2}}/C_{\mathcal{L}_{2}} is

finitely generated.
Put C_{\mathcal{L}_{1}\mathcal{L}_{2}}=C_{\mathcal{L}_{2}}(x_{1}, \ldots, x_{n}) and \mathcal{N}_{i}=\mathcal{L}_{2}(x_{1}, \ldots, x_{i}) for all i(0\leq i\leq n) . We

find that

\mathcal{L}_{2}=\mathcal{N}_{0}\subset \mathcal{N}_{1}\subset. . . \subset \mathcal{N}_{n}=\mathcal{L}_{2}C_{\mathcal{L}_{1}\mathcal{L}_{2}}=\mathcal{L}_{1}\mathcal{L}_{2}

is a finite chain of dierence field extensions. Since tr. \deg N_{i}/N_{i-1}\leq 1 for all  i(1\leq
 i\leq n) the extensions \mathcal{N}_{i}/\mathcal{N}_{i-1}(1\leq i\leq n) are all \mathcal{L}_{1}\mathcal{L}_{2} ‐decomposable, and so \mathcal{L}_{1}\mathcal{L}_{2}/\mathcal{L}_{2}
is also \mathcal{L}_{1}\mathcal{L}_{2} ‐decomposable. By Lemma 2.5 we obtain \mathcal{U}/\mathcal{L} is \mathcal{U}‐decomposable, which

implies \mathcal{U}/\mathcal{K} is \mathcal{U}‐decomposable. \square 

A strongly normal dierential field extension is a decomposable dierential field

extension in the sense dened in [5], moreover a chain of strongly normal dierential field

extensions and algebraic ones are decomposable by grace of the universal dierential field

extension dened by Kolchin in [4]. However we do not have such a useful \backslash universal�

dierence field extension (refer to Section 4 Appendix), instead we introduce a way of

constructing somewhat similar decomposable chains.

Although the operator of a dierence field is not always an automorphism, the

following shows some kind of algebraically closed dierence field has an automorphism

operator.

Lemma 2.9. Let \mathcal{K}=(K, $\tau$_{K}) be a dierence field whose operator $\tau$_{K} is an

automorphism of K and \mathcal{L} a dierence overeld of \mathcal{K} such that tr. \deg L/K<\infty . Then

algebraic closure \overline{L} of L is a dierence overeld of \mathcal{L} with some automorphism of \overline{L}.
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Proof. From the theorem of Steinitz. \square 

Example 2.10. If a chain of dierence field extensions \mathcal{K}=\mathcal{N}_{0}\subset \mathcal{N}_{1}\subset\cdots\subset

\mathcal{N}_{n} satises one of the following for each i(1\leq i\leq n) ,
then \mathcal{N}_{n}/\mathcal{K} is \mathcal{N}_{n} ‐decomposable.

1. tr. \deg N_{i}/N_{i-1}\leq 1.

2. \mathcal{N}_{i} is the dierence overeld \mathcal{U} in Proposition 2.7 for some strongly normal extension

\mathcal{L} of \mathcal{N}_{i-1} such that tr. \deg L/N_{i-1}\geq 2.

Strongly normal extensions are dened for dierence fields whose operator is an

automorphism. If the operator of \mathcal{K} is an automorphism, for Lemma 2.9, we may take

an algebraic closure of N_{i} to make the operator surjective.

§3. qPainlevé equation of type A_{7}^{(1)}

In [7] the author studied a property of solutions of q‐Painlevé equation of type A_{7}^{(1)},

q
‐P (A_{7}) : \overline{f}f^{2}\underline{f}=t(1-f) ,

where \overline{f}=f(qt) and \underline{f}=f(t/q) ,
and proved that q‐P(A) has no solution in any

decomposable extension of C(t) if q\in \mathbb{C}^{\times} is not a root of unity. In this section we

sketch the proof.

q‐Painlevé equations are q‐deerence equations which are discrete analogs of the

Painlevé equations. Grammaticos, Ramani and Papageorgiou presented in their [3] \mathrm{a}

notion called singularity connement, by which they obtained an integrability criterion

for discrete‐time systems that is a discrete counter part of the Painlevé property for

systems of a continuous variable. Ramani, Grammaticos and Hietarinta made several

discrete Painlevé equations using the method of singularity connement (see [9]). q‐

P(A) appears in the paper of Ramani and Grammaticos ([10]).
In his [11] Sakai introduced a geometric approach to theory of the Painlevé equa‐

tions, and showed both classications of Painlevé equations and discrete Painlevé equa‐

tions by rational surfaces. The notation q‐P(A) is determined by the type A_{7}^{(1)} of

the rational surface of the equation. The list of discrete Painlevé equations and their

notations can be seen in the paper of H. Sakai ([12]). In addition q‐P(A) has symmetry

A_{1}^{(1)}.

For the beginning of the proof we prove the following Lemma independent of equa‐

tions.
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Lemma 3.1. Let \mathcal{K} be a dierence field, \mathcal{U} a dierence overeld of \mathcal{K}, \mathcal{D}/\mathcal{K}a\mathcal{U}-
decomposable extension and f\in D . Suppose f satises the fo llowing; foor any dierence

overeld \mathcal{L}\subset \mathcal{U} of \mathcal{K} such that tr. \deg L/K<\infty and tr. \deg L\langle f\rangle/L\leq 1 ,
the element f

is algebraic over L. Then f is algebraic over K.

Proof. Assume that f is transcendental over K . Choose (\mathcal{L}, \mathcal{N}) be an element of

\{(\mathcal{L}, \mathcal{N})|\mathcal{K}\subset \mathcal{L}\subset \mathcal{N} , tr. \deg L/K<\infty, \mathcal{N}/\mathcal{L} is \mathcal{U}‐decomposable,

f\in N, f is transcendental over L}

which has the minimal transcendence degree. The choice is guaranteed because (\mathcal{K}, \mathcal{D})
satises the conditions. Since f is transcendental over L

, by the hypothesis we find

tr. \deg N/L\geq 2 . By the denition of decomposable extensions there exists a dierence

overeld \mathcal{E}\subset \mathcal{U} of \mathcal{L} such that tr. \deg E/L<\infty, E is free from N over L and there

exists a dierence intermediate field \mathcal{M} of \mathcal{N}\mathcal{E}/\mathcal{E} such that \mathcal{N}\mathcal{E}/\mathcal{M} and \mathcal{M}/\mathcal{E} are both

\mathcal{U}‐decomposable extensions of positive transcendence degree.
Then we have f\in NE and tr. \deg NE/M<\mathrm{t}\mathrm{r}.\deg N/L ,

which imply f is algebraic
over M . Thus we obtain \mathcal{M}\langle f\rangle/\mathcal{E} is \mathcal{U}‐decomposable by Lemma 2.3. Hence we find f
is algebraic over E from tr. \deg M\langle f\rangle/E<\mathrm{t}\mathrm{r}.\deg N/L ,

which contradicts the fact that

N and E are free over L . Therefore f is algebraic over K. \square 

From here C denotes an algebraically closed field of characteristic 0, t an element

transcendental over C and q an element of C^{\times} which is not a root of unity. Furthermore

let \mathcal{K} be a dierence overeld of (C(t), t\mapsto qt) whose operator is surjective, and \mathcal{U}\mathrm{a}

dierence overeld of \mathcal{K} . We may take the field of Puiseux series or \mathcal{N}_{n} in Example 2.10

as \mathcal{U} for example.
The author proved in [6] that solutions of q‐P(A) are all transcendental over C(t)

in the case q is not a root of unity. Hence the following theorem shows that if q is

not a root of unity then q‐P(A) has no solution in any \mathcal{U}‐decomposable extension of

(C(t), t\mapsto qt) ,
where \mathcal{U} is an arbitrary dierence overeld of (C(t), t\mapsto qt) .

Theorem 3.2. Let \mathcal{D}/\mathcal{K} be a \mathcal{U} ‐decomposable extension and f\in D a solution

of q‐P (A_{7}) . Then f is algebraic over K.

This is proved from Lemma 3.1 and the following proposition.

Proposition 3.3. Let f\in U be a solution of q‐P(A) and \mathcal{L}\subset \mathcal{U} a dierence

overeld of \mathcal{K} with finite transcendence degree. If tr. \deg L\langle f\rangle/L\leq 1 then f is algebraic
over L.

Proof. It is enough to prove this for algebraically closed L . Then we find the

operator of \mathcal{L} is surjective by Lemma 2.9. Let  $\tau$ be the operater of \mathcal{U} . For a polynomial

F=\displaystyle \sum a_{ij}Y^{i}Y_{1}^{j}\in L[Y, Y_{1}] ,
we dene F^{*}=\displaystyle \sum( $\tau$ a_{ij})Y^{i}Y_{1}^{j}.
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Assume that f\not\in L . Then the transformations f_{i}=$\tau$^{i}f(i=0,1,2, \ldots) are all

transcendental over L . From tr. \deg L\langle f\rangle/L\leq 1 we find that f and f_{1} are algeraically

dependent over L . Take an irreducible polynomial F\in L[Y, Y_{1}] such that F(f, f_{1})=0.
Put

F_{0}=(Y_{1}Y^{2})^{n_{0}}F(\displaystyle \frac{qt(1-Y)}{Y_{1}Y^{2}}, Y)
and

F_{1}=(Y_{1}^{2}Y)^{n_{1}}F^{*}(Y_{1}, \displaystyle \frac{qt(1-Y_{1})}{Y_{1}^{2}Y}) ,

where n_{0}=\deg_{Y}F and n_{1}=\deg_{Y_{1}}F . We easily find that F_{0}, F_{1}\in L[Y, Y_{1}]\backslash \{0\} . From

F_{0}(f_{1}, f_{2})=(f_{2}f_{1}^{2})^{n_{0}}F(\displaystyle \frac{qt(1-f_{1})}{f_{2}f_{1}^{2}}, f_{1})=(f_{2}f_{1}^{2})^{n_{0}}F(f, f_{1})=0
and

F_{1}(f, f_{1})=(f_{1}^{2}f)^{n_{1}}F^{*}(f_{1}, \displaystyle \frac{qt(1-f_{1})}{f_{1}^{2}f})=(f_{1}^{2}f)^{n_{1}}F^{*}(f_{1}, f_{2})=0,
we obtain F^{*}|F_{0} and F|F_{1} ,

where we note that all the f_{i} are transcendental over L.

However we find the nonexistence of such a polynomial F from the subsequent

lemma, a statement analogous to Theorem 1 in the paper of Noumi and Okamoto ([8]),
where they dened an invariant divisor by a polynomial like F . Hence f is an element

of L. \square 

Lemma 3.4. Let q\in C^{\times} be not a root of unity, (L,  $\tau$) be a dierence overeld

of (C(t), t\mapsto qt) whose operator  $\tau$ is surjective,  Y and Y_{1} algebraically independent over

L, $\phi$_{0} an isomorphism such that

$\phi$_{0}:L(Y, Y_{1})\rightarrow L(Y, Y_{1})

Y \displaystyle \mapsto\frac{qt(1-Y)}{Y_{1}Y^{2}}
Y_{1} \mapsto Y

L\ni x \mapsto x\in L

and $\phi$_{1} an isomorphism such that

$\phi$_{1}:L(Y, Y_{1})\rightarrow L(Y, Y_{1}) .

Y \mapsto Y_{1}

Y_{1} \displaystyle \mapsto\frac{qt(1-Y_{1})}{Y_{1}^{2}Y}
L\ni x \mapsto  $\tau$ x\in L

For a polynomial F\in L[Y, Y_{1}] we dene F^{*} as in the proof of Proposition 3.3. Then

there is no irreducible polynomial F\in L[Y, Y_{1}]\backslash (L[Y][L[Y] ) such that F^{*}|(Y_{1}Y^{2})^{n_{0}}$\phi$_{0}F
and F|(Y_{1}^{2}Y)^{n_{1}}$\phi$_{1}F ,

where n_{0}=\deg_{Y}F and n_{1}=\deg_{Y_{1}}F.
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Proof. Assume there exists such F . Put F_{0}=(Y_{1}Y^{2})^{n_{0}}$\phi$_{0}F and F_{1}=(Y_{1}^{2}Y)^{n_{1}}$\phi$_{1}F.
Then it follows that

n_{1}=\deg_{Y_{1}}F^{*}\leq\deg_{Y_{1}}F_{0}\leq n_{0}=\deg_{Y}F\leq\deg_{Y}F_{1}\leq n_{1},

which implies n_{0}=n_{1} . Put n=n_{0}=n_{1}\geq 1.

From F|F_{1} there exists a polynomial P\in L[Y, Y_{1}]\backslash \{0\} such that F_{1}=PF . Since

\deg_{Y}P=\deg_{Y}F_{1}-\deg_{Y}F=0 ,
we find P\in L[Y_{1}] . Hence we express F as

F=\displaystyle \sum_{i,j}a_{ij}Y^{i}Y_{1}^{j}, a_{ij}\in L,
and we obtain the following equations by comparing the coecients of powers of Y in

F_{1}=PF,

(qt)^{n-j}(1-Y_{1})^{n-j}Y_{1}^{2j}(\displaystyle \sum_{i=0}^{n} $\tau$ a_{i,n-j}Y_{1}^{i})=P(Y_{1})\sum_{i=0}^{n}a_{ji}Y_{1}^{i}, (0\leq j\leq n) .

Calculation shows P=pY_{1}^{n}(1-Y_{1})^{\frac{n}{2}} ,
where n/2 is a positive integer. Then comparing

the coecients in the above equations, we obtain q^{\frac{n}{2}}=1 ,
which is a contradiction. \square 

§4. Appendix

The universal dierential field extension is dened as follows, and its existence is

proved for any dierential field by Kolchin in [4].

Denition 4.1. A necessary and sucient condition for a dierential field ex‐

tension \mathcal{U}/\mathcal{K} to be universal is that for every finitely generated dierential field extension

\mathcal{K}_{1} of \mathcal{K} with \mathcal{K}_{1}\subset \mathcal{U} and every finitely generated dierential field extension \mathcal{L} of \mathcal{K}_{1}
there exists an dierential isomorphism of \mathcal{L} over \mathcal{K}_{1} into \mathcal{U}.

On the contrary the following theorem is proved.

Theorem 4.2. Let \mathcal{K} be a dierence field of characteristic 0 . Then there does

not exist such a dierence overeld \mathcal{U} of \mathcal{K} that foor any finitely generated dierence

overeld \mathcal{K}_{1}\subset \mathcal{U} of \mathcal{K} and any finitely generated dierence overeld \mathcal{L} of \mathcal{K}_{1} there

exists a dierence isomorphism of \mathcal{L} over \mathcal{K}_{1} into \mathcal{U}.

Proof. Assume there exists such \mathcal{U}=(U,  $\tau$) . Choose x to be transcendental over

K . The field K(x) equipped with an extension $\tau$' of  $\tau$|_{K} sending x to x is a finitely

generated dierence overeld of \mathcal{K} . By the hypothesis there exists an dierence isomor‐

phism  $\phi$ of (K(x), $\tau$') into \mathcal{U} over \mathcal{K} . Put y= $\phi$ x . Then we obtain  $\phi$(K(x))=K(y) and

 $\tau$ y= $\tau$\circ $\phi$(x)= $\phi$(x)=y.
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Dierence fields K(y^{\frac{1}{2}}) equipped with extensions of  $\tau$|_{K},

$\tau$_{i}:K(y^{\frac{1}{2}})\rightarrow K(y^{\frac{1}{2}}) , (i=1,2)
y^{\frac{1}{2}} \mapsto(-1)^{i-1}y^{\frac{1}{2}}

respectively are finitely generated dierence overelds of \mathcal{K}(y) . By our assumption
there exists a dierence isomorphism $\phi$_{i}(i=1,2) of (K(y^{\frac{1}{2}}), $\tau$_{i}) into \mathcal{U} over \mathcal{K}(y) . Since

($\phi$_{i}(y^{\frac{1}{2}}))^{2}=$\phi$_{i}(y)=y ,
we have expressions,

$\phi$_{i}(y^{\frac{1}{2}})=(-1)^{k_{i}}z, k_{i}\in \mathbb{Z} for i=1
, 2,

where z\in U denotes a square root of y.

By the denition of $\phi$_{i} we have $\phi$_{i}\circ$\tau$_{i}= $\tau$\circ$\phi$_{i} . Hence we obtain

 $\tau$(z)=(-1)^{k_{i}} $\tau$($\phi$_{i}(y^{\frac{1}{2}}))=(-1)^{k_{i}}$\phi$_{i}\circ$\tau$_{i}(y^{\frac{1}{2}})
=(-1)^{k_{i}}$\phi$_{i}((-1)^{i-1}y^{\frac{1}{2}})=(-1)^{i-1}z for i=1

,
2.

However this contradicts that the characteristic of K is 0. \square 
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