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On Strichartz estimates for hyperbolic equations
with constant coecients

By

Michael Ruzhansky *

Abstract

In this note we will review how one can carry out comprehensive analysis of the dis‐

persive and Strichartz estimates for general hyperbolic equations and systems with constant

coecients. We will describe what geometric and other ingredients are responsible for time

decay rates of solutions, how multiple roots inuence decay rates, and give applications to

Grad systems and to Fokker‐Planck equations. The note is based on the work by the author

[Ruzh06, Ruzh07] as well as the joint work with James Smith [RS05, RS07].

§1. Introduction

We consider the general m^{\mathrm{t}\mathrm{h}} order linear, constant coecient, strictly hyperbolic

Cauchy problem

general lower order termshomogeneous principal part

(1.1) t>0,

\mathrm{u}(0;\mathrm{x}) = \mathrm{f}(\mathrm{x}) \mathrm{C} 1 = 0; : : : ; \mathrm{m} 1; \mathrm{x} :

Here

homogeneous principal part

(1.2) D_{t}^{m}+\displaystyle \sum_{j=1}P_{j}m(D_{x})D_{t}^{m-j}
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is the principal part, homogeneous of order m
,

and

general lower order terms

(1.3) \displaystyle \sum_{l=0}^{m-1}\sum_{| $\alpha$|+r=l}c_{ $\alpha$,r}D_{x}^{ $\alpha$}D_{t}^{r}
are lower order terms of general form. Symbol P_{j}() of P(D) is assumed to be a

homogeneous polynomial of order j ,
and c_{ $\alpha$,r} are complex constants. Here, as usual,

 $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{n}) , D_{x}^{ $\alpha$}=D_{x_{1}}^{$\alpha$_{1}}\cdots D_{x_{n}}^{$\alpha$_{n}}, D_{x_{k}}=\displaystyle \frac{1}{i}\partial_{x_{k}}, D_{t}=\displaystyle \frac{1}{i}\partial_{t} and $\xi$^{ $\alpha$}=$\xi$_{1}^{$\alpha$_{1}}\cdots$\xi$_{n}^{$\alpha$_{n}} . The

partial dierential operator in (1.1) will be denoted by L(D_{t}, D_{x}) .

In order for the Cauchy problem (1.1) to be well‐posed, we will assume that the

principal part (1.2) is hyperbolic. Since we are interested in time decay rates of solutions

u(t, x) to (1.1) and their dependence on lower order terms (1.3), we do not want to worry

whether the Cauchy problem (1.1) is well‐posed for a particular choice of lower order

terms. Thus, we will assume that the principal part (1.2) is strictly hyperbolic. This

means that the characteristic roots of the principal part must be real and distinct. More

precisely, let

L( $\tau$,  $\xi$)=$\tau$^{m}+\displaystyle \sum_{j=1}^{m}P_{j}( $\xi$)$\tau$^{m-j}+\sum_{l=0}^{m-1}\sum_{| $\alpha$|+r=l}c_{ $\alpha$,r}$\xi$^{ $\alpha$}$\tau$^{r}
be the full symbol of the partial dierential operator in (1.1). Hyperbolicity means that

for each  $\xi$\in \mathbb{R}^{n} ,
the symbol of the principal part (1.2)

L_{m}( $\tau$,  $\xi$)=$\tau$^{m}+\displaystyle \sum_{j=1}^{m}P_{j}( $\xi$)$\tau$^{m-j},
has m real‐valued roots with respect to  $\tau$

,
and strict hyperbolicity means that at each

 $\xi$\in \mathbb{R}^{n}\backslash \{0\} ,
these roots are pairwise distinct. We denote the roots of L_{m}( $\tau$,  $\xi$) with

respect to  $\tau$ by  $\varphi$_{1}() \leq\cdots\leq$\varphi$_{m}( $\xi$) ,
and if L is strictly hyperbolic the above inequalities

are strict for  $\xi$\neq 0.
Our results will show how dierent properties of the characteristic roots

$\tau$_{1}() ;. . .

, $\tau$_{m}( $\xi$)

of the full symbol aect the rate of decay of the solution u(t, x) with respect to t.

First of all, it is natural to impose the stability condition, namely that for all  $\xi$\in \mathbb{R}^{n}
we have

(1.4) {\rm Im}$\tau$_{k}() \geq 0 for k=1
,

. . .

,
m ;

this is equivalent to requiring the characteristic polynomial of the operator to be stable

at all points  $\xi$\in \mathbb{R}^{n} ,
and thus cannot be expected to be lifted. In fact, certain microlocal
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decay estimates are possible even without this condition but we will assume (1.4) here

for simplicity.
It turns out to be sensible to divide the considerations of how characteristic roots

behave into two parts: their behaviour for large values of | $\xi$| and for bounded values

of | $\xi$| . These two cases are then subdivided further; in particular the following are the

key properties to consider:

\bullet multiplicities of roots (this only occurs in the case of bounded frequencies | $\xi$| );

\bullet whether roots lie on the real axis or are separated from it;

\bullet behaviour as | $\xi$|\rightarrow\infty (only in the case of large | $\xi$| );

\bullet how roots meet the real axis (if they do);

\bullet properties of the Hessian of the root, Hess $\tau$_{k}() ;

\bullet a convexity‐type condition, as in the case of homogeneous roots.

For some frequencies away from multiplicities we can actually establish indepen‐

dently interesting estimates for the corresponding oscillatory integrals that contribute

to the solution. Around multiplicities we need to take extra care of the structure of

solutions. This will be done by dividing the frequencies into zones each of which will

give a certain decay rate. Combined together they will yield the total decay rate for

solution to (1.1).

§2. Brief history

For the homogeneous linear wave equation

(2.1) \left\{\begin{array}{l}
\partial_{t}^{2}u-\triangle_{x}u=0, (t, x)\in \mathbb{R}^{n}\times(0, \infty)_{;}\\
u(0, x)= $\phi$(x) , @u (0; x)= $\psi$(x) , x\in \mathbb{R}^{n},
\end{array}\right.
where the initial data  $\phi$ and  $\psi$ lie in suitable function spaces such as  C_{0}^{\infty}(\mathbb{R}^{n}) ,

the decay
rate of solutions was established by Strichartz [\mathrm{S}\mathrm{t}\mathrm{r}70\mathrm{a}, \mathrm{S}\mathrm{t}\mathrm{r}70\mathrm{b}] . He showed that the a

priori estimate

(2.2) \displaystyle \Vert(u_{t}(t, \cdot), \nabla_{x}u(t, \Vert_{L^{q}}\leq C(1+t)^{-}\overline{2} \frac{1}{q})\Vert(\nabla_{x} $\phi$,  $\psi$)\Vert_{W_{p}^{N_{p}}}n-1(\displaystyle \frac{1}{p}-

holds when n\geq 2, \displaystyle \frac{1}{p}+\frac{1}{q}=1, 1<p\leq 2 and N_{p}\displaystyle \geq n(\frac{1}{p}-\frac{1}{q}) . See also [Pec76] or [\mathrm{v}\mathrm{W}71]
with dierent methods of proof.
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Let us now compare the time decay rate for the wave equation with equations
with lower order terms. An important example is the Klein‐Gordon equation, where

u=u(t, x) satises the initial value problem

(2.3) \left\{\begin{array}{l}
\partial_{t}^{2}u-\triangle_{x}u+$\mu$^{2}u=0, (t, x)\in \mathbb{R}^{n}\times(0, \infty) ,\\
u(0, x)= $\phi$(x) , u_{t}(0, x)= $\psi$(x) , x\in \mathbb{R}^{n},
\end{array}\right.
where  $\phi$,  $\psi$\in C_{0}^{\infty}(\mathbb{R}^{n}) and  $\mu$\neq 0 is a constant (representing a mass term); then

(2.4) \Vert(u(t, \cdot), u_{t}(t, \cdot), \nabla_{x}u(t, \Vert_{L^{q}}\leq C(1+t)^{-\frac{n}{2}(\frac{1}{p}-\frac{1}{q})}\Vert(\nabla_{x} $\phi$,  $\psi$)\Vert_{W_{p}^{N_{p}}},
where p, q, N_{p} are as before (see [\mathrm{v}\mathrm{W}71] or [Pec76]).

Another second order problem of interest is the Cauchy problem for the dissipative
wave equation,

(2.5) \left\{\begin{array}{l}
@_{t}^{2}u-\triangle_{x}u+u_{t}=0, (t, x)\in \mathbb{R}^{n}\times(0, \infty) ,\\
u(0, x)= $\phi$(x) , u_{t}(0, x)= $\psi$(x) , x\in \mathbb{R}^{n},
\end{array}\right.
where  $\psi$,  $\phi$\in C_{0}^{\infty}(\mathbb{R}^{n}) , say. In this case,

(2.6) \Vert\partial_{t}^{r}\partial_{x}^{ $\alpha$}u(t, \cdot)\Vert_{L^{q}}\leq C(1+t)^{-\frac{n}{2}(\frac{1}{p}-\frac{1}{q})-r-\frac{| $\alpha$|}{2}} \Vert( $\phi$, \nabla $\psi$)\Vert_{W_{p}^{N_{p}}},
with some N_{p}=N_{p}(n,  $\alpha$, r) (see [Mat77]).

The case of equations of high orders with homogeneous symbols (i.e. with no lower

order terms (1.3)) has been extensively studied as well. Assume here that the operator

in (1.1) has only homogeneous part (1.2) with no lower order terms (1.3), so that the

problem becomes

(2.7) \left\{\begin{array}{ll}
L_{m}(D_{t}, D_{x})u=0, & (t, x)\in \mathbb{R}^{n}\times(0, \infty) ,\\
D_{t}^{l}u(0, x)=f_{l}(x) , & l=0, . . :; m-1, x\in \mathbb{R}^{n},
\end{array}\right.
where L_{m} is a homogeneous m^{\mathrm{t}\mathrm{h}} order constant coecient strictly hyperbolic dierential

operator in (1.2); the symbol of L_{m} may be written in the form

L_{m}(_{;}  $\xi$)=( $\tau-\varphi$_{1} :. : ( $\tau-\varphi$_{m} ;
with $\varphi$_{1}() <. . . <$\varphi$_{m}() ( $\xi$\neq 0) .

It can be easily shown that the question of time decay rates of solution u(t, x) to (2.7)
can be reduced to the question of the L^{p}-L^{q} boundedness of operators of the form

M_{r}(D):=\mathcal{F}^{-1}e^{i $\varphi$( $\xi$)}| $\xi$|^{-r} $\chi$( $\xi$)\mathcal{F},

where  $\varphi$( $\xi$)\in C^{ $\omega$}(\mathbb{R}^{n}\backslash \{0\}) is homogeneous of order 1 and  $\chi$\in C^{\infty}(\mathbb{R}^{n}) is equal to 1

for large  $\xi$ and zero near the origin, and \mathcal{F} is the Fourier transform.
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It has long been known that the values of r for which M(D) is L^{p}-L^{q} bounded

depend on the geometry of the level set

$\Sigma$_{ $\varphi$}=\{ $\xi$\in \mathbb{R}^{n}\backslash \{0\}: $\varphi$( $\xi$)=1\}

In [Lit73] and [Bre75] it is shown that if the Gaussian curvature of $\Sigma$_{ $\varphi$} is never zero then

M(D) is L^{p}-L^{q} bounded provided that r\displaystyle \geq\frac{n+1}{2}(\frac{1}{p}-\frac{1}{q}) . This is extended in [Bre77]
where it is proven that M(D) is L^{p}-L^{q} bounded provided that r\displaystyle \geq\frac{2n- $\rho$}{2}(\frac{1}{p}-\frac{1}{q}) ,

where  $\rho$=\displaystyle \min_{ $\xi$\neq 0} rank Hess  $\varphi$ (  $\xi$ ) .

Sugimoto extended this further in [Sug94], where he showed that if  $\Sigma$_{ $\varphi$} is convex

then M(D) is L^{p}-L^{q} bounded when r\displaystyle \geq(n-\frac{n-1}{ $\gamma$($\Sigma$_{ $\varphi$})})(\frac{1}{p}-\frac{1}{q}) ; here,

 $\gamma$( $\Sigma$) :=\displaystyle \sup_{ $\sigma$\in $\Sigma$}\sup_{P} $\gamma$( $\Sigma$; $\sigma$, P) ,  $\Sigma$\subset \mathbb{R}^{n} a hypersurface,

where P is a plane containing the normal to  $\Sigma$ at  $\sigma$ and  $\gamma$( $\Sigma$; $\sigma$, P) denotes the order of

the contact between the line T_{ $\sigma$}\cap P, T_{ $\sigma$} is the tangent plane at  $\sigma$
,

and the curve  $\Sigma$\cap P.

If this convexity assumption does not hold the L^{p}-L^{q} estimate fails. In fact,
in [Sug96] and [Sug98] it is shown that in general, M(D) is L^{p}-L^{q} bounded when

r\displaystyle \geq(n-\frac{1}{$\gamma$_{0}($\Sigma$_{ $\varphi$})})(\frac{1}{p}-\frac{1}{q}) ,
where

$\gamma$_{0}( $\Sigma$):=\displaystyle \sup\inf_{{}_{ $\sigma$\in $\Sigma$}P} $\gamma$( $\Sigma$; $\sigma$, P)\leq $\gamma$( $\Sigma$) .

For n=2, $\gamma$_{0}( $\Sigma$)= $\gamma$( $\Sigma$) , so, the convexity condition may be lifted in that case.

The main question of this note is what happens with time decay rates of solutions

u(t, x) to the Cauchy problem (1.1) for general strictly hyperbolic operators with ar‐

bitrary lower order terms. It is clear that one needs to classify dierent behaviour of

lower order terms that inuences the decay rates. Since the equation in question may

be rather complicated, one is motivated to look at certain key properties of the symbol
that could be veried relatively easily. Let us look at some examples that may motivate

such a general theory.
To this end, we mention briey an example of a system that arises as the linearisa‐

tion of the 13‐moment Grad system of non‐equilibrium gas dynamics in two dimensions

(other Grad systems are similar). The dispersion relation (the determinant) of this

system is a polynomial of the 9^{th} order that can be written as

P=Q_{9}-iQ_{8}-Q_{7}+iQ_{6}+Q_{5}-iQ_{4},
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with polynomials Q_{j}( $\omega$,  $\xi$) dened by

Q_{9}( $\omega$,  $\xi$)=| $\xi$|^{9}$\omega$^{3}[$\omega$^{6}-\displaystyle \frac{103}{25}$\omega$^{4}+\frac{21}{5}$\omega$^{2}(1-\frac{912}{2625} $\alpha \beta$)-\frac{27}{25}(1-\frac{432}{675} $\alpha \beta$)],
Q_{8}( $\omega$,  $\xi$)=| $\xi$|^{8}$\omega$^{2}[\displaystyle \frac{13}{3}$\omega$^{6}-\frac{1094}{75}$\omega$^{4}+\frac{1381}{125}$\omega$^{2}(1-\frac{2032}{6905} $\alpha \beta$)-\frac{264}{125}(1-\frac{143}{330} $\alpha \beta$)],
Q_{7}( $\omega$,  $\xi$)=| $\xi$|^{7} $\omega$[\displaystyle \frac{67}{9}$\omega$^{6}-\frac{497}{25}$\omega$^{4}+\frac{3943}{375}$\omega$^{2}(1-\frac{832}{3943} $\alpha \beta$)-\frac{159}{125}(1-\frac{48}{159} $\alpha \beta$)],
Q_{6}( $\omega$,  $\xi$)=| $\xi$|^{6}[\displaystyle \frac{19}{3}$\omega$^{6}-\frac{2908}{225}$\omega$^{4}+\frac{13}{3}$\omega$^{2}(1-\frac{32}{325} $\alpha \beta$)-\frac{6}{25}],
Q_{5}( $\omega$,  $\xi$)=| $\xi$|^{5} $\omega$[\displaystyle \frac{8}{3}$\omega$^{4}-\frac{178}{45}$\omega$^{2}+\frac{2}{3}],
Q_{4}( $\omega$,  $\xi$)=\displaystyle \frac{4}{9}| $\xi$|^{4}$\omega$^{2}($\omega$^{2}-1) ,

where

 $\omega$( $\xi$)=\displaystyle \frac{ $\tau$( $\xi$)}{| $\xi$|},  $\alpha$=\frac{$\xi$_{1}^{2}}{| $\xi$|^{2}},  $\beta$=\frac{$\xi$_{2}^{2}}{| $\xi$|^{2}}.
A natural question of finding dispersive (and subsequent Strichartz) estimates for the

Cauchy problem for operator P(D_{t}, D_{x}) with symbol P( $\tau$,  $\xi$) becomes calculationally

complicated. Clearly, in this situation it is hard to find the roots explicitly and, there‐

fore, we need to devise some procedure of determining what are the general properties
of the characteristics roots, and how to derive the time decay rate from these properties.
For example, in [Rad03] and [VR04] it is discussed when such polynomials are stable. In

this case, our results will guarantee the decay rate even though the exact formulae for

characteristic roots may not be known and even though characteristics become multiple
and irregular on some sets.

Once we determine the time decay rates in dispersive estimates, it is quite well

known how to derive the corresponding Strichartz estimates (see e.g. [KT98]). The

results can be also applied to study the time decay rates to solutions to equations that

can be reduced to hyperbolic equations or systems of high orders. For example, following
the Grad method for the analysis of the Fokker‐Planck equation (e.g. [VR04], [ZR04]),
one can obtain the decay rates for the solutions of the Fokker‐Planck equation for the

distribution function for the Brownian motion (see [Ruzh06]).
The results can be further applied to equations with time dependent coecients,

see the paper of the author with T. Matsuyama [MR07].

§3. Decay for the Cauchy problem

Putting together microlocal versions of decay rates in all zones (that we omit here

but refer to [RS07] for precise statements) we can obtain the following conclusion about
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solutions to the Cauchy problem (1.1).

Theorem 3.1. Suppose u=u(t, x) is the solution of the m^{th} order linear,
constant coecient, strictly hyperbolic Cauchy problem (1.1). Denote the character‐

istic roots of the operator by $\tau$_{1}( $\xi$) ,
. . .

, $\tau$_{m}( $\xi$) ,
and assume that Im $\tau$_{k}( $\xi$)\geq 0 for all

k=1
,

. . .

,
n

,
and all  $\xi$\in \mathbb{R}^{n}.

We introduce two functions, K^{(l)}(t) and K^{(b)}(t) ,
which take values as follows:

\bullet Consider the behaviour of each characteristic root, $\tau$_{k}( $\xi$) ,
in the region | $\xi$|\geq M,

where M is a large enough real number. The following table gives values for the

function K_{k}^{(l)}(t) corresponding to possible properties of $\tau$_{k}() ; if $\tau$_{k}() satises more

than one, then take K_{k}^{(l)}(t) to be function that decays the slowest as t\rightarrow\infty.

Location of () Additional Property

away from real axis

\det Hess ( ) = 0

on real axis rank Hess ( ) = \mathrm{n} 1

convexity condition

no convexity condition,

\mathrm{e} , some > 0

(1+ \mathrm{t})

(1+ \mathrm{t})
(1+ \mathrm{t})

(1 + \mathrm{t})

Then take K^{(l)}(t)=\displaystyle \max_{k=1\ldots,n}K_{k}^{(l)}(t) .

\bullet Consider the behaviour of the characteristic roots in the bounded region | $\xi$|\leq M ;

again, take K^{(b)}(t) to be the maximum (slowest decaying) function for which there

are roots satisfy ing the conditions in the following table:

(b)Location of Root(s) Properties

away from axis \mathrm{e} , some > 0

(1 + \mathrm{t})\mathrm{e}
on axis,

no multiplicities

no multiplicities
\mathrm{L} roots coinciding
\det Hess ( ) = 0

convexity condition

no convexity condition,

(1 + \mathrm{t})

(1 + \mathrm{t})
(1 + \mathrm{t})

on axis, \mathrm{L} roots coincide

multiplicities ; on set of codimension
�

(1 + \mathrm{t})
meeting axis \mathrm{L} roots coincide

with nite order \mathrm{s} on set of codimension
�

(1 + \mathrm{t})

*

These two cases of roots lying on the real axis require some additional regularity assumptions;

we refer to the corresponding microlocal statements in [RS07] for details.

This is the L^{1}-L^{\infty} rate in a shrinking region; there are dierent versions of L^{2} estimates
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possible in this case; the function for the L^{p}-L^{q} decay can be then found by interpolation, see

[RS07] for details.

Then, with K(t)=\displaystyle \max(K^{(b)}(t), K^{(l)}(t)) ,
the following estimate holds:

\displaystyle \Vert D_{x}^{ $\alpha$}D_{t}^{r}u(t, \cdot)\Vert_{L^{q}}\leq C_{ $\alpha$,r}K(t)\sum_{l=0}^{m-1}\Vert f_{l}\Vert_{W_{p}^{N_{p}-l}},
where 1\leq p\leq 2, \displaystyle \frac{1}{p}+\frac{1}{q}=1 ,

and N_{p}=N_{p}(_{;}r ) is a constant depending on p,  $\alpha$ and  r.

Let us now briey explain how to understand this theorem. Since the decay rates do

depend on the behaviour of characteristic roots in dierent regions and corresponding
microlocal theorems can be used to determine the corresponding rates, in Theorem

3.1 we single out properties which determine the final decay rate. Since the same

characteristic root, say $\tau$_{k} , may exhibit dierent properties in dierent regions, we look

at the corresponding rates K^{(\mathrm{b})}(t) , K^{(1)}(\mathrm{t}) under each possible condition and then take

the slowest one for the final answer. The value of the Sobolev index N_{p}=N_{p}(_{;}r )
depends on the regions as well, and it can be found from the corresponding microlocal

statements (see [RS07]).
In conditions of Part I of the theorem, it can be shown by the perturbation argu‐

ments that only three cases are possible for large  $\xi$ , namely, the characteristic root may

be uniformly separated from the real axis, it may lie on the axis, or it may converge to

the real axis at innity. If, for example, the root lies on the axis and, in addition, it

satises the convexity condition with so‐called Sugimoto index  $\gamma$ ,
we get the correspond‐

ing decay rate  K^{(1)}(t)=(1+t)^{-\frac{n-1}{ $\gamma$}(\frac{1}{p}-\frac{1}{q})} . Indices  $\gamma$ and  $\gamma$_{0} in the tables are dened

as the maximum of the corresponding indices  $\gamma$($\Sigma$_{ $\lambda$}) and $\gamma$_{0}($\Sigma$_{ $\lambda$}) , respectively, where

$\Sigma$_{ $\lambda$}=\{ $\xi$ : $\tau$_{k}() = $\lambda$\} ,
over all k and over all  $\lambda$

,
for which  $\xi$ lies in the corresponding

region. Indices  $\gamma$($\Sigma$_{ $\lambda$}) and $\gamma$_{0}() are introduced in the previous section.

The statement in Part II is more involved since we may have multiple roots in‐

tersecting on rather irregular sets. The number L of coinciding roots corresponds to

the number of roots which actually contribute to the loss of regularity. For example,

operator (\partial_{t}^{2}-\triangle)(\partial_{t}^{2}-2\triangle) would have L=2 for both pairs of roots \pm| $\xi$| and \pm\sqrt{2}| $\xi$|,
intersecting at the origin. Meeting the axis with finite order s means that we have the

estimate

(3.1) dist ( $\xi$, Z_{k})^{s}\leq c|{\rm Im}$\tau$_{k}( $\xi$)|

for all the intersecting roots, where Z_{k}=\{ $\xi$ : {\rm Im}$\tau$_{k}() =0\} . In Part II of Theorem

3.1, the condition that L roots meet the axis with finite order s on a set of codimension

\ell means that all these estimates hold and that there is \mathrm{a}(C^{1}) set \mathcal{M} of codimension \ell

such that  Z_{k}\subset \mathcal{M} for all corresponding k.
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In Part II of the theorem, condition ** is formulated in the region of the size

decreasing with time: if we have L multiple roots which coincide on the real axis on a

set \mathcal{M} of codimension \ell
,

we have an estimate

(3.2) |u(t, x)|\displaystyle \leq C(1+t)^{L-1-l}\sum_{l=0}^{m-1}\Vert f_{l}\Vert_{L^{1}},
if we cut off the Fourier transforms of the Cauchy data to the  $\epsilon$‐neighbourhood \mathcal{M}^{ $\epsilon$} of

\mathcal{M} with  $\epsilon$=1/t . Here we may relax the denition of the intersection above and say

that if L roots coincide in a set \mathcal{M} ,
then they coincide on a set of codimension \ell if the

measure of the  $\epsilon$‐neighborhood \mathcal{M}^{ $\epsilon$} of \mathcal{M} satises |\mathcal{M}^{ $\epsilon$}|\leq C$\epsilon$^{p} for small  $\epsilon$>0 ; here

\mathcal{M}^{ $\epsilon$}=\{ $\xi$\in \mathbb{R}^{n}: dist (  $\xi$, \mathcal{M})\leq $\epsilon$\}.
We can then combine it with the remaining cases outside of this neighborhood,

where it is possible to establish decay by dierent arguments. In particular, this is the

case of homogeneous equations with roots intersecting at the origin.

§4. Strichartz estimates and nonlinear problems

Let us denote by $\kappa$_{p,q}(L(D_{t}, D)) the time decay rate for the Cauchy problem (1.1),
so that function K(t) from Theorem 3.1 satises K(t)\simeq t^{-$\kappa$_{p,q}(L)} for large t . Thus, for

polynomial decay rates, we have

(4.1) $\kappa$_{p,q}(L)=-\displaystyle \lim_{t\rightarrow\infty}\frac{\ln K(t)}{\ln t}.
We will also abbreviate the important case  $\kappa$(L)=$\kappa$_{1,\infty}(L) since by interpolation we

have $\kappa$_{p,p'}=$\kappa$_{2,2}\displaystyle \frac{2}{p}+$\kappa$_{1,\infty}\left(\begin{array}{l}
\underline{1}-\underline{1}\\
pp
\end{array}\right), 1\leq p\leq 2 . These indices  $\kappa$(L) and $\kappa$_{p,p'}(L) of

operator L(D_{t}, D_{x}) will be responsible for the decay rate in the Strichartz estimates for

solutions to (1.1), and for the subsequent well‐posedness properties of the corresponding
semilinear equation which are discussed below.

In order to present an application to nonlinear problems let us first consider the

inhomogeneous equation

(4.2) \left\{\begin{array}{ll}
L(D_{t}, D_{x})u=f, & t>0,\\
D_{t}^{l}u(0, x)=0, & l=0, . ::, m-1, x\in \mathbb{R}^{n},
\end{array}\right.
with L(D_{t}, D_{x}) as in (1.1) satisfying (1.4). By the Duhamel�s formula the solution can

be expressed as

(4.3) u(t)=\displaystyle \int_{0}^{t}E_{m-1}(t-s)f(s)ds,
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where E_{m-1} is the propagator for the homogeneous equation. Let  $\kappa$=$\kappa$_{p,p'}(L) be the

time decay rate of operator L
,

determined by Theorem 3.1 and given in (4.1). Then

Theorem 3.1 implies that we have estimate

||E_{m-1}(t)g||_{W_{p'}^{\mathrm{s}}}\leq C(1+t)^{- $\kappa$}||g||_{W_{p}^{\mathrm{s}}}.

Together with (4.3) this implies

||u(t)||_{W_{p}^{\mathrm{s}},(\mathbb{R}_{x}^{n})}\displaystyle \leq C\int_{0}^{t}(t-s)^{- $\kappa$}||f(s)||_{W_{p}^{\mathrm{s}}}ds\leq C|t|^{- $\kappa$}*||f(t)||_{W_{p}^{\mathrm{s}}}.
By the Hardy−Littlewood−Sobolev theorem this is L^{q}(\mathbb{R})-L^{q'} () bounded if 1<q<2
and 1- $\kappa$=\displaystyle \frac{1}{q}-\frac{1}{q} . Therefore, this implies the following Strichartz estimate:

Theorem 4.1. Let $\kappa$_{p,p'} be the time decay rate of the operator L(D_{t}, D_{x}) in the

Cauchy problem (4.2). Let 1<p, q<2 be such that 1/p+1/p^{0}=1/q+1/q^{0}=1 and

1/q-1/q^{0}=1-$\kappa$_{p,p'} . Let s\in \mathbb{R} . Then there is a constant C such that the solution u

to the Cauchy problem (4.2) satises

||u||_{L^{q'}(\mathbb{R}_{t},W_{p'}^{\mathrm{s}}(\mathbb{R}_{x}^{n}))}\leq C||f||_{L^{q}(\mathbb{R}_{t},W_{p}^{\mathrm{s}}(\mathbb{R}_{x}^{n}))},
for all data right hand side f=f(t, x) .

By the standard iteration method we obtain the well‐posedness result for the fol‐

lowing semilinear equation

(4.4) \left\{\begin{array}{l}
L(D_{t}, D_{x})u=F(t, x, u) , t>0,\\
D_{t}^{l}u(0, x)=f_{l}(x) , l=0, . . :; m-1, x\in \mathbb{R}^{n}
\end{array}\right.
Theorem 4.2. Let $\kappa$_{p,p'} be the time decay index of the operator L(D_{t}, D_{x}) in

the Cauchy problem (4.4). Let p, q be such that 1/p+1/p'=1/q+1/q'=1 and

1/q-1/q^{0}=1-$\kappa$_{p,p'} . Let s\in \mathbb{R}.

Assume that foor any v\in L^{q'}(\mathbb{R}_{t}, W_{p}^{s}, (\mathbb{R}_{x}^{n})) ,
the nonlinear term satises  F(t, x, v)\in

 L^{q}(\mathbb{R}_{t}, W_{p}^{s}(\mathbb{R}_{x}^{n})) . Moreover, assume that for every  $\epsilon$>0 there exists a decomposition

-\infty=t_{0}<t_{1}<\cdots<t_{k}=+\infty such that the estimates

||F(t, x, u)-F(t, x, v)||_{L^{q}(I_{j},W_{p}^{\mathrm{s}}(\mathbb{R}_{x}^{n}))}\leq $\epsilon$||u-v||_{L^{q'}(I_{j},W_{p}^{\mathrm{s}},(\mathbb{R}_{x}^{n}))}
hold for the intervals I_{j}=(t_{j}, t_{j+1}) , j=0 ,

. . .

;
k-1.

Finally, assume that the solution of the corresponding homogeneous Cauchy problem
is in the space L^{q'}(\mathbb{R}_{t}, W_{p}^{s}, (\mathbb{R}_{x}^{n})) .

Then the semilinear Cauchy problem (4.4) has a unique solution in L^{q'}(\mathbb{R}_{t}, W_{p}^{s}, (\mathbb{R}_{x}^{n})) .
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§5. Application to the Fokker‐Planck equation

We will here give a result for the Fokker‐Planck equation for the distribution func‐

tion of particles in Brownian motion:

(@_{t}+\displaystyle \sum_{k=1}^{n}c_{k}\partial_{x_{k}})f(t, x, c)=\sum_{k=1}^{n}@_{c_{k}}(c_{k}+\partial_{c_{k}})f.
By the Hermite‐Grad method (see [VR04], [ZR04]) this equation can be reduced to an

innite hyperbolic system. Indeed, we can write the solution as

f(t, x, c)=\displaystyle \sum\frac{1}{ $\alpha$!}m_{ $\alpha$}(t, x)$\psi$^{ $\alpha$}(c) ,

| $\alpha$|\geq 0

where $\psi$^{ $\alpha$}(c)=(2 $\pi$)^{-n/2}(-\displaystyle \partial_{c})^{ $\alpha$}\exp(-\frac{|c|^{2}}{2}) are Hermite functions. The Galerkin approx‐

imation f^{N} of the solution f is

f^{N}(t, x, c)= \displaystyle \sum \frac{1}{ $\alpha$!}m_{ $\alpha$}(t, x)$\psi$^{ $\alpha$}(c) ,

0\leq| $\alpha$|\leq N

with m(t, x)=\{m_{ $\beta$}(t, x) : 0\leq| $\beta$|\leq N\} being the unknown function of coecients. It

can be shown that they satisfy a hyperbolic system of partial dierential equations of

first order:

D_{t}m(t, x)+\displaystyle \sum_{j}A_{j}D_{x_{j}}m(t, x)-iBm(t, x)=0,
where B is a diagonal matrix, B_{ $\alpha,\ \beta$}=| $\alpha$|$\delta$_{ $\alpha,\ \beta$} ,

and the only non‐zero elements of the

matrix A_{j} are a_{j}^{ $\alpha$-e_{j}, $\alpha$}=$\alpha$_{j}, a_{j}^{ $\alpha$+e_{j}, $\alpha$}=1 . Hence, the dispersion equation for the system
is

(5.1) P( $\tau$,  $\xi$)\displaystyle \equiv\det( $\tau$ I+\sum_{j}A_{j}$\xi$_{j}-iB)=0,
which we will call the N^{th} Fokker‐Planck polynomial. We will say that P( $\tau$,  $\xi$) is a

stable polynomial if its roots  $\tau$( $\xi$) satisfy {\rm Im} $\tau$( $\xi$)\geq 0 for all  $\xi$\in \mathbb{R}^{n} ,
and if {\rm Im} $\tau$( $\xi$)=0

implies  $\xi$=0 . Then we will say that P( $\tau$,  $\xi$) is strongly stable if, moreover, {\rm Im} $\tau$( $\xi$)=0
implies  $\xi$=0 and {\rm Re} $\tau$( $\xi$)=0 ,

and if its roots  $\tau$( $\xi$) satisfy \displaystyle \lim\inf_{| $\xi$|\rightarrow\infty}{\rm Im} $\tau$( $\xi$)>0.
Thus, the condition of strong stability means that the roots  $\tau$( $\xi$) may become real only
at the origin of the complex plane at  $\xi$=0 ,

and that they do not approach the real axis

asymptotically for large  $\xi$.

Theorem 5.1. If the N^{th} Fokker‐Planck polynomial P in (5.1) is strongly sta‐

ble, we have the estimate

||f_{N}(t, x, c)||_{L^{\infty}(\mathbb{R}_{x}^{n};L_{w}^{2}(\mathbb{R}_{c}^{n}))}\leq C(1+t)^{-n/2}+C_{N}e^{- $\epsilon$(N)t},
where the constant C does not depend on N

,
with w=\exp(-|c|^{2}/2) and  $\epsilon$(N)>0.
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Here, in general, we may have asymptotically that  $\epsilon$(N)\rightarrow 0 as  N\rightarrow\infty . For

details of this construction we refer to [Ruzh06] or to [RS07].
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