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Sato�s conjecture for the Weber equation and

transformation theory for Schrödinger equations
with a merging pair of turning points

By

Yoshitsugu Takei *

Abstract

In [3], together with Aoki and Kawai, I developed the transformation theory for an MTP

equation (i.e., a Schrödinger equation with a merging pair of simple turning points) to the

Weber equation and combined it with Sato�s conjecture to clarify the analytic structure of

Borel transformed WKB solutions of an MTP equation. In this paper I present a new proof of

Sato�s conjecture based on the use of the creation operator for the harmonic oscillator (i.e., the

Weber equation) and explain a core part of the transformation theory for an MTP equation

developed in [3] with emphasizing the role of Sato�s conjecture there.

§0. Introduction

In [2] Aoki, Kawai and the author of the present paper developed the exact WKB

theoretic transformation theory for a one‐dimensional Schrödinger equation near a sim‐

ple turning point and showed that Voros� connection formula ([12]) for Borel resummed

WKB solutions on a Stokes curve emanating from a simple turning point can be ob‐

tained from that of the canonical equation, i.e., the Airy equation. In [2] we also

constructed a transformation that brings a Schrödinger equation to the Weber equation
near two simple turning points. Very recently, in [3] we have succeeded in showing that

this transformation near two simple turning points together with what we call Sato�s

conjecture for the Voros coecient of the Weber equation (cf. [8], [11]) enables us to

analyze the structure of \backslash \mathrm{x}\mathrm{e}\mathrm{d} singularities� (cf. [4], [5], [6]) of Borel transformed WKB
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solutions of a Schrödinger equation with a merging pair of simple turning points (^{((}\mathrm{a}
merging‐turning‐points equation� or \backslash \backslash \mathrm{a}\mathrm{n} MTP equation� for short). The purpose of this

paper is to discuss Sato�s conjecture and its analytic implication in details, including its

direct proof based on the use of the creation operator for the harmonic oscillator (i.e.,
the Weber equation), and to explain a core part of the transformation theory for an

MTP equation developed in [3] with emphasizing the role of Sato�s conjecture there.

The paper is organized as follows: In Section 1 we present a WKB theoretic for‐

mulation of Sato�s conjecture and give its direct proof. Then, making use of Sato�s

conjecture, we analyze the structure of fixed singularities of Borel transformed WKB

solutions of the Weber equation in Section 2. Finally the transformation theory for an

MTP equation is explained in Section 3.

In ending this Introduction, the author expresses his heartiest thanks to Professors

T. Kawai, T. Aoki and T. Koike for their kind encouragements and continual stimulating
discussions with them. The author sincerely thanks also to Professor H.J. Silverstone

for the stimulating discussions with him during his extended stay at RIMS.

§1. Sato�s conjecture

Sato�s conjecture is concerned with WKB solutions

(1.1) $\psi$_{\pm}(z,  $\eta$)=\displaystyle \exp(\pm\int_{z_{0}}^{z}S^{\pm}dz)
of the Weber equation (i.e., the harmonic oscillator)

(1.2) (\displaystyle \frac{d^{2}}{dz^{2}}-$\eta$^{2}(\frac{z^{2}}{4}- $\lambda$)) $\psi$=0.
Here  $\eta$>0 is a large parameter,  $\lambda$\neq 0 is a non‐zero complex constant, z_{0} is an arbitrarily
chosen point and

(1.3)  S^{\pm}=\pm $\eta$ S_{-1}(z)+S_{0}(z)\pm$\eta$^{-1}S_{1}(z)+$\eta$^{-2}S_{2}(z)\pm\cdots

(1.4)  S_{-1}(z)=\sqrt{\frac{z^{2}}{4}- $\lambda$}, S_{0}(z)=-\displaystyle \frac{z}{8(z^{2}/4- $\lambda$)}, S_{1}(z)=-\displaystyle \frac{3z^{2}/8+ $\lambda$}{16(z^{2}/4- $\lambda$)^{5/2}} ,
. . .

denote WKB solutions of the Riccati equation

(1.5) S^{2}+\displaystyle \frac{\partial S}{\partial z}=$\eta$^{2}(\frac{z^{2}}{4}- $\lambda$)
associated with (1.2). Note that, if we use the odd part S_{\mathrm{o}\mathrm{d}\mathrm{d}}=(S^{+}-S^{-})/2 of S^{\pm},
WKB solutions (1.1) can be expressed also as

(1.6) $\psi$_{\pm}(z,  $\eta$)=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{z_{0}}^{z}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dz)
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since

(1.7) S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}=S^{+}-S_{\mathrm{o}\mathrm{d}\mathrm{d}}=-\displaystyle \frac{1}{2}\frac{d}{dz}\log S_{\mathrm{o}\mathrm{d}\mathrm{d}}
holds. (In what follows we mainly use the form (1.6) to express WKB solutions.) Sato�s

conjecture is then explicitly described in the following way:

Theorem 1.1 (Sato�s conjecture). The following relation (as formal power se‐

ries in $\eta$^{-1} ) holds for the Weber equation (1.2).

(1.8) \displaystyle \int_{2\sqrt{ $\lambda$}}^{\infty}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ S_{-1})dz=\frac{1}{2}\sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}( $\eta \lambda$)^{1-2n},
where B_{2n} designates the (2n) ‐th Bernoulli number, i.e.,

(1.9) \displaystyle \frac{w}{e^{w}-1}=1-\frac{w}{2}+\sum_{n=1}^{\infty}\frac{B_{2n}}{(2n)!}w^{2n}
Remark 1. The original version of Sato�s conjecture was described as a relation

between the parabolic cylinder function D_{ $\eta \lambda$-1/2}($\eta$^{1/2}z) ,
a special solution of (1.2), and

a WKB solution (1.6) with z_{0} being chosen to be a turning point z_{0}=2\sqrt{ $\lambda$}([8, \mathrm{p}.95]) .

Recently Shen and Silverstone ([11]) have elucidated its WKB‐theoretic meaning and

reformulated it in its WKB‐theoretic form (1.8). See also [3, Section 3]. Note that after

[12] the left‐hand side of (1.8) is often called \backslash Voros� coecient� in exact WKB analysis.

Throughout this paper we use Sato�s conjecture in the form (1.8).

A clear‐cut proof of Theorem 1.1, which is based on the use of some analytic

properties of the parabolic cylinder function, is given by Shen and Silverstone ([11]). An

equivalent formula was also derived by Voros ([12]) through the asymptotic expansion
of the Jost function (i.e., the quantization condition) of (1.2). In what follows we give
another proof of (1.8); it is more straightforward in the sense that it directly veries

(1.8) as a relation of formal power series in $\eta$^{-1} without resorting to any analytic object

corresponding to the left‐hand side of (1.8).

Proof of Theorem 1.1.

Let  $\sigma$ denote  $\eta \lambda$ . A key for the proof of Theorem 1.1 is to consider the following
dierence equation with respect to  $\sigma$.

(1.10) F( $\sigma$+1)-F( $\sigma$)=1+\displaystyle \log(1+\frac{1}{2 $\sigma$})-( $\sigma$+1)\log(1+\frac{1}{ $\sigma$}) .

This equation (1.10) and the Bernoulli number are related in the following manner:
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Lemma 1.2. (i) Let F_{0}() denote

(1.11) F_{0}() =\displaystyle \sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}$\sigma$^{1-2n},
that is, two times the right‐hand side of (1.8). Then F_{0}() fo rmally satises (1.10).
(ii) Conversely, if F( $\sigma$)=\displaystyle \sum_{n\geq 1}c_{n}$\sigma$^{n} is a formal solution of (1.10), then F( $\sigma$) must

coincide with F_{0}() .

Proof. (i) Combining the asymptotic expansion for \log $\Gamma$(z)

(1.12) \displaystyle \log $\Gamma$( $\sigma$)-( $\sigma$-\frac{1}{2})\log $\sigma$+ $\sigma$-\log\sqrt{2 $\pi$}\sim\sum_{n=1}^{\infty}\frac{B_{2n}}{2n(2n-1)}$\sigma$^{1-2n} (|\arg $\sigma$|< $\pi$)

( [7, Section 1.18, (1)] ) with the duplication formula

(1.13)  $\Gamma$(2 $\sigma$)=2^{2 $\sigma$-1}$\pi$^{-1/2} $\Gamma$( $\sigma$) $\Gamma$( $\sigma$+1/2)

( [7, Section 1.2, (15)] ) ,
we find

(1.14) \displaystyle \log\frac{ $\Gamma$( $\sigma$+1/2)}{\sqrt{2 $\pi$}}- $\sigma$(\log $\sigma$-1)\sim F_{0}( $\sigma$) (|\arg $\sigma$|< $\pi$) .

Replacing  $\sigma$ by  $\sigma$+1 ,
we also have

(1.15) \displaystyle \log\frac{ $\Gamma$( $\sigma$+3/2)}{\sqrt{2 $\pi$}}-( $\sigma$+1)(\log( $\sigma$+1)-1)\sim F_{0}( $\sigma$+1) (|\arg $\sigma$|< $\pi$) .

Taking the dierence of both sides of (1.14) and (1.15), we thus obtain

(1.16) \displaystyle \log\frac{ $\Gamma$( $\sigma$+3/2)}{ $\Gamma$( $\sigma$+1/2)}-( $\sigma$+1)(\log( $\sigma$+1)-1)+ $\sigma$(\log $\sigma$-1)
=1+\displaystyle \log(1+\frac{1}{2 $\sigma$})-( $\sigma$+1)\log(1+\frac{1}{ $\sigma$})
\sim F_{0}( $\sigma$+1)-F_{0}( $\sigma$) .

This means that F_{0}() formally satises (1.10).
(ii) By a simple computation we have

(1.17) ( $\sigma$+1)^{-n}=$\sigma$^{-n}(1+\displaystyle \frac{1}{ $\sigma$})^{-n}=\sum_{m\geq 0}(-1)^{m}\frac{(n+m-1)!}{(n-1)!m!}$\sigma$^{-n-m}
for n=1

, 2, . ::. Hence

(1.18) F( $\sigma$+1)-F() =\displaystyle \sum_{n\geq 1}\sum_{m\geq 1}c_{n}(-1)^{m}\frac{(n+m-1)!}{(n-1)!m!}$\sigma$^{-n-m}
=\displaystyle \sum_{k\geq 2}(\sum_{n=1}^{k-1}\frac{c_{n}(-1)^{k-n}}{(n-1)!(k-n)!})(k-1)!$\sigma$^{-k}
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Thus, once F( $\sigma$+1)-F( $\sigma$) is given (by the right‐hand side of (1.10) in our current

situation), all the coecients \{c_{n}\}_{n\geq 1} of F( $\sigma$) are uniquely determined in a recursive

manner. This completes the proof of Lemma 1.2. \square 

In view of Lemma 1.2 it now suces to show that two times the left‐hand side of

(1.8) satises the dierence equation (1.10) to prove Theorem 1.1. To conrm this we

make use of the creation operator

(1.19) \displaystyle \mathcal{A}=$\eta$^{-1}\frac{d}{dz}-\frac{z}{2}
for the harmonic oscillator (1.2). As a matter of fact, using (1.19), we can prove the

following

Lemma 1.3. Let S^{+}=S^{+}(z,  $\lambda$,  $\eta$) be the WKB solution (1.3) (starting with

S_{-1}=\sqrt{z^{2}}/4- $\lambda$) of the Riccati equation (1.5) associated with the Weber equation

(1.2). Then the following relation holds:

(1.20) S^{+}(z,  $\lambda$+$\eta$^{-1},  $\eta$)-S^{+}(z,  $\lambda$,  $\eta$)=\displaystyle \frac{d}{dz}\log($\eta$^{-1}S^{+}(z,  $\lambda$,  $\eta$)-\frac{z}{2})
Proof. It follows from the commutation relation

(1.21) (\displaystyle \frac{d^{2}}{dz^{2}}-$\eta$^{2}\frac{z^{2}}{4}+ $\eta$)\mathcal{A}=\mathcal{A}(\frac{d^{2}}{dz^{2}}-$\eta$^{2}\frac{z^{2}}{4})
that, if  $\psi$ is a solution of (1.2), then  $\varphi$=\mathcal{A} $\psi$ satises

(1.22) (\displaystyle \frac{d^{2}}{dz^{2}}-$\eta$^{2}(\frac{z^{2}}{4}- $\lambda-\eta$^{-1})) $\varphi$=0.
In particular, for a WKB solution $\psi$_{+}=\displaystyle \exp(\int^{z}S^{+}(z,  $\lambda$,  $\eta$)dz) of (1.2),

(1.23)  $\varphi$+=\displaystyle \mathcal{A} $\psi$+=($\eta$^{-1}S^{+}(z,  $\lambda$,  $\eta$)-\frac{z}{2})\exp(\int^{z}S^{+}(z,  $\lambda$,  $\eta$)dz)
becomes a WKB solution of (1.22), that is,

(1.24)

($\eta$^{-1}S^{+}(z,  $\lambda$,  $\eta$)-\displaystyle \frac{z}{2})\exp(\int^{z}S^{+}(z,  $\lambda$,  $\eta$)dz)=C( $\eta$)\exp(\int^{z}S^{+}(z,  $\lambda$+$\eta$^{-1},  $\eta$)dz)
holds for some constant C() independent of z . Taking the logarithmic derivative of

both sides of (1.24) with respect to z
,

we then obtain (1.20). \square 

Using Lemma 1.3, we now finish the proof of Theorem 1.1. Thanks to the square‐

root character of the coecients of S_{\mathrm{o}\mathrm{d}\mathrm{d}} at z=2\sqrt{ $\lambda$} ,
we can write two times the

left‐hand side of (1.8) as

(1.25) 2 \displaystyle \int_{2\sqrt{ $\lambda$}}^{\infty}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ S_{-1})dz=\int_{$\gamma$_{\infty}}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ S_{-1})dz,
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where $\gamma$_{\infty} is a path that runs from \infty to  z=2\sqrt{ $\lambda$}+ $\epsilon$ for a suciently small number

 $\epsilon$>0 ,
encircles z=2\sqrt{ $\lambda$} along \{|z-2\sqrt{ $\lambda$}|= $\epsilon$\} in a clockwise manner, and then

returns from  z=2\sqrt{ $\lambda$}+ $\epsilon$ to \infty (cf. Figure 1). Furthermore, since each coecient of

 S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}=S^{+}-S_{\mathrm{o}\mathrm{d}\mathrm{d}} is single‐valued at z=2\sqrt{ $\lambda$} and

(1.26) {\rm Res}_{z=2\sqrt{ $\lambda$}}S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}={\rm Res}_{z=2\sqrt{ $\lambda$}}S_{0}=-\displaystyle \frac{1}{4}
holds in view of (1.7) and (1.4), we also find

(1.27) \displaystyle \int_{$\gamma$_{\infty}}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ S_{-1})dz=\int_{$\gamma$_{\infty}}(S^{+}- $\eta$ S_{-1}-S_{0})dz.
Thus it suces to show that the right‐hand side of (1.27) satises the dierence equation

(1.10).

\lrcorner z \lrcorner z

\infty

\times

Figure 1. Integration paths $\gamma$_{\infty} and $\gamma$_{z}.

Let $\gamma$_{z} be a path that runs from z to  2\sqrt{ $\lambda$}+ $\epsilon$ ,
encircles  2\sqrt{ $\lambda$} in a clockwise manner

and returns from  2\sqrt{ $\lambda$}+ $\epsilon$ to  z (cf. Figure 1), and let I(z,  $\sigma$) and I_{j}(z,  $\sigma$) denote

(1.28) I(z,  $\sigma$)=\displaystyle \int_{$\gamma$_{z}}S^{+}dz|_{ $\lambda$=$\eta$^{-1}( $\sigma$+1)}-\int_{$\gamma$_{z}}S^{+}dz|_{ $\lambda$=$\eta$^{-1} $\sigma$},
(1.29) I_{j}(z,  $\sigma$)=\displaystyle \int_{$\gamma$_{z}}S_{j}dz|_{ $\lambda$=$\eta$^{-1}( $\sigma$+1)}-\int_{$\gamma$_{z}}S_{j}dz|_{ $\lambda$=$\eta$^{-1} $\sigma$},
respectively. It then follows from Lemma 1.3 that

(1.30) I(z,  $\sigma$)=\displaystyle \log($\eta$^{-1}S^{+}(z, $\eta$^{-1} $\sigma$,  $\eta$)-\frac{z}{2})-\log($\eta$^{-1}S^{+}(\hat{z}, $\eta$^{-1} $\sigma$,  $\eta$)-\frac{z}{2})
(Note that the branch of S^{+}(z,  $\lambda$,  $\eta$) at the starting point of $\gamma$_{z} is dierent from the

branch at its end point. To distinguish these two dierent branches, we use the notation

\hat{z} in (1.30) to specify the branch of S^{+} at the starting point of $\gamma$_{z}. ) Using (1.4) and

(1.31) S_{j}=O(\displaystyle \frac{1}{z^{3}}) as  z\rightarrow\infty for  j\geq 1,

we thus find that

(1.32) I(z,  $\sigma$)=\displaystyle \log\frac{$\eta$^{-1} $\sigma$}{z^{2}}+\log(1+\frac{1}{2 $\sigma$})+O(\frac{1}{z^{2}}) as z\rightarrow\infty.
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On the other hand, since

(1.33) \displaystyle \int^{z}S_{-1}dz=\frac{z}{4}\sqrt{z^{2}-4 $\lambda$}- $\lambda$\log(z+\sqrt{z^{2}-4 $\lambda$}) , \displaystyle \int^{z}S_{0}dz=-\frac{1}{4}\log(z^{2}-4 $\lambda$) ,

we can conrm

(1.34)  $\eta$ I_{-1}(z,  $\sigma$)=-1+\displaystyle \log\frac{$\eta$^{-1} $\sigma$}{z^{2}}+( $\sigma$+1)\log(1+\frac{1}{ $\sigma$})+O(\frac{1}{z^{2}}) (as  z\rightarrow\infty ),

(1.35)  I_{0}(z,  $\sigma$)=0

by straightforward computations. Hence we obtain

(1.36) \displaystyle \lim_{z\rightarrow\infty}(I(z,  $\sigma$)- $\eta$ I_{-1}(z,  $\sigma$)-I_{0}(z,  $\sigma$))=1+\log(1+\frac{1}{2 $\sigma$})-( $\sigma$+1)\log(1+\frac{1}{ $\sigma$}) .

Relation (1.36) means that the right‐hand side of (1.27) satises the dierence equation

(1.10). This completes the proof of Theorem 1.1. \square 

§2. Fixed singularities of Borel transformed WKB solutions of the Weber

equation

In this section we discuss analytic implications of Sato�s conjecture.
In what follows, rotating the variables as

(2.1) z=\exp( $\pi$ i/4)x,  $\lambda$=\exp( $\pi$ i/2)E_{0}

(where we adopt to use E_{0} instead of E to denote the new parameter \exp(- $\pi$ i/2) $\lambda$ in

order that it may be consistent with the notation in the subsequent section), we deal

with the Schrödinger equation with the inverted‐parabola potential

(2.2) (\displaystyle \frac{d^{2}}{dx^{2}}-$\eta$^{2}Q(x)) $\psi$=0 with Q(x)=E_{0}-\displaystyle \frac{x^{2}}{4},
which is equivalent to (1.2) via (2.1), and its WKB solutions normalized at a simple

turning point x=2\sqrt{E_{0}}

(2.3)

$\psi$_{\pm}(x,  $\eta$)=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{2\sqrt{E_{0}}}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx)
=\exp( $\eta$ y_{\pm}(x))\mathrm{X}$\psi$_{\pm,n}(x)$\eta$^{-(n+1/2)} where y\displaystyle \pm(x)=\pm\int_{2\sqrt{E_{0}}}^{x}\sqrt{Q(x)}dx.

Here and in what follows the branch of S_{-1}(x)=\sqrt{Q(x)}=\sqrt{E_{0}-x^{2}}/4 is chosen so

that \exp(- $\pi$ i/2)\sqrt{E_{0}-x^{2}}/4>0 holds for E_{0}>0, x>2\sqrt{E_{0}} . In exact WKB analysis
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we endow $\psi$_{\pm}(x,  $\eta$) with an analytic meaning through Borel resummation method (with
respect to the large parameter  $\eta$ ), that is, we first dene the Borel transform of  $\psi$_{\pm}(x,  $\eta$) ,

denoted by $\psi$_{\pm,B}(x, y) , by

(2.4) $\psi$_{\pm,B}(x, y)=\displaystyle \mathrm{X}\frac{$\psi$_{\pm,n}(x)}{ $\Gamma$(n+1/2)}(y+y_{\pm}(x))^{n-1/2},
and then consider its Borel sum

(2.5) \displaystyle \int_{-y\pm(x)}^{\infty}\exp(-y $\eta$)$\psi$_{\pm,B}(x, y)dy
as an analytic substitute of $\psi$_{\pm} . Here the path of integration for (2.5) is conventionally
taken to be parallel to the positive real axis.

The Borel sum of a WKB solution is well‐dened in a Stokes region, i.e., a region
surrounded by Stokes curves

(2.6) {\rm Im}\displaystyle \int_{a}^{x}S_{-1}(x)dx={\rm Im}\int_{a}^{x}\sqrt{Q(x)}dx=0
(where a is a turning point \pm 2\sqrt{E_{0}} of (2.2)), provided that there is no Stokes curve

connecting two turning points. Note that the relations between WKB solutions in

adjacent two Stokes regions are described by Voros� connection formula and that Voros�

connection formula takes the simplest form when we choose $\psi$_{\pm}(x,  $\eta$) normalized as (2.3)
as a basis of WKB solutions (cf. [12]). In the case of (2.2) two turning points \pm 2\sqrt{E_{0}}
are connected by a Stokes curve when and only when E_{0}\in \mathbb{R} (cf. Figure 2). Such a

\lrcorner x

Figure 2. Stokes curves of (2.2) for E_{0}>0.

degenerate conguration of Stokes curves then causes a kind of Stokes phenomenon to

occur with the Borel resummed WKB solutions $\psi$_{\pm} normalized as (2.3) and it can be

explicitly analyzed by using Sato�s conjecture in the following manner: The degenerate
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(i) (ii)

Region I
Region II

Figure 3. Stokes curves of (2.2) when (i) {\rm Im} E_{0}>0 ,
and (ii) {\rm Im} E_{0}<0.

conguration observed for, say, E_{0}>0 is resolved in two dierent ways by adding a

small imaginary part to E_{0} ,
as is indicated in Figure 3. Let $\psi$_{+}^{\mathrm{I}} denote the Borel sum

of the WKB solution $\psi$_{+} dened by (2.3) in, say, Region I of Figure 3, (i) (i.e., when

{\rm Re} E_{0}>0 and {\rm Im} E_{0}>0 ) and $\psi$_{\pm}^{\mathrm{I}\mathrm{I}} the Borel sum of the same WKB solution in the

corresponding Region II of Figure 3, (ii) (i.e., when {\rm Re} E_{0}>0 and {\rm Im} E_{0}<0 ). Then

these two Borel sums dene dierent analytic functions. As a matter of fact, Sato�s

conjecture (Theorem 1.1) analytically implies the following

Theorem 2.1. Between the Borel sums $\psi$_{+}^{\mathrm{I}} and $\psi$_{+}^{\mathrm{I}\mathrm{I}} of the WKB solution $\psi$_{+}

dened by (2.3) the following relation holds:

(2.7) $\psi$_{+}^{\mathrm{I}}=(1+\exp(-2 $\pi$ E_{0} $\eta$))^{1/2}$\psi$_{+}^{\mathrm{I}\mathrm{I}}.

Formula (2.7) describes the Stokes phenomenon for the WKB solution $\psi$_{+} of (2.2)
when the parameter E_{0} crosses the positive real axis. Although an equivalent formula

is already discussed in [11] (cf. [11, Formula (50)]; note that \hbar\pm i0 in [11] correspond
to {\rm Im} E_{0}\rightarrow\mp 0 in this article, respectively) and the essential part of its proof was

given by [8, Proposition 2.2], we present the proof of Theorem 2.1 here for the reader�s

convenience.

Proof. We factorize $\psi$_{+}(x,  $\eta$) as

(2.8) $\psi$_{+}(x,  $\eta$)=\displaystyle \exp(\int_{2\sqrt{E_{0}}}^{\infty}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ S_{-1})dx)$\psi$_{+}^{(\infty)}(x,  $\eta$) .

Here, thanks to Sato�s conjecture (Theorem 1.1), the first factor of the right‐hand side

can be written as \exp $\phi$(E_{0},  $\eta$) with

(2.9)  $\phi$(E_{0},  $\eta$)=\displaystyle \frac{1}{2}\sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}(iE_{0} $\eta$)^{1-2n},
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i.e., the right‐hand side of (1.8) (after the rotation of variables (2.1) is substituted), and

(2.10) $\psi$_{\pm}^{(\infty)}(x,  $\eta$)=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm[ $\eta$\int_{2\sqrt{E_{0}}}^{x}S_{-1}dx+\int_{\infty}^{x}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ S_{-1})dx])
is a WKB solution of (2.2) that is normalized at innity in the sense of [5] and [6].
Let us dene two Borel sums $\psi$_{+}^{(\infty),\mathrm{I}} and $\psi$_{+}^{(\infty),\mathrm{I}\mathrm{I}} of $\psi$_{+}^{(\infty)} similarly to $\psi$_{+}^{\mathrm{I}} and $\psi$_{+}^{\mathrm{I}\mathrm{I}} . It is

then known that $\psi$_{+}^{(\infty),\mathrm{I}} and $\psi$_{+}^{(\infty),\mathrm{I}\mathrm{I}} coincide since $\psi$_{+,B}^{(\infty)}(x, y) ,
the Borel transform of

$\psi$_{+}^{(\infty)}(x,  $\eta$) ,
is free from singularities on the half line

(2.11) \displaystyle \{y\in \mathbb{C};y=-\int_{2\sqrt{E_{0}}}^{x}\sqrt{E_{0}-\frac{x^{2}}{4}}dx+ $\rho$,  $\rho$>0\}
([5], [6, Theorem 1.2.2 (\mathrm{c})] ). Hence, to verify (2.7), it suces to compare the Borel sums

$\phi$^{\mathrm{I}} (i.e., the Borel sum of  $\phi$ for {\rm Im} E_{0}>0 ) and $\phi$^{\mathrm{I}\mathrm{I}} (i.e., that for {\rm Im} E_{0}<0 ).
Let us now compute the Borel transform $\phi$_{B}(E_{0}, y) of  $\phi$ . It follows from the de‐

nition of the Borel transformation and (2.9) that

(2.12)  $\phi$_{B}(E_{0}, y)=\displaystyle \frac{1}{2}\sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}(iE_{0})^{1-2n}\frac{y^{2n-2}}{(2n-2)!}
=\displaystyle \frac{iE_{0}}{y^{2}}\sum_{n=1}^{\infty}\frac{B_{2n}}{(2n)!}(2iE_{0})^{-2n}y^{2n}-\frac{iE_{0}}{2y^{2}}\sum_{n=1}^{\infty}\frac{B_{2n}}{(2n)!}(iE_{0})^{-2n}y^{2n}
=\displaystyle \frac{iE_{0}}{y^{2}}(\frac{y/(2iE_{0})}{\exp(y/(2iE_{0}))-1}-1+\frac{y}{4iE_{0}})

-\displaystyle \frac{iE_{0}}{2y^{2}}(\frac{y/(iE_{0})}{\exp(y/(iE_{0}))-1}-1+\frac{y}{2iE_{0}})
=\displaystyle \frac{1}{4y}(\frac{1}{\exp(y/(2iE_{0}))-1}+\frac{1}{\exp(y/(2iE_{0}))+1}-\frac{2iE_{0}}{y})

To simplify the computation we introduce the following auxiliary innite series

(2.13) \displaystyle \tilde{ $\phi$}= $\phi$+\frac{1}{4}-\frac{iE_{0} $\eta$}{2}\log(1+\frac{1}{2iE_{0} $\eta$})= $\phi$-\frac{1}{4}\mathrm{X}\frac{1}{n+2}(-2iE_{0} $\eta$)^{-(n+1)}.
Then (2. 12) implies

(2.14) \displaystyle \tilde{ $\phi$}_{B}=$\phi$_{B}+\frac{1}{8iE_{0}}\mathrm{X}\frac{1}{(n+2)n!}(-\frac{y}{2iE_{0}})^{n}
=$\phi$_{B}+\displaystyle \frac{1}{8iE_{0}}(-\frac{2iE_{0}}{y})^{2}[(-\frac{y}{2iE_{0}}-1)\exp(-\frac{y}{2iE_{0}})+1]
=\displaystyle \frac{1}{4y}[\frac{1}{\exp(y/(2iE_{0}))-1}+\frac{1}{\exp(y/(2iE_{0}))+1}-\frac{2iE_{0}}{y}]



Sato�s conjecture and transformation theory for SchröDINGER equations 215

-\displaystyle \frac{1}{4y}[(1+\frac{2iE_{0}}{y})\exp(-\frac{y}{2iE_{0}})-\frac{2iE_{0}}{y}]
=\displaystyle \frac{1}{2y}\exp(-\frac{y}{2iE_{0}})[\frac{1}{\exp(y/(iE_{0}))-1}+\frac{1}{2}-\frac{iE_{0}}{y}]

Hence, making a change of variable y/(iE_{0})=t of integration and using an integral

representation of the logarithm of the  $\Gamma$‐function

(2.15) \displaystyle \int_{0}^{\infty}(\frac{1}{e^{t}-1}+\frac{1}{2}-\frac{1}{t})e^{-t $\theta$}\frac{dt}{t}=\log\frac{ $\Gamma$( $\theta$)}{\sqrt{2 $\pi$}}-( $\theta$-\frac{1}{2})\log $\theta$+ $\theta$ (for {\rm Re} $\theta$>0 )

( [7, Section 1.9, (5)] ) ,
we find that the Borel sum of \tilde{ $\phi$} is given by

(2.16) \displaystyle \frac{1}{2}(\log\frac{ $\Gamma$(iE_{0} $\eta$+1/2)}{\sqrt{2 $\pi$}}-iE_{0} $\eta$\log(iE_{0} $\eta$+1/2)+iE_{0} $\eta$+\frac{1}{2})
when {\rm Im} E_{0}<0 . We thus obtain

(2.17) $\phi$^{\mathrm{I}\mathrm{I}}=\displaystyle \frac{1}{2}\log\frac{ $\Gamma$(iE_{0} $\eta$+1/2)}{\sqrt{2 $\pi$}}-\frac{iE_{0} $\eta$}{2}(\log(iE_{0} $\eta$)-1) .

On the other hand, when {\rm Im} E_{0}>0 , making use of the relation

(2.18)  $\phi$(E_{0},  $\eta$)=- $\phi$(-E_{0},  $\eta$)

and employing the above reasoning for  $\phi$(-E_{0},  $\eta$) ,
we find

(2.19) $\phi$^{1}=-[\displaystyle \frac{1}{2}\log\frac{ $\Gamma$(-iE_{0} $\eta$+1/2)}{\sqrt{2 $\pi$}}+\frac{iE_{0} $\eta$}{2}(\log(-iE_{0} $\eta$)-1)]
=-\displaystyle \frac{1}{2}\log\frac{ $\Gamma$(-iE_{0} $\eta$+1/2)}{\sqrt{2 $\pi$}}-\frac{iE_{0} $\eta$}{2}(\log(iE_{0} $\eta$)-1)-\frac{ $\pi$ E_{0} $\eta$}{2}.

Comparison of (2.17) and (2.19) entails

(2.20) $\phi$^{\mathrm{I}\mathrm{I}}-$\phi$^{\mathrm{I}}=\displaystyle \frac{1}{2}\log\frac{ $\Gamma$(iE_{0} $\eta$+1/2) $\Gamma$(-iE_{0} $\eta$+1/2)}{2 $\pi$}+\frac{ $\pi$ E_{0} $\eta$}{2}
=-\displaystyle \frac{1}{2}\log(2\cos(i $\pi$ E_{0} $\eta$))+\frac{ $\pi$ E_{0} $\eta$}{2}
=-\displaystyle \frac{1}{2}\log(1+\exp(-2 $\pi$ E_{0} $\eta$)) .

Hence we conclude

(2.21) $\psi$_{+}^{\mathrm{I}}=(\exp$\phi$^{\mathrm{I}})$\psi$_{+}^{(\infty),\mathrm{I}}

=(1+\exp(-2 $\pi$ E_{0 $\eta$)})^{1/2}(\exp$\phi$^{\mathrm{I}\mathrm{I}})$\psi$_{+}^{(\infty)} �
\mathrm{I}\mathrm{I}

=(1+\exp(-2 $\pi$ E_{0} $\eta$))^{1/2}$\psi$_{+}^{\mathrm{I}\mathrm{I}}.
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This completes the proof of Theorem 2.1. \square 

In view of (2.12) we find that $\phi$_{B}(E_{0}, y) is holomorphic at y=0 whereas it has

simple poles at y=2m $\pi$ E_{0} for every non‐zero integer m=\pm 1, \pm 2
,

. . .. This implies
that the Borel transform $\psi$_{+,B}(x, y) of the WKB solution (2.3) has singularities at

(2.22) y=-y\pm(x)+2m $\pi$ E_{0} where y\displaystyle \pm(x)=\pm\int_{2\sqrt{E_{0}}}^{x}\sqrt{E_{0}-\frac{x^{2}}{4}}dx, m\in \mathbb{Z}

(cf. Figures 4 and 5). Among them y=-y+(x)+2m $\pi$ E_{0}(m\in \mathbb{Z}) are called \backslash \mathrm{x}\mathrm{e}\mathrm{d}

y

Figure 4. Singularity locus of $\psi$_{+,B}(x, y) in \mathbb{C}_{x}\times \mathbb{C}_{y}.

\lrcorner y
. . . -y-(x) -y-(x)+2 $\pi$ E_{0} . . .

\bullet \bullet \bullet \bullet \bullet

\bullet \bullet \bullet \bullet \bullet

. . . -y+(x) -y+(x)+2 $\pi$ E_{0} -y+(x)+4 $\pi$ E_{0} . . .

Figure 5. Singular points of $\psi$_{+,B}(x, y) in y‐plane for fixed x\neq\pm 2\sqrt{E_{0}}.

singularities� of the WKB solution $\psi$_{+}(x,  $\eta$) (or $\psi$_{+,B}(x, y) ), since their relative location

with respect to the reference point y=-y+(x) is not changed as x varies. These fixed



Sato�s conjecture and transformation theory for SchröDINGER equations 217

singularities lie on the path of integration for the Borel sum of $\psi$_{+}(x,  $\eta$) when E_{0}\in \mathbb{R} ;

this is the origin of the Stokes phenomenon (2.7) for E_{0}\in \mathbb{R}.
The comparison, such as (2.7), between two Borel sums of WKB solutions of

Schrödinger equations with polynomial potentials is investigated in [5] and [6] under the

name of \backslash Stokes automorphism� or
\backslash connection automorphism� from the viewpoint of

the theory of Ecalle�s resurgent functions. In discussing formulas like (2.7) in the frame‐

work of resurgent functions theory, the fixed singularities of Borel transformed WKB

solutions and the alien derivatives there play a crucially important role. The principal
aim of [3] and this paper is to verify (2.7) for WKB solutions of an MTP equation (\mathrm{a}
merging‐turning‐points equation) by using Theorem 2.1 above and the transformation

theory to the Weber equation, as will be explained in Section 3 below. In what follows,
as preliminaries for Section 3, we reformulate Theorem 2.1 in terms of the Borel trans‐

form $\psi$_{+,B}(x, y) ,
that is, in the language of the fixed singularities of $\psi$_{+,B}(x, y) and the

alien derivatives there.

Here we briey review the denition of the alien derivative. Recall that the fixed

singularities y=-y+(x)+2m $\pi$ E_{0}(m\in \mathbb{Z}) of $\psi$_{+,B}(x, y) lie on \{y\in \mathbb{C};y=-y+(x)+
 $\rho$,  $\rho$\in \mathbb{R}\} when E_{0}>0 . Under this situation the alien derivative \triangle $\psi$+\mathrm{o}\mathrm{f}$\psi$_{+}(x,  $\eta$) is

dened by

(2.23) \triangle $\psi$+=\mathcal{B}^{-1}\log(\mathcal{L}_{-}^{-1}\mathcal{L}_{+})\mathcal{B} $\psi$+

=\mathcal{B}^{-1}\log(1+(\mathcal{L}_{-}^{-1}\mathcal{L}_{+}-1))\mathcal{B} $\psi$+

=\displaystyle \mathcal{B}^{-1}\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}(\mathcal{L}_{-}^{-1}\mathcal{L}_{+}-1)^{n}\mathcal{B} $\psi$+,
where \mathcal{B} denotes the Borel transformation (2.4) and \mathcal{L}+( resp. , \mathcal{L}_{-}) denotes the Laplace
transformation (2.5) along a path which avoids the singular points from the above

(resp., from the below). It is also known (cf., e.g., [6]) that the alien derivative (2.23)
is decomposed as

(2.24) \displaystyle \triangle $\psi$+=\sum_{m=1}^{\infty}\triangle_{y=-y+(x)+2m $\pi$ E_{0}} $\psi$+
with

(2.25) \displaystyle \triangle_{y=-y+(x)+2m $\pi$ E_{0}} $\psi$+=\mathcal{B}^{-1}[($\gamma$_{+}^{(m)}-$\gamma$_{-}^{(m)})\sum_{$\epsilon$_{k}=\pm}\frac{p_{+}!p_{-}!}{m!}$\gamma$_{$\epsilon$_{m-1}}^{(m-1)}\cdots$\gamma$_{$\epsilon$_{1}}^{(1)}]\mathcal{B} $\psi$+,
where $\gamma$_{+}^{(k)} (resp., $\gamma$_{-}^{(k)} ) designates analytic continuation along a path avoiding the k‐th

singular point y=-y+(x)+2k $\pi$ E_{0} from the above (resp., from the below) and p+

(resp., p_{-} ) denotes the number of indices k satisfying 1\leq k\leq m-1 and $\epsilon$_{k}=+(resp. ,
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$\epsilon$_{k}=-) . Note that, in terms of \mathcal{L}\pm and \mathcal{B} , formula (2.7) is expressed as

(2.26) \mathcal{B}^{-1}\mathcal{L}_{+}^{-1}\mathcal{L}_{-}\mathcal{B} $\psi$+=(1+\exp(-2 $\pi$ E_{0} $\eta$))^{1/2} $\psi$+\cdot
Thus the verication of formula (2.7) can be achieved also through the computation of

the alien derivative \triangle $\psi$+\cdot
The computation of \triangle $\psi$+\mathrm{i}\mathrm{s} done in [3, Section 3] in the following manner: Since the

Borel transform $\phi$_{B}(E_{0}, y) of  $\phi$(E_{0},  $\eta$) is a single‐valued analytic function with simple

poles at y=2m $\pi$ E_{0}(m\neq 0) and its residue there is equal to (-1)^{m-1}/(4im) in view

of (2.12), we find

(2.27) \displaystyle \triangle_{y=2m $\pi$ E_{0}} $\phi$=\frac{(-1)^{m}}{2m}.
(Cf. [4], [6], [10].) Then the alien calculus leads to

(2.28) \displaystyle \triangle_{y=2m $\pi$ E_{0}}(\exp $\phi$)=\frac{(-1)^{m}}{2m}\exp $\phi$.
On the other hand, as we have observed above, the Borel transform of $\psi$_{+}^{(\infty)}(x,  $\eta$) is free

from singularities on (2.11). This implies that

(2.29) \triangle(\exp(-y+(x) $\eta$)$\psi$_{+}^{(\infty)}(x,  $\eta$))=0
holds when x is in Region I and Region II, i.e., the Stokes regions in question. Hence,

combining (2.28) and (2.29), we obtain

(2.30) \triangle_{y=2m $\pi$ E_{0}}(\exp(-y+(x) $\eta$)$\psi$_{+}(x,  $\eta$))
=\triangle_{y=2m $\pi$ E_{0}}(\exp(-y+(x) $\eta$)\exp( $\phi$(E_{0},  $\eta$))$\psi$_{+}^{(\infty)}(x,  $\eta$))

=\displaystyle \frac{(-1)^{m}}{2m}(\exp(-y+(x) $\eta$)\exp( $\phi$(E_{0},  $\eta$))$\psi$_{+}^{(\infty)}(x,  $\eta$))
=\displaystyle \frac{(-1)^{m}}{2m}(\exp(-y+(x) $\eta$)$\psi$_{+}(x,  $\eta$)) .

We have thus veried the following Theorem 2.2, which is equivalent to Theo‐

rem 2.1, on the singularity structure of $\psi$_{+,B}(x, y) expressed in terms of its alien deriva‐

tives.

Theorem 2.2. Let $\psi$_{+}(x,  $\eta$) denote the WKB solution of the Weber equation

(2.2) that is normalized as in (2.3). Then its Borel transfO rm $\psi$_{+,B}(x, y) is singular at

(2.31) y=-y+(x)+2m $\pi$ E_{0} (m=0, \pm 1, \pm 2, . .

where y+(x) is given by (2.22), and its alien derivative \triangle_{y=-y+(x)+2m $\pi$ E_{0}} $\psi$+ there sat‐

ises the following relation (2.32) forx in Region I and Region II:

(2.32) (\displaystyle \triangle_{y=-y+(x)+2m $\pi$ E_{0}}$\psi$_{+})_{B}(x, y)=\frac{(-1)^{m}}{2m}$\psi$_{+,B}(x, y-2m $\pi$ E_{0}) .
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§3. Transformation theory for an MTP equation

The transformation theory to the Weber equation developed in [3] enables us to

extend Theorems 2.1 and 2.2 to a wider class of Schrödinger equations, that is, MTP

equations (Schrödinger equations with a merging pair of simple turning points). In this

section we explain the core part of [3] and discuss an extension of Theorems 2.1 and 2.2

to an MTP equation.
Let us begin with recalling the denition of an MTP equation.

Denition 3.1. A Schrödinger equation of the form

(3.1) (\displaystyle \frac{d^{2}}{dx^{2}}-$\eta$^{2}Q(x, t)) $\psi$=0 (  $\eta$>0 : a large parameter)

is called an MTP equation if the potential Q(x, t) is holomorphic and has the following
form on a suciently small neighborhood of the origin (x, t)=(0,0) :

(3.2)  Q(x, t)=Q^{(0)}(x)+tQ^{(1)}(x)+t^{2}Q^{(2)}(x)+\cdots

with

(3.3)  Q^{(0)}(x)=cx^{2}+O(x^{3}) ( c : a non‐zero constant);

(3.4) Q^{(1)}(0)\neq 0.

Under the conditions (3.3) and (3.4) we can conrm that the equation Q(x, t)=0
in x has two distinct simple zeros S(t) in a neighborhood of x=0 for each t(\neq 0) ,

whereas the other zeros of the equation stay uniformly away from 0 for suciently small

t . Furthermore, these two simple zeros (i.e., simple turning points) merge together at

t=0 with the merging speed

(3.5) s\pm(t)=O(\sqrt{t}) , |s_{+}(t)-s_{-}(t)|\geq$\sigma$_{0}\sqrt{t} for some positive constant $\sigma$_{0}.

Thus it is reasonable to call equation (3.1) satisfying the conditions (3.3) and (3.4) \backslash \backslash \mathrm{a}\mathrm{n}

equation with a merging pair of simple turning points�

Remark 2. In [3] we dened an MTP equation as an equation that has a merging

pair \{s\pm(t)\} of simple turning points satisfying (3.5). As was discussed in [3, Proposition

2.1], the denition adopted in [3] is equivalent to the above Denition 3.1.

One of the main results of [3] is the following transformation theorem of an MTP

equation to the \backslash \backslash \infty ‐Weber equation�, i.e., the Weber equation containing an innite

series as its parameter:
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Theorem 3.2 ([3, Theorem 2.2]). Let  Q(x, t) be the potential of an MTP equa‐

tion. Then we can find a positive constant  $\delta$
, holomorphic functions  X_{k}(x, t)(k\geq 0)

of (x, t) on \{(x, t);|x|, |t|< $\delta$\} , holomorphic functions E_{k}(t)(k\geq 0) of t on \{t;|t|< $\delta$\}
such that the formal series

(3.6) X(x, t,  $\eta$)=\displaystyle \sum_{k\geq 0}X_{k}(x, t)$\eta$^{-k},
(3.7) E(t,  $\eta$)=\displaystyle \sum_{k\geq 0}E_{k}(t)$\eta$^{-k}
satisfy the following relations (3.8) \sim(3.12) :

(3.8) Q(x, t)=(\displaystyle \frac{\partial X(x,t, $\eta$)}{\partial x})^{2}(E(t,  $\eta$)-\frac{X(x,t, $\eta$)^{2}}{4})-\frac{$\eta$^{-2}}{2}\{X(x, t,  $\eta$);x\},
(3.9) X_{0}(0,0)=0, \displaystyle \frac{@X_{0}}{\partial x}(0,0)\neq 0,
(3.10) E_{0}(0)=0, \displaystyle \frac{@E_{0}}{\partial t}(0)\neq 0,
(3.11) X_{0}(s_{+}(t), t)=2\sqrt{E_{0}(t)},

(3.12) X_{2p+1}(x, t)=0, E_{2p+1}(t)=0 forp=0 , 1, 2, .

:.,

where \{X(x, t,  $\eta$);x\} designates the Schwarzian derivative

(3.13) (\displaystyle \frac{d^{3}X}{dx^{3}}/\frac{dX}{dx})-\frac{3}{2}(\frac{d^{2}X}{dx^{2}}/\frac{dX}{dx})^{2}
Otherwise stated, an MTP equation (3.1) can be transfO rmed into the \infty ‐Weber equation

(3.14) (\displaystyle \frac{d^{2}}{dX^{2}}-$\eta$^{2}(E(t,  $\eta$)-\frac{X^{2}}{4})) $\Psi$=0
by the formal transfO rmation

(3.15) X=X(x, t,  $\eta$) and  $\psi$(x, t,  $\eta$)=(\displaystyle \frac{\partial X(x,t, $\eta$)}{\partial x})^{-1/2} $\Psi$(X(x, t,  $\eta$),  $\eta$;E(t,  $\eta$))
on a neighborhood of the origin (x, t)=(0,0) .

Remark 3. By taking a smaller  $\delta$ if necessary, we can also verify the following
estimates for  X_{k}(x, t) and E_{k}(t) : There exist positive constants M and C_{0} so that

(3.16) \displaystyle \sup  jx ; t)|\leq MC_{0}^{k}k!
|x|,|t|\leq $\delta$

(3.17) \displaystyle \sup|E_{k}(t)|\leq MC_{0}^{k}k!
|t|\leq $\delta$

hold for  k=0 , 1, 2, . ::.
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Remark 4. Let S_{\mathrm{o}\mathrm{d}\mathrm{d}}(x, t,  $\eta$) denote the odd part of WKB solutions of the Riccati

equation associated with (3.1). Then the innite series E(t,  $\eta$) in Theorem 3.2 for t\neq 0
is given by the following contour integral of S_{\mathrm{o}\mathrm{d}\mathrm{d}}(x, t,  $\eta$) :

(3.18) E(t,  $\eta$)=\displaystyle \frac{1}{2 $\pi$ i}\oint_{ $\gamma$(t)}S_{\mathrm{o}\mathrm{d}\mathrm{d}}(x, t,  $\eta$)dx,
where  $\gamma$(t) designates the closed curve in the cut plane shown in Figure 6.

\lrcorner x

\backslash \backslash -2\sqrt{E_{0}(t)} //
\sim\sim-=--2\sqrt{E_{0}(t)}

Figure 6. Closed curve  $\gamma$(t) .

See Section 2 and Appendix \mathrm{B} of [3] for the proof of Theorem 3.2, Remark 3 and

Remark 4.

As is discussed in [3], the formal transformation (3.15) can be endowed with an

analytic meaning by considering its action on the Borel transform of WKB solutions.

Let $\psi$_{\pm}(x, t,  $\eta$) be a WKB solution of an MTP equation (3.1) for t\neq 0 that is normalized

as follows:

(3.19) $\psi$_{\pm}(x, t,  $\eta$)=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{s_{+}(t)}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx)
Then, if T_{\mathrm{o}\mathrm{d}\mathrm{d}}=T_{\mathrm{o}\mathrm{d}\mathrm{d}}(X,  $\eta$) (or, if we use more specic notation, T_{\mathrm{o}\mathrm{d}\mathrm{d}}(X,  $\eta$;E(t,  $\eta$

denotes the odd part of WKB solutions of the Riccati equation associated with the

\infty‐Weber equation (3.14), $\psi$_{\pm}(x, t,  $\eta$) corresponds to a WKB solution

(3.20) $\Psi$_{\pm}(X,  $\eta$)= $\Psi$\displaystyle \pm(X,  $\eta$;E(t,  $\eta$))=\frac{1}{\sqrt{T_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm 2\sqrt{E_{0}(t)}^{T_{\mathrm{o}\mathrm{d}\mathrm{d}}dX)}X
of (3.14) normalized at a simple turning point X=2\sqrt{E_{0}(t)} through the formal trans‐

formation (3.15), that is, $\psi$_{\pm} and  $\Psi$\pm are related by

(3.21) $\psi$_{\pm}(x, t,  $\eta$)=(\displaystyle \frac{\partial X(x,t, $\eta$)}{\partial x})^{-1/2} $\Psi$\pm(X(x, t,  $\eta$),  $\eta$) .
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Note that each factor of the right‐hand side of (3.21) can be formally expressed as

(3.22) (\displaystyle \frac{\partial X}{\partial x})^{-1/2}=(\frac{@g}{\partial X})^{1/2}(1+\frac{\partial r}{\partial X})^{-1/2}|_{X=X_{0}(x,t)}

(3.23)  $\Psi$\displaystyle \pm(X(x, t,  $\eta$),  $\eta$)=\mathrm{X}\frac{(r_{1}$\eta$^{-1}+r_{2}$\eta$^{-2}+\cdots)^{n}}{n!}(\frac{\partial}{\partial X})^{n} $\Psi$\pm
and

 X=X_{0}(x,t)

where g(X, t) is the inverse function of X=X_{0}(x, t) , i.e., X_{0}(g(X, t), t)=X near

(X; t)=(0,0) and r=r(X, t,  $\eta$) is dened by

(3.24) r(X, t,  $\eta$)=\displaystyle \sum_{k=1}^{\infty}r_{k}(X, t)$\eta$^{-k} with r_{k}(X, t)=X_{k}(g(X, t), t) .

Hence the Borel transformation of (3.21) with respect to the large parameter  $\eta$ provides
us with the following microdierential relation

(3.25)  $\psi$_{\pm,B}(x, t, y)
x=g(X,t) =\displaystyle \mathcal{X}(X, t, \frac{\partial}{\partial X}, \frac{@}{\partial y}) $\Psi$\pm,B(X, y)

with \mathcal{X}=\mathcal{X}(X, t, @=@X; @=@y) being a microdierential operator in the sense of [9]
dened by

(3.26) \displaystyle \mathcal{X}=: (\frac{@g}{\partial X}(X, t))^{1/2}(1+\frac{@r}{\partial X})^{-1/2}\exp(r(X, t,  $\eta$ :

where the ideograph: : designates the normal ordered product (cf. [1]) and denotes

the symbol of @ =@X.

Remark 5. In this case the action of \mathcal{X} upon the multi‐valued analytic function

 $\Psi$\pm,B(X, t, y) can be represented as an integro‐dierential operator of the following form

(3.27) \displaystyle \mathcal{X} $\Psi$\pm,B=\int_{y0}^{y}K(X, t, y-y', \frac{d}{dX})$\Psi$_{\pm,B}(X, t, y')dy',
where K(X, t, y, d/dX) is a dierential operator of innite order in X and y_{0} is a con‐

stant that is chosen arbitrarily to fix the action of (@=@y)‐l as an integral operator.

For details see [3, Theorem 2.7 and Appendix \mathrm{C} ].

Furthermore, if we use X and  $\Phi$ instead of  x and  $\psi$ to express the independent
variable and the unknown function, respectively, of the ordinary Weber equation (2.2) in

this section, we also find that the Borel transform of the normalized WKB solution (3.20)
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of the \infty‐Weber equation (3.14) and that of the WKB solution  $\Phi$\pm(X,  $\eta$) of the ordinary
Weber equation (2.2) normalized as in (2.3) are related by another microdierential

operator \mathcal{E}(E_{0}, @=@y; @=@E) (in the variables (y, E) ) as

(3.28) $\Psi$_{\pm,B}(X, y)=\displaystyle \mathcal{E}(E_{0}, \frac{\partial}{\partial y}, \frac{@}{\partial E_{0}})$\Phi$_{\pm,B}(X, y) ,

where \mathcal{E} is explicitly given by

(3.29) \displaystyle \mathcal{E}(E_{0}, \frac{@}{\partial y}, \frac{@}{\partial E_{0}})= : \displaystyle \mathrm{X}\frac{(E_{1}$\eta$^{-1}+E_{2}$\eta$^{-2}+\cdots)^{n}$\theta$^{n}}{n!} :

(3.30) =\displaystyle \mathrm{X}\frac{(E_{1}(\partial/\partial y)^{-1}+E_{2}(\partial/\partial y)^{-2}+\cdots)^{n}}{n!}(\frac{\partial}{\partial E_{0}})^{n}
(with  $\theta$ denoting the symbol of @ =@E; cf. [3, Section 4]). Thanks to the microdierential

relations (3.25) and (3.28) we find that the singularity structure of $\Phi$_{+,B} is inherited to

that of $\psi$_{+,B} . In particular, Theorem 2.2 entails the following Theorem 3.3, an extension

of Theorem 2.2 to an MTP equation (3.1).

Theorem 3.3 ([3, Theorem 5.1]). Let $\psi$_{+,B} be the Borel transfO rm of the WKB

solution $\psi$_{+} of an MTP equation (3.1) that is normalized as in (3.19). Then $\psi$_{+,B} are

singular at

(3.31) y=-y+(x, t)+2m $\pi$ E_{0}(t) (m=0, \pm 1, \pm 2, . . .)

in a suciently small neighborhood of the origin (x, y, t)=(0,0,0) ,
where

(3.32) y+(x, t)=\displaystyle \int_{s_{+}(t)}^{x}\sqrt{Q(x,t)}dx.
Furthermore, its alien derivative there satises the following relation (3.33) for suffi‐

ciently small t(\neq 0) .

(3.33)

(\triangle_{y=-y+(x,t)+2m $\pi$ E_{0}(t)}$\psi$_{+})_{B}(x, t, y)

=\displaystyle \frac{(-1)^{m}}{2m} : \exp(-2m $\pi$(E_{2}(t)$\eta$^{-1}+E_{4}(t)$\eta$^{-3}+\cdots)) : $\psi$_{+,B}(x, t, y-2m $\pi$ E_{0}(t)) ,

where

(3.34) E_{j}=\displaystyle \frac{1}{2 $\pi$ i}\oint_{ $\gamma$(t)}S_{j}(x, t)dx
with  $\gamma$(t) being the closed path given in Figure 6 and with S_{j} denoting the coecient of

$\eta$^{-j} in S_{\mathrm{o}\mathrm{d}\mathrm{d}} , the odd part of WKB solutions S^{\pm} of the Riccati equation associated with

(3.1).
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Remark 6. The operator : \exp(-2m $\pi$(E_{2}(t)$\eta$^{-1}+E_{4}(t)$\eta$^{-3}+\cdots)) : in (3.33)
originates from the comparison (3.28) between the Borel transform of the WKB solution

of the \infty‐Weber equation and that of the ordinary Weber equation. See [3, Section 4]
for details.

Finally, as a corollary of Theorem 3.3, we also obtain the following formula (3.35),
an extension of (2.7) to an MTP equation:

(3.35) $\psi$_{+}^{\mathrm{I}}=(1+\exp(-2 $\pi$ E(t,  $\eta$) $\eta$))^{1/2}$\psi$_{+}^{\mathrm{I}\mathrm{I}},

where $\psi$_{+}^{\mathrm{I}} (resp. $\psi$_{+}^{\mathrm{I}\mathrm{I}} ) denotes the Borel sum of the WKB solution of an MTP equation

(3.1) that is normalized as in (3.19) in the region corresponding to Region I (resp. Region

II) through the coordinate change X=X_{0}(x, t) for t(\neq 0) satisfying {\rm Re} E_{0}(t)>0 and

{\rm Im} E_{0}(t)>0 (resp. {\rm Re} E_{0}(t)>0 and {\rm Im} E_{0}(t)<0 ).
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