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Analytic‐Liouville‐nonintegrable Hamiltonian

systems

By

Masafumi Yoshino *

Abstract

This paper deals with analytic‐Liouville‐nonintegrable and formally Liouville‐integrable
Hamiltonian systems. In the study of the integrability in a sectorial subset of a neighborhood
of a singular point we will show that so‐called hyperasymptotic expansions naturally enter in

the analysis.

§1. Introduction

A Hamiltonian system in n degrees of freedom is said to be C^{\infty} ‐Liouville‐integrable
if there are n smooth first integrals in involution which are functionally independent on

an open dense set. If the first integrals are analytic, then we say that it is analytic‐

Liouville‐integrable. In the paper [1], Gorni and Zampieri showed the existence of

a Hamiltonian system with two degrees of freedom which is not analytic‐Liouville‐

integrable, while it is C‐Liouville‐integrable. Their example shows a new phenomenon
which was not studied in the preceeding works. (cf. [2] and [3]). The proof of analytic‐

nonintegrability relies on the power series expansion of a first integral. On the other

hand, the C^{\infty}- integrability was proved by constructing concretely a smooth first in‐

tegral. In order to prove the theorem they assumed that the Hamiltonian vector field

has a special subsystem depending on fewer variables. (cf. Remark after Corollary 2.2.)
We are interested in the analytical structures which yield nonintegrability and we are

also interested in whether similar phenoma occur for more general Hamiltonians. In

this note we extend the analytic‐nonintegrable Hamiltonian in [1] to a certain class of
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Hamiltonians (2.2) where r depends on p_{1} and p_{2} . For these Hamiltonians, we cannot

construct a nonanalytic first integral concretely, and instead we make use of a hyper‐

asymptotic expansion in order to construct such an integral. Hyperasymptotic series

in the above situation is closely related with the characteristic structure of a certain

vector field obtained by restricting a given Hamiltonian vector field to an invariant

manifold. The introduction of hyperasymptotic series is also convenient in constructing

nonanalytic first integrals at least formally although there still remains a problem of

convergence for general Hamiltonians. We will discuss the problem in a future.

§2. Analytic nonintegrability

Let  $\sigma$\geq 1 be an integer and let c_{1}>0 and c_{2}>0 be positive numbers. Let

r(q_{1}, q_{2}, p_{1}, p_{2}) be an analytic function of (q_{1}, q_{2}, p_{1}, p_{2})\in \mathbb{R}^{4} in some neighborhood of

the origin 0\in \mathbb{R}^{4} such that

(2.1) r\equiv r(q_{1}, q_{2},p_{1},p_{2})=c_{1}q_{1}^{2 $\sigma$}+c_{2}q_{2}^{2}+\tilde{r}(q_{1}, q_{2},p_{1},p_{2})q_{2}^{3},

where \tilde{r}(q_{1}, q_{2}, p_{1}, p_{2}) is analytic at the origin. We are interested in the following analytic
Hamiltonian in \mathbb{R}^{4} with two degrees of freedom

(2.2) \mathcal{H}= −

qp@ r +(r^{2}+q_{2}\partial_{q_{2}}r)p_{1},

where \displaystyle \partial_{q_{1}}=\frac{\partial}{\partial q_{1}} and \displaystyle \partial_{q_{2}}=\frac{\partial}{\partial q_{2}} . The associated Hamiltonian system is given by

(2.3) \left\{\begin{array}{l}
q_{1}= @H=(@p) =r^{2}+q_{2}\partial_{q_{2}}r + (2r@r +q_{2}\partial_{q_{2}}\partial_{p_{1}}r)p_{1}-q_{2}p_{2}\partial_{p_{1}}\partial_{q_{1}}r,\\
q_{2}= @H=(@p) =-q_{2}\partial_{q_{1}}r-q_{2}p_{2}\partial_{q_{1}}\partial_{p_{2}}r+p_{1}(2r@r +q_{2}\partial_{q_{2}}\partial_{p_{2}}r) ,\\
p_{1}=-\partial \mathcal{H}/(\partial q_{1})=q_{2}p_{2}\partial_{q_{1}}^{2}r-(2r\partial_{q_{1}}r+q_{2}\partial_{q_{1}}\partial_{q_{2}}r)p_{1},\\
p_{2}= -@H=(@q) =p_{2}\partial_{q_{1}}r+q_{2}p_{2}\partial_{q_{1}}\partial_{q_{2}}r-(2r@r +\partial_{q_{2}}r+q_{2}\partial_{q_{2}}^{2}r)p_{1}.
\end{array}\right.
Then we have

Theorem 2.1. The Hamiltonian system (2.3) is not analytic‐Liouville‐integrable
in any neighborhood of the origin. More precisely, for any analytic first integral u=

u(q_{1}, q_{2}, p_{1}, p_{2}) of (2.3) in \mathbb{R}^{4}
,

there exists a function  $\phi$ of one‐variable, being analytic
at  0\in \mathbb{R} such that u= $\phi$\circ \mathcal{H}.

We have the following

Corollary 2.2. Suppose that  $\sigma$=1, c_{1}=c_{2}=2 and r=2(q_{1}^{2}+q_{2}^{2}) in (2.1).
Then the Hamiltonian system (2.3) is not analytic‐Liouville‐integrable in any neighbor‐
hood of the origin.
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Remark. Theorem 2.1 is a generalization of [4, Theorem 1], where the function r

in (2.1) was supposed to be independent of p_{1} and p_{2} . Corollary 2.2 was proved in [1]. In

this case, it is not dicult to see that (2.3) in Corollary 2.2 is C^{\infty} ‐Liouville‐integrable,
because it has a smooth first integral

(2.4) u=\left\{\begin{array}{ll}
q_{2}\exp (- \frac{1}{r}) & \mathrm{i}\mathrm{f} (q_{1}, q_{2})\neq(0,0) ,\\
0 & \mathrm{i}\mathrm{f} (q_{1}, q_{2})=(0,0) .
\end{array}\right.
On the other hand, it is not known whether (2.3) in a general case has a nonanalytic
first integral because one cannot construct the first integral of (2.3) concretely since r

also depends on p_{1} and p_{2} . In §4 we will study the integrability from the viewpoint of

hyperasymptotic expansions.

§3. Proof of theorem

The proof of Theorem 2.1 is done by the argument in [4]. For the sake of complete‐
ness we give the proof.

Proof of Theorem 2.1. By the suitable change of the variables q_{1} and q_{2} one may

assume that c_{1}=1 and c_{2}=1 . Let u=u(q_{1}, q_{2}, p_{1}, p_{2}) be any analytic first integral of

(2.3). We note that u is the first integral of the Hamiltonian system (2.3) if and only if

u is a solution of the following first order equation

\displaystyle \{\mathcal{H}, u\}\equiv (q_{2}p_{2}\partial_{q_{1}}^{2}r -(2r@r +q_{2}\partial_{q_{1}}\partial_{q_{2}}r)p_{1})\frac{\partial u}{\partial p_{1}}
+ (p_{2}\displaystyle \partial_{q_{1}}r+q_{2}p_{2}\partial_{q_{1}}\partial_{q_{2}}r- (2r@r +\partial_{q_{2}}r+q_{2}\partial_{q_{2}}^{2}r)p_{1})\frac{\partial u}{\partial p_{2}}
+ (r^{2}+q_{2}\displaystyle \partial_{q_{2}}r +(2r@r +q_{2}\partial_{q_{2}}\partial_{p_{1}}r)p_{1}-q_{2}p_{2}\partial_{p_{1}}\partial_{q_{1}}r)\frac{\partial u}{\partial q_{1}}

(3.1) +(-q_{2}\displaystyle \partial_{q_{1}}r-q_{2}p_{2}\partial_{q_{1}}\partial_{p_{2}}r+p_{1}(2r\partial_{p_{2}}r+q_{2}\partial_{q_{2}}\partial_{p_{2}}r))\frac{\partial u}{\partial q_{2}}=0.
We dene

(3.2) v\equiv v(q_{1}, p_{1}, p_{2}) :=u(q_{1},0, p_{1}, p_{2}) .

By setting q_{2}=0 in (3.1) and noting that \partial_{q_{2}}r(q_{1},0)\equiv 0 and r(q_{1},0)=q_{1}^{2 $\sigma$} by (2.1)
with c_{1}=1 ,

we obtain

(3.3) 2 $\sigma$ p_{2}\displaystyle \frac{@v}{\partial p_{2}}-4 $\sigma$ q_{1}^{2 $\sigma$}p_{1}\frac{\partial v}{\partial p_{1}}+q_{1}^{2 $\sigma$+1}\frac{\partial v}{\partial q_{1}}=0.
We expand v into the power series of p_{2}, v=\displaystyle \sum_{j=0}^{\infty}v_{j}(q_{1},p_{1})p_{2}^{j} . Then we see that

v_{j}(q_{1},p_{1})(j=0,1, . . :) satisfy

(3.4) 2 $\sigma$ jv_{j}-4 $\sigma$ q_{1}^{2 $\sigma$}p_{1}\displaystyle \frac{\partial v_{j}}{\partial p_{1}}+q_{1}^{2 $\sigma$+1}\frac{\partial v_{j}}{\partial q_{1}}=0, j=0 , 1, 2, . . .
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We want to show that v_{j}=0 if j\neq 0 ,
and v= $\phi$(p_{1}q_{1}^{4 $\sigma$}) for some analytic function  $\phi$(t)

of one variable. Indeed, we expand v_{j}(q_{1},p_{1})=\displaystyle \sum_{ $\nu$=0}^{\infty}v_{j, $\nu$}(q_{1})p_{1}^{ $\nu$} . Then, by substituting
the expansion of v_{j} in (3.4) we obtain

(3.5) 2 $\sigma$ jv_{j, $\nu$}-4 $\sigma$ vq_{1}^{2 $\sigma$}v_{j, $\nu$}+q_{1}^{2 $\sigma$+1}\displaystyle \frac{\partial v_{j, $\nu$}}{\partial q_{1}}=0, j=0 , 1, 2, . . .

If we expand v_{j, $\nu$} into the power series of q_{1} ,
then we can easily see that v_{j, $\nu$}\equiv 0 for

all v=0 , 1, . . .

,
if j\neq 0 . Hence we have v_{j}=0 if j\neq 0 . It follows that v=v_{0}(q_{1}, p_{1}) .

Moreover, by (3.4) v satises the equation

-4 $\sigma$ p_{1}\displaystyle \frac{@v}{\partial p_{1}}+q_{1}\frac{\partial v}{\partial q_{1}}=0.
If we substitute the expansion of v into the equation, then, by simple computations, we

easily see that v= $\phi$(p_{1}q_{1}^{4 $\sigma$}) for some analytic function  $\phi$(t) of one variable. This proves

the assertion.

It follows from (2.2) that v=v_{0}= $\phi$(p_{1}q_{1}^{4 $\sigma$})= $\phi$(\mathcal{H}|_{q_{2}=0}) . We dene

(3.6) g(q_{1}, q_{2},p_{1},p_{2}):=u(q_{1}, q_{2},p_{1},p_{2})- $\phi$(\mathcal{H}) .

By (3.2) and by recalling that \mathcal{H} is a first integral we see that g is an analytic solution

of (3.1) such that g(q_{1},0, p_{1}, p_{2})\equiv 0 . In order to prove Theorem 2.1 we shall show

g(q_{1}, q_{2}, p_{1}, p_{2})\equiv 0 in some neighborhood of the origin. First we will show that

(3.7) g(q_{1}, q_{2},p_{1},p_{2})=$\phi$_{1}(p_{1}q_{1}^{4 $\sigma$})p_{2}q_{2}+h_{2}(q_{1},p_{1},p_{2})q_{2}^{2}+\tilde{h}_{3}(q_{1}, q_{2},p_{1},p_{2})q_{2}^{3},

for some analytic function $\phi$_{1} of one variable and analytic functions h_{2} and \tilde{h}_{3} . Because

g is analytic we have the expansion

(3.8) g(q_{1}, q_{2},p_{1},p_{2})=g_{1}(q_{1},p_{1},p_{2})q_{2}+h_{2}(q_{1},p_{1},p_{2})q_{2}^{2}+\tilde{h}_{3}(q_{1}, q_{2},p_{1},p_{2})q_{2}^{3}.

We substitute (3.8) with u=g into (3.1) and compare the coecients of q_{2} . By (2.1)
we have

(3.9) -4 $\sigma$ q_{1}^{2 $\sigma$}p_{1}\displaystyle \frac{\partial g_{1}}{\partial p_{1}}+2 $\sigma$(p_{2}\frac{\partial g_{1}}{\partial p_{2}}-g_{1})+q_{1}^{2 $\sigma$+1}\frac{\partial g_{1}}{\partial q_{1}}=0.
By substituting the expansion g_{1}(q_{1}, p_{1}, p_{2})=\displaystyle \sum_{m=0}^{\infty}g_{1,m}(q_{1}, p_{1})p_{2}^{m} into (3.9) and by

comparing the coecients of p_{2}^{m} we obtain

(3.10) -4 $\sigma$ q_{1}^{2 $\sigma$}p_{1}\displaystyle \frac{@g_{1,m}}{\partial p_{1}}+2 $\sigma$(m-1)g_{1,m}+q_{1}^{2 $\sigma$+1}\frac{\partial g_{1,m}}{\partial q_{1}}=0.
If m\neq 1 ,

then we obtain a similar equation as for v_{j} in (3.4). Hence we have g_{1,m}=0 if

m\neq 1 . It follows that g_{1}=g_{1,1}p_{2} ,
and g_{1} ,1 satises the equation -4 $\sigma$ p_{1}\displaystyle \frac{@g_{1,1}}{\partial p_{1}}+q_{1}\frac{\partial g_{1,1}}{\partial q_{1}}=
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0. By the same argument as in the above, we see that g_{1}=g_{1,1}p_{2}=$\phi$_{1}(p_{1}q_{1}^{4 $\sigma$})p_{2} for

some analytic function $\phi$_{1} of one variable. This proves the assertion.

Let us now suppose that

(3.11) g(q_{1}, q_{2},p_{1},p_{2})=$\phi$_{n-1}(p_{1}q_{1}^{4 $\sigma$})p_{2}^{n-1}q_{2}^{n-1}
+h_{n}(q_{1},p_{1},p_{2})q_{2}^{n}+\tilde{h}_{n+1}(q_{1}, q_{2},p_{1},p_{2})q_{2}^{n+1},

for some n\geq 2 ,
some analytic function $\phi$_{n-1} of one variable and analytic functions

h_{n}(q_{1}, p_{1}, p_{2}) and \tilde{h}_{n+1}(q_{1}, q_{2}, p_{1}, p_{2}) . Then we substitute (3.11) into (3.1) with u=g

and we compare the coecients of q_{2}^{n} . By (2.1) we have

2p_{2}^{n} $\sigma$(2 $\sigma$-1)q_{1}^{6 $\sigma$-2}$\phi$_{n-1}^{0}-4 $\sigma$ q_{1}^{4 $\sigma$-1}p_{1}\displaystyle \frac{@h_{n}}{\partial p_{1}}-4(q_{1}^{2 $\sigma$}+1)(n-1)p_{1}p_{2}^{n-2}$\phi$_{n-1}
(3.12) +2 $\sigma$ q_{1}^{2 $\sigma$-1}(p_{2}\displaystyle \frac{\partial h_{n}}{\partial p_{2}}-nh_{n})+q_{1}^{4 $\sigma$}\frac{\partial h_{n}}{\partial q_{1}}=0.
By substituting the expansion h_{n}(q_{1}, p_{1}, p_{2})=\displaystyle \sum_{m=0}^{\infty}h_{n,m}(q_{1}, p_{1})p_{2}^{m} into (3.12) and by

comparing the coecients of p_{2}^{n-2} we obtain

(3.13) -4 $\sigma$ q_{1}^{4 $\sigma$-1}p_{1}\displaystyle \frac{\partial h_{n,n-2}}{\partial p_{1}}-4(q_{1}^{2 $\sigma$}+1)(n-1)p_{1}$\phi$_{n-1}
-4 $\sigma$ q_{1}^{2 $\sigma$-1}h_{n,n-2}+q_{1}^{4 $\sigma$}\displaystyle \frac{\partial h_{n,n-2}}{\partial q_{1}}=0.

We will show that

(3.14) h_{n,n-2}=0, $\phi$_{n-1}=0.

If we can prove $\phi$_{n-1}=0 ,
then it follows from (3.13) that v:=h_{n,n-2} satises a

similar equation as (3.4). Hence, by the same argument as for (3.4) we have h_{n,n-2}=0.
In order to show $\phi$_{n-1}=0 we insert the expansions

(315) $\phi$_{n-1}(p_{1}q_{1}^{4 $\sigma$})=\displaystyle \sum$\phi$_{n-1,kp_{1}^{k}q_{1}^{4 $\sigma$ k}}\infty, h_{n,n-2}(q_{1}, p_{1})=\displaystyle \sum^{\infty}h_{n,n-2,k}(q_{1})p_{1}^{k}
k=0 k=0

into (3.13) and compare the coecients of p_{1}^{k} . Then we obtain, for k\geq 0

(3.16) -4 $\sigma$ q_{1}^{4 $\sigma$-1}kh_{n,n-2,k}-4 $\sigma$ q_{1}^{2 $\sigma$-1}h_{n,n-2,k}+q_{1}^{4 $\sigma$}\underline{@h_{n,n-2,k}}
\partial q_{1}

=4(q_{1}^{2 $\sigma$}+1)(n-1)$\phi$_{n-1,k-1}q_{1}^{4 $\sigma$(k-1)},

where we set $\phi$_{n-1,-1}=0 . If we set q_{1}=0 and k=1 in (3.16), then we obtain

0=4(n-1)$\phi$_{n-1,0} ,
which implies $\phi$_{n-1,0}=0.
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Suppose that $\phi$_{n-1,k-1}\neq 0 for some k\geq 2 . We divide both sides of (3.16) by

q_{1}^{2 $\sigma$-1} . Then the right‐hand side of (3.16) is divisible by q_{1}^{N},  N=4 $\sigma$(k-1)+1-2 $\sigma$\geq
 2 $\sigma$+1 . Because the operator -4 $\sigma$ kq_{1}^{2 $\sigma$}+q_{1}^{2 $\sigma$+1}(d/dq_{1}) in the left‐hand side of the

equation increases the power of q_{1} ,
it follows that h_{n,n-2,k} is divisible by q_{1}^{N} . We set

h_{n,n-2,k}(q_{1})=q_{1}^{N}W(q_{1}) . Then we have q_{1}(d/dq_{1})h_{n,n-2,k}=q_{1}^{N}(N+q_{1}(d/dq_{1}))W . It

follows from (3.16) that W satises

(3.17) (N-4 $\sigma$ k)q_{1}^{2 $\sigma$}W-4 $\sigma$ W+q_{1}^{2 $\sigma$+1}dW\overline{dq_{1}}
=4(n-1)$\phi$_{n-1,k-1}(q_{1}^{2 $\sigma$}+1) .

We set W=\displaystyle \sum_{j=0}^{2 $\sigma$-1}q_{1}^{j}W_{j}(q_{1}^{2 $\sigma$}) . Because the right‐hand side of (3.17) is a function of

q_{1}^{2 $\sigma$}, W_{j}(1\leq j<2 $\sigma$) satisfy

(3.18) q_{1}^{2 $\sigma$}(N-4 $\sigma$ k+j)W_{j}-4 $\sigma$ W_{j}+q_{1}^{2 $\sigma$+1}\displaystyle \frac{dW_{j}}{dq_{1}}=0.
By a similar argument as for (3.4) we have W_{j}=0 for  1\leq j<2 $\sigma$ . Hence we have

 W(q_{1})=W_{0}(q_{1}^{2 $\sigma$})=:V(t)(t=q_{1}^{2 $\sigma$}) . Because q_{1}(d/dq_{1})V=2 $\sigma$ t(d/dt)V ,
it follows from

(3.17) that

(1-6 $\sigma$)tV-4 $\sigma$ V+2 $\sigma$ t^{2}\displaystyle \frac{dV}{dt}=4(n-1)$\phi$_{n-1,k-1}(t+1) .

We expand V=\displaystyle \sum_{j=0}^{\infty}V_{j}t^{j} ,
and set c=4(n-1)$\phi$_{n-1,k-1} . Then we can easily see that

V_{0}=-\displaystyle \frac{c}{4 $\sigma$}\neq 0, V_{1}=-\frac{c}{4 $\sigma$}+\frac{6 $\sigma$-1}{4 $\sigma$}\frac{c}{4 $\sigma$}=\frac{2 $\sigma$-1}{16$\sigma$^{2}}c\neq 0,
V_{j}=V_{j-1}\displaystyle \frac{2 $\sigma$(j-1)+1-6 $\sigma$}{4 $\sigma$}.

It follows that V_{j} grows like j! when j tends to innity. Therefore V(t) does not converge

in any neighborhood of the origin. This is a contradiction. Hence we have $\phi$_{n-1,k-1}=0.
Because k is arbitrary we have $\phi$_{n-1}=0.

Next we set $\phi$_{n-1}=0 in (3.12) and consider the coecients of p_{2}^{m}(m\neq n) . Then

we see that h_{n,m} satises a similar equation as for (3.4). Hence we have h_{n,m}=0
if n\neq m ,

and h_{n,n}=$\phi$_{n}(p_{1}q_{1}^{4 $\sigma$}) for some analytic function $\phi$_{n} of one variable. It

follows that h_{n}(q_{1}, p_{1}, p_{2})=h_{n,n}(q_{1}, p_{1})p_{2}^{n}=$\phi$_{n}(p_{1}q_{1}^{4 $\sigma$})p_{2}^{n} . Hence we have (3.11) with

n replaced by n+1 . By induction we obtain (3.11) for an arbitrary integer n\geq 2.

It follows from (3.11) with n replaced by n+2 that, for every n\geq 0 we have

\partial_{q_{2}}^{n}g(q_{1},0, p_{1}, p_{2})\equiv 0 ,
where (q_{1}, p_{1}, p_{2}) is in some neighborhood of the origin which may

depend on n . On the other hand \partial_{q_{2}}^{n}g(q_{1},0, p_{1}, p_{2}) is analytic in some neighborhood of

the origin independent of n . By analytic continuation, we have \partial_{q_{2}}^{n}g(q_{1},0, p_{1}, p_{2})\equiv 0
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in some neighborhood of the origin independent of n . By the partial Taylor expansion

g=\displaystyle \sum_{n}\partial_{q_{2}}^{n}g(q_{1},0, p_{1}, p_{2})q_{2}^{n}/n! ,
we have g=0 . This ends the proof. \square 

§4. Formal integrability

In this section, we will study the integrability of (2.3) from the viewpoint of hy‐

perasymptotic expansions. First we study the formal integrability. Without loss of

generality we may assume that c_{1}=c_{2}=1 by a suitable change of the coordinates.

The terms in (3.1) which preserve the order of q_{2} are given by

(4.1) \displaystyle \mathcal{L}u:=q_{1}^{2 $\sigma$-1}(2 $\sigma$(p_{2}\frac{\partial u}{\partial p_{2}}-q_{2}\frac{\partial u}{\partial q_{2}})+q_{1}^{2 $\sigma$}(q_{1}\frac{\partial u}{\partial q_{1}}-4 $\sigma$ p_{1}\frac{\partial u}{\partial p_{1}})) .

Then the equation (3.1) can be written in the form

(4.2) \mathcal{L}u+\{\mathcal{H}, u\}-\mathcal{L}u\equiv \mathcal{L}u+Ru=0 , Ru :=\{\mathcal{H}, u\}-\mathcal{L}u.

The Lagrange‐Charpit system corresponding to \mathcal{L} is given by

(4.3) \displaystyle \frac{dq_{1}}{q_{1}^{4 $\sigma$}}=\frac{dq_{2}}{-2 $\sigma$ q_{1}^{2 $\sigma$-1}q_{2}}=\frac{dp_{1}}{-4 $\sigma$ q_{1}^{4 $\sigma$-1}p_{1}}=\frac{dp_{2}}{2 $\sigma$ q_{1}^{2 $\sigma$-1}p_{2}}.
We integrate (4.3) by taking q_{1} as an independent variable. By simple computations we

can easily see that the solution of (4.3) is given by

(4.4) q_{2}=q_{2}^{0}\exp(q_{1}^{-2 $\sigma$}) , p_{2}=p_{2}^{0}\exp(-q_{1}^{-2 $\sigma$}) , p_{1}=p_{1}^{0}q_{1}^{-4 $\sigma$},

where q_{2}^{0}, p_{2}^{0} and p_{1}^{0} are certain constants.

Because the solution of the homogeneous equation \mathcal{L}v=0 is given by

(4.5) v= $\phi$(p_{1}q_{1}^{4 $\sigma$},p_{2}\exp(q_{1}^{-2 $\sigma$}), q_{2}\exp(-q_{1}^{-2 $\sigma$})) ,

with  $\phi$ being an arbitrary function, we first construct a solution of \mathcal{L}v=0 in the form

u_{0}=u_{0}(p_{1}^{0},p_{2}^{0})\equiv u_{0}(p_{1}q_{1}^{4 $\sigma$},p_{2}\exp(q_{1}^{-2 $\sigma$}))

such that \partial u_{0}/\partial p_{2}^{0}\neq 0 ,
where u_{0} is an arbitrary function. We then construct a solution

u of (4.2) in the form

(4.6) u=\displaystyle \sum_{j=0}^{\infty}u_{j}(q_{1},p_{1}q_{1}^{4 $\sigma$},p_{2}\exp(q_{1}^{-2 $\sigma$}))(\exp(-q_{1}^{-2 $\sigma$})q_{2})^{j},
where u_{0}(q_{1},p_{1}q_{1}^{4 $\sigma$},p_{2}\exp(q_{1}^{-2 $\sigma$}))\equiv u_{0}(p_{1}q_{1}^{4 $\sigma$},p_{2}\exp(q_{1}^{-2 $\sigma$})) .
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We note that R in (4.2) has analytic coecients and R raises the power of q_{2} at

least by one. On the other hand we have

(4.7) \mathcal{L}(u_{j}(\exp(-q_{1}^{-2 $\sigma$})q_{2})^{j})=(\mathcal{L}u_{j})(\exp(-q_{1}^{-2 $\sigma$})q_{2})^{j}
Hence, if we substitute (4.6) into (4.2) and compare the coecients of q_{2}^{j} of both sides,
then we have

(4.8) \mathcal{L}u_{j} = (linear functions of u_{k} and their derivatives (k<j) , j=1,2, . :.

We note that the right‐hand side is a known quantity if we determine u_{j} recursively.
We will solve \mathcal{L}v=f ,

where

v=vq; p_{1}q_{1}^{4 $\sigma$}, p_{2}\exp(q_{1}^{-2 $\sigma$}))

By making the change of variables (q_{1},p_{1},p_{2})\mapsto(q_{1},p_{1}^{0},p_{2}^{0}) given by (4.4), the equation

\mathcal{L}v=f(q_{1},p_{1},p_{2}) can be written in the form

(4.9) q_{1}^{4 $\sigma$}(\partial v/\partial q_{1})=g(q_{1},p_{1}^{0},p_{2}^{0}) ,

where

g\equiv g(q_{1},p_{1}^{0},p_{2}^{0})=f(q_{1},p_{1}^{0}q_{1}^{-4 $\sigma$},p_{2}^{0}\exp(-q_{1}^{-2 $\sigma$})) .

Hence the solution of (4.9) is given by

(4.10) v=\displaystyle \int_{a}^{q_{1}}s^{-4 $\sigma$}g(s,p_{1}^{0},p_{2}^{0})ds,
where a\neq 0 is an arbitrary complex constant. If we go back to the original variables

q_{1}, p_{1} and p_{2} ,
then we obtain a solution of \mathcal{L}v=f . Therefore we have a solution u of

(4.2) given by (4.6).
Finally, we will show that u is a formal integral of (2.3) functionally independent

of \mathcal{H} . Hence our Hamiltonian system is formally Liouville‐integrable. Indeed, if this is

not the case, then we have u= $\phi$(H) for some smooth function  $\phi$ of one variable. If we

set  q_{2}=0 ,
then we obtain

u_{0}(p_{1}q_{1}^{4 $\sigma$},p_{2}\exp(q_{1}^{-2 $\sigma$}))= $\phi$(\mathcal{H})|_{q_{2}=0}= $\phi$(p_{1}q_{1}^{4 $\sigma$}) .

This is a contradiction to the assumption that \partial u_{0}/\partial p_{2}^{0}\neq 0 . Summing up the above we

obtain

Proposition 4.1. Let u_{0}(p_{1}^{0}, p_{2}^{0}) be an arbitrary analytic function of p_{1}^{0} and p_{2}^{0}
such that \partial u_{0}/\partial p_{2}^{0}\neq 0 . Then (2. 3) is formally Liouville‐integrable in the sense that

(4\cdot 6) is a formal integral of (2.3) which is functionally independent of \mathcal{H}.
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In the rest of this section we give an example for which the hyperasymptotic ex‐

pansion (4.6) converges in some subset of a neighborhood of the origin. We consider

the following Hamiltonian corresponding to r=q_{1}^{2 $\sigma$}+q_{2}^{2}

(4.11) \mathcal{H}=-2 $\sigma$ q_{1}^{2 $\sigma$-1}q_{2}p_{2}+p_{1}((q_{1}^{2 $\sigma$}+q_{2}^{2})^{2}+2q_{2}^{2})

Clearly, the integral u is the solution of (4.2), where \mathcal{L} and R are given, respectively, by

(4.1) and

Ru=(2 $\sigma$(2 $\sigma$-1)q_{2}p_{2}q_{1}^{2 $\sigma$-2}-4 $\sigma$ q_{1}^{2 $\sigma$-1}q_{2}^{2}p_{1})\displaystyle \frac{@u}{\partial p_{1}}
(4.12) -4p_{1}q_{2}(q_{1}^{2 $\sigma$}+q_{2}^{2}+1)\displaystyle \frac{\partial u}{\partial p_{2}}+q_{2}^{2}(q_{2}^{2}+2q_{1}^{2 $\sigma$}+2)\frac{\partial u}{\partial q_{1}}.
For simplicity we write (4.6) in the form

(4.13) u=\displaystyle \sum_{j=0}^{\infty}u_{j}(q_{1}, p_{1}^{0}, p_{2}^{0})(q_{2}^{0})^{j},
where u_{0}\equiv u_{0}(p_{1}^{0}, p_{2}^{0}) can be chosen arbitrarily. In the following we take u_{0} as a linear

function of p_{1}^{0} and p_{2}^{0}

(4.14) u_{0}(p_{1}^{0}, p_{2}^{0})=c_{1}p_{1}^{0}+c_{2}p_{2}^{0}, c_{1}, c_{2} ,
constants:

It is easy to see, from the construction of the formal solution that all u_{j} �s are linear

functions of p_{1}^{0} and p_{2}^{0} . Namely we have

(4.15) u=\displaystyle \sum_{j=0}^{\infty}(c_{j,1}(q_{1})p_{1}^{0}+c_{j,2}(q_{1})p_{2}^{0})(q_{2}^{0})^{j},
for some functions c_{j,1}(q) and c_{j,2}(q_{1}) . Let $\epsilon$_{0} be a small positive constant. Then we

dene

(4.16) S_{0}:=\{q_{1}\in \mathbb{C};|q_{1}|<$\epsilon$_{0}\}\cap\{q_{1}\in \mathbb{C};\Re q_{1}^{2 $\sigma$}<0\},

where \Re q_{1}^{2 $\sigma$} denotes the real part of q_{1}^{2 $\sigma$}.
Then we have

Proposition 4.2. Let the Hamiltonian \mathcal{H} be given by (4\cdot 11) . Then there exist

a  $\delta$>0 ,
an $\epsilon$_{0}>0 , neighborhoods V_{1}, V_{2} of the origin in \mathbb{C} and the formal integral u,

(4\cdot 15) such that u converges when

\{(q_{1}, q_{2},p_{1},p_{2});q_{1}\in S_{0}, p_{1}\in V_{1}, p_{2}\in V_{2}, |\exp(-q_{1}^{-2 $\sigma$})q_{2}|< $\delta$\}.
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§5. Discussions and future problems

In the preceeding section we gave an example of a Hamiltonian system for which

(4.6) converges when q_{2}^{0} is in some neighborhood of the origin and q_{1} is in a sectorial

domain S_{0} . It is an open question whether (4.6) converges on the set of q_{1} ‐plane which

contains a positive real axis. As to general Hamiltonians, it seems that the formal

integral (4.6) diverges because R in (4.2) has a loss of derivative. It is also an interesting

question whether (4.6) is summable with respect to q_{2}^{0} . We will study these problems
in a future.
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