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Thom polynomials and around

By

Toru Ohmoto *

This is a quick review on Enumerative Geometry from the viewpoint of Singular‐

ity Theory. We shall feature Thom polynomial, the simplest universal cohomological
obstruction for appearence of singular points of prescribed type in any given generic

maps. The first main problem is to compute Thom polynomials for given singularity

types. This had been thought for a bit long time as a technically difficult problem
in algebraic geometry or representation theory, because traditional approaches require
to construct an appropriate resolution of the orbit closure. Recently, however, a new

effective method for computation has been brought from topology‐ classifying spaces,

equivariant cohomology and cobordism theory. We work on complex analytic singular‐

ities, and H_{*} stands for Borel‐Moore homology.

§1. Enumerating Singularities: Examples

Example 1.1. (Riemann‐Hurwitz formula)
Let f : M\rightarrow N be a branched cover of a nonsingular complete curve; Set  $\mu$(f, x)=
e_{x}-1 ,

where e_{x} is the branch index at x\in M . The classical Riemann‐Hurwitz formula
is rewritten as follows:

\displaystyle \sum $\mu$(f, x)=\deg f\cdot $\chi$(N)- $\chi$(M)
=c_{1}(TN)\cap f_{*}[M]-c_{1}(TM)\cap[M]

(1.1)
=(c_{1}(f^{*}TN)-c_{1}(TM))\cap[M]
=c_{1}(f^{*}TN-TM)\cap[M].

If f has only A_{1} ‐singularities (i.e.,  $\mu$(f, x)=1 , namely it is locally expressed by z\mapsto z^{2} ),
the formula counts the number of A_{1} ‐points: Actually in this case (equidimenional
case), the Thom polynomial tp(A) for A_{1} ‐singularity type is just the monomial c_{1}=

c_{1}(f^{*}TN-TM) .
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Example 1.2. (Thom‐Porteous formula)
Let E\rightarrow M and F\rightarrow M be vector bundles of rank m and n

, respectively, with the same

smooth base M . Let  $\varphi$ :  E\rightarrow F be a vector bundle morphism, that is a section of the

vector bundle \mathrm{H}\mathrm{o}\mathrm{m}(E, F)\rightarrow M ,
which may also be regarded as a family of(equivalent

classes� of linear maps \mathbb{C}^{m}\rightarrow \mathbb{C}^{n} parametrized by M . We are herewith interested in

the loci corresponding to �singular linear maps�, that is, the degeneracy loci

$\Sigma$^{k}( $\varphi$)=\{x\in M, \dim \mathrm{k}\mathrm{e}\mathrm{r}$\varphi$_{x}=k\}.

Below we denote k= dimker $\varphi$_{x} and l= dimcoker $\varphi$_{x}=n-m+k . The Giambelli‐

Thom‐Porteous formula [30] states that for suitably generic $\varphi$^{1} ,
the dual to the closure

of $\Sigma$^{k}( $\varphi$) is expressed by

(1.2) Dual [\overline{$\Sigma$^{k}( $\varphi$)}]=\triangle_{l^{k}}(c(F-E))=|c_{l-1}c_{l}c_{l}c_{l+1}\cdots\cdot|
where c_{i} is the i‐th component of c(F-E)=\displaystyle \frac{1+c_{1}(F)+}{1+c_{1}(E)+} . The Schur function

of type l^{k}=(l, \cdots, l) in the Chern classes c_{i} is the Thom polynomial tp($\Sigma$^{k}) for the

singularity type $\Sigma$^{k}.

For maps f : M^{m}\rightarrow N^{n}
,

we denote by $\Sigma$^{k}(f) the degeneracy loci of the differential

df:TM\rightarrow f^{*}TN . Note that tp(A_{1})=tp($\Sigma$^{1})=c_{1} in Example 1.1.

Example 1.3. (Singularities of maps)
As an example of classification of map‐germs (\mathbb{C}^{m}, 0)\rightarrow(\mathbb{C}^{n}, 0) (mono‐singularities),
let us see the case of m=n+1 and some generic types:

A_{1}:(x, y, v)\mapsto(x^{2}+y^{2}, v) ,

(1.3) A_{2}:(x, y, u, v)\mapsto(x^{3}+ux+y^{2}, u, v) ,

A_{3}:(x, y, u_{1}, u_{2}, v)\mapsto(x^{4}+u_{1}x^{2}+u_{2}x+y^{2}, u_{1}, u_{2}, v) ,

where v stands for parameters of the trivial unfolding of some dimension.

For a given generic map f : M^{n+1}\rightarrow N^{n} between manifolds, we denote by A(f)
the set of points x of M at which the germ of f is of type A_{k} ,

that is, the germ f at x

is written in the normal form in suitable local coordinates of source and target. Then

A(f) is a locally closed submanifold of codimension k+1 in M . We denote by A_{1}^{2}(f)

lThis means that the section  $\varphi$ is transverse to the variety  $\Sigma$^{s}(E, F) (consisting of all linear maps

with dimker =s ) for all s\geq k in the total space of \mathrm{H}\mathrm{o}\mathrm{m}(E, F) . One can replace the LHS of (1.2)
by a certain localized class ([10], [16], [19]) that makes the formula hold even for non‐generic  $\varphi$ (cf.
the Milnor number  $\mu$ in Example 1.1).
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the transverse self‐intersection locus of  f(A(f)) in N (i.e., the locus corresponding to

the family of fibers having exactly two nodes), which has codimension 2 in N . One can

consider many other combinations like as A_{1}^{k}, A_{1}A_{2}, \cdots

,
called multi‐singularities.

The closures \overline{A_{k}(f)} in M and \overline{A_{1}^{2}(f)} in N become possibly singular closed subvari‐

eties, and their Poincaré dual are universally expressed by Thom polynomials

tp(A_{1})=c_{1}^{2}-c_{2}, tp(A_{2})=2c_{1}(c_{1}^{2}-c_{2}) ,

\in H^{*}(M)
(1.4) tp(A_{3})=5c_{1}^{4}-4c_{1}^{2}c_{2}-c_{1}c_{3}

n(A_{1}^{2})=(s_{2}-s_{01})^{2}-s_{0001}+8s_{001}s_{01}-7s_{3}\in H^{*}(N)

where c_{i} is the i‐th component of c(f)=c(f^{*}TN-TM) as same as before, and s_{i_{1}i_{2}}

are the Landweber‐Novikov classes s_{I}:=f_{*}(c^{I}(f))=f_{*}(c_{1}^{i_{1}}(f)\cdots c_{k}^{i_{k}}(f)) .

The existence theorem of such universal polynomials tp( $\eta$) in variables c_{i} for mono‐

singularities  $\eta$ goes back to René Thom (e.g. [33] in  1950' \mathrm{s} ), while the existence theorem

of universal polynomials n($\eta$_{ml}) in variables s_{I} for multi‐singularities $\eta$_{ml} is rather quite

new, that is due to M. Kazarian ( [14] 03)^{2} . Indeed it is quite recent that many com‐

putational results have been obtained (see [31], [14], [15] etc) by the method which will

be explained in §4 below.

§2. Classification of Singularities

\bullet 1st year Linear Algebra:

 G=GL(m)\times GL(n) acts on V=\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{m}, \mathbb{C}^{n}) by (A, B).H=BHA^{-1}.
Orbits are determined by kernel dimension k (or rank), denoted by $\Sigma$^{k}.

\bullet Classification of map/function‐germs:
Roughly, the classification of map‐germs is the study of �jet space representations�

of automorphism groups of coordinate changes. Basic references are e.g. [22], [1], [20].

Let \mathcal{V}=\{f : \mathbb{C}^{m}, 0\rightarrow \mathbb{C}^{n}, 0\}\simeq(\mathrm{m}_{m})^{n} ,
the space of map‐germs preserving the

origin, where \mathrm{m}_{m} is the maximal ideal of the ring \mathcal{O}_{\mathbb{C}^{m},0} of regular function‐germs.
There are two basic equivalences (group action on \mathcal{V} ), called \mathcal{A} and \mathcal{K} ‐equivalences:

\mathcal{A}=Aut(\mathbb{C}^{m}, 0)\times Aut(\mathbb{C}^{n}, 0) acts on \mathcal{V} by ( $\phi$,  $\tau$).f= $\tau$\circ f\circ$\phi$^{-1},
\mathcal{K}=Aut(\mathbb{C}^{m}, 0)\times\{B : \mathbb{C}^{m}, 0\rightarrow GL\} by (( $\phi$, B).f)(x)=B(x)f($\phi$^{-1}(x)) .

\mathcal{A}‐equivalent map‐germs are also \mathcal{K}‐equivalent [22]: the \mathcal{K}‐equivalence is indeed the

classification of variety‐germs (= ideals) f=0 under automorphisms of the source.

2Note that n(A_{1}^{2}) has the form that the square of f_{*}(tp(A)) plus some �residual polynomial�. The

residual terms are much related to the geometry of the strata adjacent to the A_{1} ‐locus.
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The infinitesimal structure of orbits looks as follows (in case of \mathcal{K} ; we omit \mathcal{A} ): For

f\in \mathcal{V} ,
let  $\theta$(f) denote the \mathcal{O}_{\mathbb{C}^{m}} ‐module consisting of all germs of sections of f^{*}T\mathbb{C}^{n} at

0\in \mathbb{C}^{m} ,
then the space of infinitesimal deformations of f in \mathcal{V} is identified with \mathrm{m}_{m} $\theta$(f) .

Denote the differential by tf(v) :=df(v) for vector‐field‐germs v\in $\theta$(id_{m}) , id_{m} being
the identity of C. The tangent space to the orbit \mathcal{K}.f ,

which consists of infinitesimal

deformations of the form \displaystyle \frac{d}{dt}($\phi$_{t}, B_{t}).f|_{t=0}, ($\phi$_{t}, B_{t})\in \mathcal{K} ,
is the \mathcal{O}_{\mathbb{C}^{m}} ‐submodule given by

T . f=tf(\mathrm{m}_{m} $\theta$(id_{m}))+f^{*}\mathrm{m}_{n} $\theta$(f) \subset \mathrm{m}_{m} $\theta$(f)=T_{f}\mathcal{V}.

All groups and spaces described above are infinite dimensional, but our classification

does essentially deal with some finite dimensional representatives: For f\in \mathcal{V} ,
the k ‐jet

jf(0) is defined to be the class of f modulo \mathrm{m}_{m}^{k}\mathcal{V} , i.e., the truncated Taylor expansion
of f at 0 up to order k . Denote the k ‐jet space by J^{k}\mathcal{V}=\mathcal{V}/\mathrm{m}_{m}^{k}\mathcal{V} . A key notion

is finite determinacy for G=\mathcal{A} or \mathcal{K} , that is, f\in \mathcal{V} is said to be k‐G‐determined

if any g\in \mathcal{V} with j^{k}g(0)=j^{k}f(0) is G‐equivalent to f (e.g. the Morse singularity

(A) is 2‐determined for both equivalences). Our classification process goes to list up

k‐determined germs from low order k to higher. It is known that

(a) f is finitely G‐determined, (i.e. k‐determined for some k ) \Leftrightarrow \mathrm{t}\mathrm{h}\mathrm{e} orbit G.f in \mathcal{V}

has finite codimension, i.e., \dim_{\mathbb{C}}T_{f}\mathcal{V}/TG.f<\infty , [22], [1], [20];

(b) For finitely determined map‐germs  f ,
its stabilizer subgroup has maximal compact

(reductive) subgroups conjugate to some subgroup of GL(m)\times GL(n)(=J^{1}\mathcal{A}=
J^{1}\mathcal{K}) ,

see [35].

Example 2.1. (Simple Curve Singularities: Example 1.3)
A G‐orbit  $\eta$ is called to be simple (  G‐simple) if there are only finitely many G‐orbits

which intersect with a sufficiently small neighborhood of  $\eta$.

In the classification of functions \mathbb{C}^{2}, 0\rightarrow \mathbb{C}, 0 and ICIS curve‐germs \mathbb{C}^{n+1},  0\rightarrow

\mathbb{C}^{n}, 0 ,
the list of low codimensional \mathcal{K}‐orbits are shown as follows (those are simple

\mathcal{K}‐orbits):

 1-\mathrm{j}\mathrm{e}\mathrm{t}/\mathrm{c}\mathrm{o}\dim  0 2 3 4 5 6 7

3In particular, in case of m\geq n, f is finitely \mathcal{K}- determined \Leftrightarrow f=0 defines an isolated complete
intersection singularity (ICIS) at 0.
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Normal forms of those singularities are as follows:

A_{ $\mu$} : x^{ $\mu$+1}+y^{2}( $\mu$\geq 1) , D_{ $\mu$} : x^{2}y+y^{ $\mu$-1}( $\mu$\geq 4) , E_{6}:x^{3}+y^{4} , ,

 S_{ $\mu$}:(x^{2}+y^{2}+z^{ $\mu$-3}, yz) , \cdots .

For example, look at the case of  A_{3} : (x, y)\mapsto z=f(x, y)=x^{4}+y^{2} . Set e=\displaystyle \frac{\partial}{\partial z} and

then  $\theta$(f)=\mathcal{O}_{x,y}e . The normal vector space T_{f}\mathcal{V}/T\mathcal{K}.f has a basis {xe, ye, xe, xe,

thus the codimension is 4. The first two vectors are parallel to tf(\displaystyle \frac{\partial}{\partial x}) and tf (\displaystyle \frac{\partial}{\partial y}) . The

last two vectors define a deformation of f by f(x, y)+u_{1}x^{2}+u_{2}x with parameters u_{1}, u_{2},

which gives a miniversal unfolding of A_{3} ‐singularity (see e.g. [22], [1] for the detail).
The obtained map‐germ is actually the third one without trivial parameters v in (1.3).
Note that the source space (x, y, u_{1}, u_{2}) of the miniversal unfolding of f is identified

with the normal to the \mathcal{K}‐orbit of f in \mathcal{V}.

§3. Classifying Spaces

Let G be a complex Lie group acting on a complex space V . In principle, any family

 $\varphi$ of  G‐orbits in V parametrized by M is regarded as a certain morphism from M to

the Borel construction (or the classifying stack [V/G] ), called a classify ing morphism,

\overline{ $\varphi$}:M\rightarrow B_{G}V:=EG\times GV

where EG\rightarrow BG is the universal G‐principal bundle and EG\times GV=(EG\times V)/G
is the total space of the associated bundle with fiber V over BG . Any two classifying

morphisms corresponding to the same family  $\varphi$ are isomorphic in a categorical sense.

The  G‐equivariant cohomology of V (in the sense of Borel) is defined by H_{G}^{*}(V) :=

H^{*}(B_{G}V) . If V is an G‐affine space, then H_{G}^{*}(V)\simeq H_{G}^{*}(pt)\simeq H^{*}(BG) .

Definition 3.1. For a G‐orbit  $\eta$ in a  G‐affine space V ,
the Thom polynomial of

 $\eta$ is the  G‐characteristic class which represents the equivariant fundamental class of the

orbit closure \overline{ $\eta$} via the equivariant Poincaré dual:

tp( $\eta$) :=\mathrm{D}\mathrm{u}\mathrm{a}1^{G}[\overline{ $\eta$}]_{G}\in H_{G}^{*}(V)=H^{*}(BG) .

Intuitively, tp( $\eta$) is the dual to the �finite codimensional subvariety� B_{G}\overline{ $\eta$}=EG\times G\overline{ $\eta$}
in B_{G}V . An alternative description is given in the next section.

4For the construction in algebraic context, see [34].
5The G‐versions of the fundamental class and the Poincaré dual are defined by the linductive limits

using a finite dimensional approximation of the Borel construction (In algebraic context, see [34]
and [4]).
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Example 3.2. Let G=GL(m)\times GL(n) and V=\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{m}, \mathbb{C}^{n}) . Note that

BG=BGL(m)\times BGL(n)=\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{s}(m, \infty)\times \mathrm{G}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{s}(n, \infty) ,
which is the classifying space

for vector bundles \mathrm{H}\mathrm{o}\mathrm{m}(E, F)\rightarrow M . By the following diagram, the classify ing space

for vector bundle morphisms  $\varphi$ :  E\rightarrow F should be the total space B_{G}V (the classifying

morphism is given by \overline{ $\varphi$}=\overline{ $\rho$}\circ $\varphi$ ):

 B_{G}(V\times V)

\nearrow\overline{ $\varphi$}' \triangle\uparrow

\mathrm{H}\mathrm{o}\mathrm{m}(E, F)\rightarrow\overline{ $\rho$} B_{G}V =\sqcup B_{G}$\Sigma$^{k}
 $\varphi$\uparrow \nearrow\overline{ $\varphi$} \downarrow

\sqcup$\Sigma$^{k}( $\varphi$)= M \rightarrow $\rho$ BG

The diagonal embedding V\rightarrow V\times V defines the universal section \triangle . By the tautological

construction,  $\varphi$ is induced as the pullback of \triangle via \overline{ $\varphi$}.

B_{G}V is stratified via B_{G}$\Sigma$^{k}=EG\displaystyle \times G$\Sigma$^{k}(\max(0, m-n)\leq k\leq m) ,
and the

degeneracy locus $\Sigma$^{k}( $\varphi$) is obtained as the intersection of the classifying morphism \overline{ $\varphi$}

with the stratum B_{G}$\Sigma$^{k} . We say  $\varphi$ is generic if \overline{ $\varphi$} is transverse to those strata in B_{G}V.
For generic  $\varphi$ it holds that Dual [\overline{$\Sigma$^{k}( $\varphi$)}]=\overline{ $\varphi$}^{*}\mathrm{D}\mathrm{u}\mathrm{a}1[\overline{B_{G}$\Sigma$^{k}}]=$\rho$^{*}tp($\Sigma$^{k}) .

Remark. The case of mono‐germ classification is similar as Example 3.2; We just
take the jet space J^{k}\mathcal{V} and the group J^{k}\mathcal{K} (or J^{k}\mathcal{A}) for some order k . However, the case

of multi‐singularities of maps is much harder (Kazarian [14]): it requires the classifying

space of complex cobordism (or probably a glued space of classifying stacks).

§4. Actual Computations

We briefly review a new approach due to R. Rimányi [31], which is effective for

computation (also see Kazarian [13], [15], Fehér‐Rimányi [7]).
Let  $\eta$ be a  G‐orbit in a G‐affine space V . Look at the exact sequence

\rightarrow H_{G}^{*}(V, V-\overline{ $\eta$})\rightarrow jH_{G}^{*}(V)\rightarrow $\alpha$ H_{G}^{*}(V-\overline{ $\eta$})\rightarrow

In  H_{G}^{*}(V) , \mathrm{k}\mathrm{e}\mathrm{r} $\alpha$(={\rm Im} j) is an ideal. If its non‐trivial lowest cohomological degree

part, say  H_{G}^{2s}(V)\cap \mathrm{k}\mathrm{e}\mathrm{r} $\alpha$ ,
is isomorphic to \mathbb{Z}

,
we define tp( $\eta$) to be the generator of the

homogeneous part so that tp( $\eta$) restricted to the orbit  $\eta$ itself equals the Euler class of

the normal bundle  v_{ $\eta$} of  $\eta$ . The last condition fixes the ambiguity in the choice of the

generator, and this definition of  tp( $\eta$) is compatible6 with Definition 3.1. Note that if \overline{ $\eta$}

6In fact it holds that H_{G}^{i}(V, V-\overline{ $\eta$})\simeq H_{\dim V-i}^{G}(\overline{ $\eta$}) (the Alexander duality, cf [4]), thus if \overline{ $\eta$} is of

(complex) codimension s and irreducible, H_{G}^{i}(V, V-\overline{ $\eta$}) is trivial for i<2s and is isomorphic to

\mathbb{Z} for i=2_{\mathcal{S}} , the generator of which corresponds to the G‐fundamental class of  $\eta$ , cf. (equivariant
version of) §19.1 in [10].
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is smooth,  tp( $\eta$) is nothing but the j‐image of the Thom class; but in general our \overline{ $\eta$} is

singular.
If V admits a certainly nice G‐invariant stratification, one can describe tp( $\eta$) as a

solution of some linear equations on equivariant cohomology classes:

Assume that V consists of finitely many orbits  $\xi$ ,
and also that their normal

Euler classes are non‐zero:  c_{top}(v_{ $\xi$})\neq 0 for each  $\xi$ . Let  G_{ $\xi$} be the stabilizer

subgroup of  $\xi$ ,
and  $\iota$_{ $\xi$} : G_{ $\xi$}\subset G the inclusion. Then it turns out that

\oplus$\iota$_{ $\xi$}^{*}:H_{G}^{*}(V)=H^{*}(BG)\rightarrow\oplus_{ $\xi$}H^{*}(BG)

is an isomorphism. In particular it holds that

(4.1) $\iota$_{ $\xi$}^{*}tp( $\eta$)=0 (for  $\xi$\not\subset $\eta$  $\iota$_{ $\eta$}^{*}tp( $\eta$)=c_{top}(v_{ $\eta$})

and the system of these equations has a unique solution.

This gives an effective method for computing the correct form of tp( $\eta$) by solving equa‐

tions (4.1), which works well7 at least for simple orbits of (mono)singularities [31], [7],
[15]. Also for multi‐singularities, this method is used to determine the residual polyno‐
mials appearing in n($\eta$_{ml})[14] , [15].

Example 4.1. (Computing Tp for degeneracy loci (1.2))
For instance, let us see a very quick proof of the Gambielli‐Thom‐Porteous formula

tp($\Sigma$^{k})=\triangle_{l^{k}}(c) in Example 1.2, that should be compared with proofs using the

embedded resolution of \overline{$\Sigma$^{k}}
,

see [30], [16], [19] (also [10] Chap. 14; [32], [5]). Let

G=GL(m)\times GL(n) , V=\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{m}, \mathbb{C}^{n}) (the space of complex n\times m matricies) and

 $\eta$=$\Sigma$^{k} . We shall determine the universal form of tp($\Sigma$^{k}) . This case, it is enough to use

only the last equation in (4.1). Put l=n-m+k.

Take a representative h in $\Sigma$^{k} in a standard way, then the tangent space of the

orbit at the point h consists of all matrices in the following form:

h=\left\{\begin{array}{ll}
I_{m-k} & O\\
O & O
\end{array}\right\}\in$\Sigma$^{k}, T_{h}$\Sigma$^{k}=\{\left\{\begin{array}{ll}
* & *\\
* & O
\end{array}\right\}\}\subset T_{h}V=V.
Note that the normal space is isomorphic to \mathrm{H}\mathrm{o}\mathrm{m}(\mathrm{k}\mathrm{e}\mathrm{r}h, coker h ) . The stabilizer group

of h\in$\Sigma$^{k} ,
denoted by G_{k} ,

consists of pairs of square matrices

([+_{*A}^{PO}] , [+_{oB}^{P*}]) , (A, B, P)\in GL(k)\times GL(l)\times GL(m-k) .

7In general the space V contains continuous families of orbits (moduli of orbits). In that case, by
dimensional reason, this method can determine tp( $\eta$) for all the orbits  $\eta$ whose codimension is less

than the codimension of moduli strata.
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Let  $\rho$_{1}, $\rho$_{2}, $\rho$_{3} be the representations of G_{k} on \mathrm{k}\mathrm{e}\mathrm{r}h, coker h
,

{\rm Im} h
, respectively, and put

c($\rho$_{1})=\displaystyle \prod_{i=1}^{k}(1+a_{i}) and c($\rho$_{2})=\displaystyle \prod_{j=1}^{l}(1+b_{j}) . Then using (4.1) we have

$\iota$_{k}^{*}tp($\Sigma$^{k})=c_{top}(v_{k})=c_{kl}($\rho$_{1}^{*}\displaystyle \otimes$\rho$_{2})=\prod(b_{j}-a_{i})=\triangle_{l^{k}}(c($\rho$_{2}-$\rho$_{1}))

(the last expression of the resultant is classical).
Denote by c_{i}' and c_{j}'' universal Chern classes for GL(m) and GL(n) , respectively,

and then H^{*}(BG) =\mathbb{Z} [cí, \cdots, c_{m}', c_{1}'', \cdots, c_{n} . The representation of G_{k} on the source

and the target are $\lambda$_{1}=$\rho$_{1}\oplus$\rho$_{3} and $\lambda$_{2}=$\rho$_{2}\oplus$\rho$_{3} . Thus $\iota$_{k}^{*} : H^{*}(BG)\rightarrow H^{*}(BG) is

determined by c'\mapsto c($\lambda$_{1}) and c''\mapsto c($\lambda$_{2}) ,
and in particular, it sends

 1+c_{1}+c_{2}+\displaystyle \cdots:=\frac{1+c_{1}''+\cdots+c_{n}''}{1+c_{1}+\cdots+c_{m}'}\ovalbox{\tt\small REJECT}\frac{c($\lambda$_{2})}{c($\lambda$_{1})}=1+c_{1}($\rho$_{2}-$\rho$_{1})+\cdots .

Hence $\iota$_{k}^{*}\triangle_{l^{k}}(c)=\triangle_{l^{k}}(c($\rho$_{2}-$\rho$_{1} Finally it is easily checked that $\iota$_{k}^{*} is injective for

degree \leq kl ,
thus it follows that tp($\Sigma$^{k})=\triangle_{l^{k}}(c) . \square 

Example 4.2. (Computing Tp for simple ICI singularities)
Let  $\xi$ be a \mathcal{K}‐orbit listed in Example (2.1) of ICIS curve‐germs \mathbb{C}^{n+1}, 0\rightarrow \mathbb{C}^{n}, 0 . It

is finitely determined, so the maximal reductive stabilizer group G_{ $\xi$} can be taken in

J^{1}\mathcal{K}=GL(n+1)\times GL(n) as mentioned in §2 (b). Furthermore the normal form

is quasi‐homogeneous, thus we may assume8 G_{ $\xi$}\simeq \mathbb{C}^{*} . Let  $\alpha$ denote the canonical

1‐dimensional representation of \mathbb{C}^{*} and put a=c_{1}( $\alpha$)\in H^{2}(B\mathbb{C}^{*}) .

It is easy to write down in terms of weights of the normal forms the induced

homomorphism $\iota$_{ $\xi$}^{*}:H^{*}(B\mathcal{K})=H^{*}(BJ^{1}\mathcal{K})\rightarrow H^{*}(BG) and the normal Euler class

c_{top}(v_{ $\xi$})\in H^{*}(BG_{ $\xi$}) . For example, let  $\xi$ be  A_{3} : (x, y)\mapsto x^{4}+y^{2} . The representations
of G_{A_{3}}=\mathbb{C}^{*} on the source and target are $\lambda$_{1}= $\alpha$\oplus$\alpha$^{2} and $\lambda$_{2}=$\alpha$^{4} . In particular $\iota$_{A_{3}}^{*}
sends

 1+c_{1}+c_{2}+\displaystyle \cdots:=\frac{c''}{c'}\ovalbox{\tt\small REJECT}\frac{c($\lambda$_{2})}{c($\lambda$_{1})}=\frac{1+4a}{(1+a)(1+2a)}=1+a-5a^{2}+\cdots
The group  G_{A_{3}} acts also on the normal to the orbit in \mathcal{V} , such as \tilde{ $\lambda$}_{1}= $\alpha$\oplus$\alpha$^{2}\oplus$\alpha$^{2}\oplus$\alpha$^{3} on

parameters (w_{1}, w_{2}, u_{1}, u_{2}) where one expresses the normal vectors by w_{1}x^{3}e+w_{2}ye+
u_{1}x^{2}e+uxe as mentioned at the end of §2 (or equivalently, \tilde{ $\lambda$}_{1}=$\lambda$_{1}\oplus$\alpha$^{2}\oplus$\alpha$^{3} on the

source space (x, y, u_{1}, u_{2}) of the miniversal unfolding of A_{3} in (1.3), since G_{A_{3}} is also

the stabilizer of the unfolding). Thus c_{top}(v_{A_{3}})=c_{top}(\tilde{ $\lambda$}_{1})=12a^{4}.
By using these data and (4.1), Thom polynomials tp( $\eta$) for simple ICIS can be

computed. Let  $\eta$=D_{5} ,
for instance. Since it has codimension 6, we may set tp(D_{5})=

\displaystyle \sum a_{I}c^{I} of degree 6 with unknown coefficients a_{I} ,
thanks to the existence theorem of tp.

\displaystyle \frac{\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}(4.1)\mathrm{a}\mathrm{r}\mathrm{e}$\iota$_{ $\xi$}^{*}tp(D_{5})}{8\mathrm{A}\mathrm{n}\mathrm{e}\mathrm{x}\mathrm{c}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}1\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{i}\mathrm{s}A_{1}:(x,y)\mapsto}=0\mathrm{f}\mathrm{o}\mathrm{r} $\xi$=A_{0}xy,whichhastwo

.

\mathrm{o}\mathrm{b}\mathrm{v}\mathrm{i}\mathrm{o}\mathrm{u}\mathrm{s}A_{5}, symmetries\mathbb{C}^{*}\times \mathbb{C}^{*}S\mathrm{a}\mathrm{n}\mathrm{d}$\iota$_{D_{5}}^{*}tp(D_{5})=c_{6}(v_{D_{5}})
.
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These form a system of linear equations of unknowns a_{I} (e.g., in case  $\xi$=A_{3} ,
substitute

c_{1}=a, c_{2}=-5a^{2}, \cdots in  tp(D_{5})=\displaystyle \sum a_{I}c^{I} ,
then the resulting coefficient of a^{6} must be

zero). Solving the linear equations provides the correct answer:

tp(D_{5})=4c_{1}^{6}-2c_{1}^{4}c_{2}-18c_{1}^{3}c_{3}-6c_{1}^{2}c_{4}+12c_{1}^{2}c_{2}^{2}

+2c_{1}c_{5}+12c_{1}c_{2}c_{3}-4c_{2}^{3}-4c_{3}^{2}+4c_{2}c_{4}
=24\triangle_{42}+12\triangle_{411}+24\triangle_{33}+64\triangle_{321}+26\triangle_{3111}

+24\triangle_{222}+42\triangle_{2211}+4\triangle_{111111}.

The last expansion is with respect to the Schur function basis, and it is observed that

all the coefficients are non negative. In fact the positivity holds in general, see Pragacz‐
Weber [29].

We remark that it must be hard to find the precise forms of tp(A4), tp(A_{5}) , tp(D)
etc by the traditional approach using embedded resolutions.

Example 4.3. (Schubert varieties and Tp)
Let m\leq n and G=GL(m)\times GL(n) , V=\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{m}, \mathbb{C}^{n}) . Note that each linear

map in the G‐orbit $\Sigma$^{m-r} determines a r‐dimensional subspace in \mathbb{C}^{n} ,
and that any

linear maps having the same image can be translated each other by the source changes

GL(m) . Now fix a complete flag in the target linear space \mathbb{C}^{n} by using coordinates and

put G^{\triangle}:=GL(m) \times {lower triangular matrices in  GL(n) }, the subgroup of G which

preserves the flag. Then the G‐orbit $\Sigma$^{m-r} breaks into several G^{\triangle} ‐orbits, which enjoy
the one‐to‐one correspondence

G^{\triangle} ‐orbits in $\Sigma$^{m-r}\underline{1:1} Schubert cells in Grass (r, \mathbb{C}^{n}) .

We may write H_{G^{\triangle}}^{*}(V)= \mathbb{Z} [cí, \cdots, c_{m}', b_{1}, \cdots, b_{n} ], where b_{i} are Chern roots (corre‐
sponding to the maximal torus of GL(n) ). In [9] it is shown that the Thom polynomial
of a G^{\triangle} ‐orbit (in H_{G^{\triangle}}^{*}(V) ) coincides with a double Schur polynomial in the sense of

[16], and that the specialization under all b_{j}=0 gives a Schur polynomial \triangle_{ $\lambda$}(c') . This

picture should be related to equivariant Schubert classes in H_{T}^{*} (Grass (r, \mathrm{C}) ) and their

localization [18] (also [24]; see [11], [12] for other classical groups).

§5. Current interests

Finally I comment about a few topics in current interests working in progress.

1. Computing Tp for moduli strata of \mathcal{K} ‐orbits: As seen above, to compute tp for

simple \mathcal{K}‐orbits (up to certain codimension) is basically possible. The next objects
are moduli (continous familes) of \mathcal{K}‐orbits, such as unimodular singularities, Thom‐

Boardmann strata $\Sigma$^{i,j,k},\cdots etc, for definition, see [1], [23]. Although  tp($\Sigma$^{i,j}) have
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already been studied in [32] by the desingularization method (for tp of some $\Sigma$^{i,j,k},
see [5]), the restriction method approach to tp($\Sigma$^{i,j}) dealt in[6] gives a new insight.

2. Generating functions of Tp: It is natural to ask what each coefficient arising in

tp( $\eta$) (with respect to monomial basis or Schur function basis) does mean, or ask

whether there is a universal rule for the appearance of such numbers. On one hand,
there are several �stems� in classifications of mono‐singularities \mathbb{C}^{m}, 0\rightarrow \mathbb{C}^{m+\ell}, 0

such as A_{ $\mu$}, D_{ $\mu$} ,
or multi‐singularities A_{1}^{s}(s=1,2, \cdots) etc. So it is reasonable

to think of generating functions of tp�s for such series of singularities where  $\mu$, \ell or

 s is regarded as a parameter, see [3], [9], [15].

3. Equivariant Chern classes for singularities (higher degree generalization of Tp): In

general, singular varieties (such as orbit closures \overline{ $\eta$} ) admit several variants of(Chern

(homology) classes�, and usually the top term of such classes is the fundamental class

of the variety. The most useful functorial Chern class theory is the Chern‐Schwartz‐

MacPherson class [21], and the G‐equivariant version of CSM classes has been

established in [25]. Applying this theory to the orbit closure \overline{ $\eta$} in a G‐affine space V,
we obtain a non‐homogeneous series in H^{*}(BG) whose lowest degree homogeneous
term is just tp( $\eta$) ,

since tp( $\eta$) corresponds to the equivariant fundamental class of

the orbit closure. Such a �total class version� of tp is a meaningful class in \mathrm{k}\mathrm{e}\mathrm{r} $\alpha$

mentioned in §3 (i.e., the ideal of  G‐characteristic classes having supports on \overline{ $\eta$}),
which has information about the combinatorial structure of adjacencies of G‐orbits

and several invariants, cf. [25], [26], [27]. On one hand there are some examples of

computational aspects: Chern‐Schwartz‐MacPherson classes of degeneracy loci \overline{$\Sigma$^{k}}

and of Schubert varieties have already been studied in [28] and [2], respectively.

The author would like to thank the referee for his useful comments. The author

was partially supported by Grant‐in‐Aid for Scientific Research (No.17340013), JSPS.
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