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Double Schubert polynomials of classical type and

Excited Young diagrams

By

Takeshi IKEDA * and Hiroshi Naruse**

Abstract

In this article we announce the main results of our forthcoming paper with L.Mihalcea

[8] that introduces double Schubert polynomials for types B,C,D. Another aim is to show how

�excited Young diagrams� introduced in [9] can be used in the equivariant Schubert calculus.

§1. Introduction

We studied previously the equivariant Schubert classes for maximal isotropic Grass‐

mannians in [7],[9], and found that they are represented by factorial Schur P, Q‐functions

defined by V.N.Ivanov [7]. For type A Schubert calculus, there exist well known (dou‐
ble) Schubert polynomials defined by A.Lascoux and M.‐P.Schützenberger [13],[14]. For

Grassmannian permutations, these double Schubert polynomials coincide with factorial

Schur functions s(xa) and a geometric interpretation of these polynomials is given

by L.Mihalcea in [17] using Kempf‐Laksov�s formula. In an attempt to extend this

geometric interpretation to factorial Schur P, Q‐functions, we found double Schubert

polynomials for type B, C, D[8] . These are natural analogue of type A double Schu‐

bert polynomials so that they share many common properties. Most notable one is the

stability. Also these polynomials are extensions of both factorial Schur P, Q‐functions

and Billey‐Haiman�s (single) Schubert polynomials [2]. They are polynomials in two

series of infinite variables z_{1}, z_{2}, t_{1}, t_{2} ,
with coefficients in the ring $\Gamma$' of Schur P‐

functions and charactereized by left and right divided difference relations. While the

existence and meaning of these polynomials are established in [8] within a geometric
framework such as GKM‐description of equivariant cohomology [6], here we treat these
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polynomials in another approach using the combinatorics of excited Young diagrams,
which was first introduced in [9] for the Schubert calculas of isotropic Grassmannians.

In §2, we state the main results of [8] without using geometric language, so that

we focus on combinatorial properties of the double Schubert polynomials. In §3, we

give three effective ways to compute the double Schubert polynomials. The first two

are supplementary to [8], while the third one is included in [8]. In §3.4, we will give
a sketch of an alternative proof for Thm 3.3 —a key formula for the third way of

computing DSPs — using EYDs. The details of this argument will be included in [10],
where we will give a general framework for EYDs. In §4, we discuss specialization of

our polynomials to equivariant cohomology classes for flag varieties. In §5, we discuss

some related topics for future works.

§2. Notations and Definitions

§2.1. Expression of elements of Weyl groups

We realize the Weyl group of type C_{n} as a subgroup of the symmetric group S_{2n}
of 2n alphabets \{\overline{n}, \cdots, \overline{1}, 1, \cdots, n\} with linear order \overline{n}<\cdots<\overline{1}<1<\cdots<n . Let

w_{0}=(\overline{1},1)(\overline{2}, 2)\cdots(\overline{n}, n)\in S_{2n} . Then

W(C_{n})=\{v\in S_{2n}| vw_{0}=w_{0}v\}
with Coxeter generators s_{0}=(\overline{1},1) , s_{i}=(i, i+1)(\overline{i}, \overline{i+1}) , 1\leq i\leq n-1 . It is convenient

for our purpose to write w\in W(C) in one line notation w=[w(1), w(2), w(n)].
(n)Then w_{0}=w_{0,C}=[\overline{1}, \overline{n}] is the longest element in W(C) with length \ell(w_{0})=n^{2}.

A permutation w\in W(C) is Grassmannian if w(1)<w(2)<\cdots<w(n) , Example.

[\overline{3}, \overline{1}, 2, 4]=s_{2}s_{0}s_{1}s_{0} is a Grassmannian permutation in W(C_{4}) . The Weyl group W(D)
of type D_{n} is a subgroup of index 2 in W(C_{n}) , consisting of permutations with even

number of barred parts in one line notation. Coxeter generators of W(D) are sî =

(\overline{1},2)(\overline{2}, 1) , s_{i}=(i, i+1)(\overline{i}, \overline{i+1}) , 1\leq i\leq n-1 and the longest element w_{0,D}^{(n)} has length

n(n-1) . Natural inclusion of W(C_{n})\subset W(C) becomes inductive system of Coxeter

groups and we can define the infinite hyperoctahedral group W(C_{\infty})=\cup W(C) with

n

subgroup W(D_{\infty})=\displaystyle \bigcup_{n}W(D_{n}) . Weyl group of type B_{n} is W(B_{n})=W(C_{n}) . These

groups contain as a subgroup S_{\infty}=\displaystyle \bigcup_{n}S_{n} of infinite symmetric group generated by

s_{i}, i\geq 1.

§2.2. Factorial Schur P, Q‐functions

According to Ivanov [11], we define the factorial Schur P‐ or Q‐functions as follows.

Let S\mathcal{P} :=\{ $\lambda$= ($\lambda$_{1}, $\lambda$_{r})|$\lambda$_{1}>\cdots>$\lambda$_{r}>0\} be the set of strict partitions. For
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an infinite sequence of parameters a=(a_{i})_{i=1}^{\infty} ,
we define the factorial k‐th power as

(y|a)^{k}:=(y-a_{1})(y-a_{2})\cdots(y-a_{k}) .

Definition 2.1. Let  $\lambda$= ($\lambda$_{1}, $\lambda$_{r})\in S\mathcal{P} . Put

(2.1) P_{ $\lambda$}^{(n)}(x|a)=\displaystyle \frac{1}{(n-r)!}\sum_{w\in S_{n}}w((x_{1}|a)^{$\lambda$_{1}}\cdots(x_{r}|a)^{$\lambda$_{r}}\prod_{1\leq i\leq r,i<j\leq n}\frac{x_{i}+x_{j}}{x_{i}-x_{j}}) ,

where w\in S_{n} acts as a permutation of variables x_{1} ,
. . .

, x_{n} . If r>n then we set

P_{ $\lambda$}^{(n)}(x|a)=0 . We also put Q_{ $\lambda$}^{(n)}(x|a)=2^{r}P_{ $\lambda$}^{(n)}(x|a) .

It is known that P_{ $\lambda$}^{(n)}(xa) is supersymmetric in the sense that it is symmetric with

respect to the variables x_{1}, x_{2}, x_{n} ,
and P_{ $\lambda$}^{(n)} (x_{1}, x_{n-2}, t, -ta) does not depend on t.

\mathrm{I}\mathrm{f}a_{1}=0 then P (x|a)\mathrm{h}\mathrm{a}\mathrm{s} astability i.e. P^{(n+1)}(x_{1}, \ldots, x_{n}, 0|a)=P^{(n)}(x_{1}, \ldots, x_{n}|a) .

In general it does not hold. For example

(2.2) P_{1}^{(n)}(x|a)=\left\{\begin{array}{ll}
x_{1}+\cdots+x_{n} & \mathrm{i}\mathrm{f} n \mathrm{i}\mathrm{s} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\\
x_{1}+\cdots+x_{n}-a_{1} & \mathrm{i}\mathrm{f} n \mathrm{i}\mathrm{s} \mathrm{o}\mathrm{d}\mathrm{d}.
\end{array}\right.
But P_{ $\lambda$}^{(n)}(xa) has mod2 stability, i.e. P_{ $\lambda$}^{(n+2)} (xl, . . .

, x_{n}, 0,0|a) =P_{ $\lambda$}^{(n)} (xl, . . .

, x_{n}|a ),
so that we can define P_{ $\lambda$}(x|a):=\displaystyle \lim_{\leftarrow n:\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}P_{ $\lambda$}^{(n)}(x|a) . For Q_{ $\lambda$}^{(n)}(x|a) ,

we will always

assume a_{1}=0 and omit it, i.e. Q_{ $\lambda$}(x|a)=Q_{ $\lambda$}(x_{1}, x_{2}, |a_{2}, a_{3}, :=\displaystyle \lim_{\leftarrow n}Q_{ $\lambda$}^{(n)}(x|a) .

By specializing all parameters a_{i} to 0 ,
we get usual Schur P‐ or Q‐ functions P_{ $\lambda$}(x)=

P(X0) and Q_{ $\lambda$}(x)=Q(x0) cf.[16].

§2.3. The ring R_{\infty} and R_{\infty}' and divided difference operators

Let P_{ $\lambda$}(x) , Q(x) denote the Schur P, Q‐functions and put

 $\Gamma$=\displaystyle \bigoplus_{ $\lambda$\in \mathcal{S}\mathcal{P}}\mathbb{Z}Q_{ $\lambda$}(x)=\mathbb{Z}[Q_{1}(x), Q_{2}(x), \cdots], $\Gamma$'=\displaystyle \bigoplus_{ $\lambda$\in \mathcal{S}\mathcal{P}}\mathbb{Z}P_{ $\lambda$}(x)=\mathbb{Z}[P_{1}(x) , P_{2}(x) , ,

R_{\infty}:= $\Gamma$\otimes_{\mathbb{Z}}\mathbb{Z}[t_{1}, t_{2}, . . .] \otimes_{\mathbb{Z}}\mathbb{Z}[z_{1}, z_{2}, . . .], R_{\infty}':=$\Gamma$'\otimes_{\mathbb{Z}}\mathbb{Z}[t_{1}, t_{2}, . . .] \otimes_{\mathbb{Z}}\mathbb{Z}[z_{1}, z_{2}, . . .].

We define two kinds of actions $\rho$_{z} and $\rho$_{t} of W(C_{\infty}) on R_{\infty} and R_{\infty}' as follows. For

i>0 let $\rho$_{z}(S) interchange z_{i} and z_{i+1} ,
and fix other z_{j} �s and let $\rho$_{z}(S) replace z_{1} and

-z_{1} ,
and fix other zj�s. The $\rho$_{z} action is trivial on ti�s. The action on  $\Gamma$ (and on  $\Gamma$' ) is

defined from the rules

$\rho$_{z}(s_{0})Q_{k}(x)=Q_{k}(x)+2\displaystyle \sum_{j=1}^{k}z_{1}^{j}Q_{k-j}(x) and $\rho$_{z}(s_{i})Q_{k}(x)=Q(x) for i>0.
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Note that the action $\rho$_{z} on  $\Gamma$\otimes_{\mathbb{Z}}\mathbb{Z}[z_{1}, z_{2} ,
is identical to the action defined in [2]. The

action $\rho$_{t} is defined by

 $\rho$_{t}(w)= $\omega \rho$_{z}(w) $\omega$

where  $\omega$ :  R_{\infty}\rightarrow R_{\infty} is the involution defined by  $\omega$(z_{i})=-t_{i},  $\omega$(t_{i})=-z_{i},  $\omega$(Q_{k}(x))=
Q_{k}(x) .

We define divided difference operators \partial_{i}, $\delta$_{i}(i=0,1,2, \cdots) , \partial_{\hat{1}} ,
 $\delta$ î on  R_{\infty} and R_{\infty}'

by

\displaystyle \partial_{0}f=\frac{f-$\rho$_{z}(s_{0})f}{-2z_{1}}, \displaystyle \partial_{i}f=\frac{f-$\rho$_{z}(s_{i})f}{-(z_{i+1}-z_{i})} for i>0 , \partialîf =\displaystyle \frac{f-$\rho$_{z}(s_{\hat{1}})f}{-(z_{2}+z_{1})}
$\delta$_{0}f=\displaystyle \frac{f-$\rho$_{t}(s_{0})f}{2t_{1}}, $\delta$_{i}f=\displaystyle \frac{f-$\rho$_{t}(s_{i})f}{t_{i+1}-t_{i}} for i>0 ,

 $\delta$îf =\displaystyle \frac{f-$\rho$_{t}(s_{\hat{1}})f}{t_{2}+t_{1}}.
§2.4. Definition and basic properties of double Schubert polynomials

We define double Schubert polynomials of type C (resp. D ) as polynomials in the

unique family in R_{\infty} (resp. R_{\infty}' ) satisfying the condition of the theorem below. Note

that type B double Schubert polynomial can be defined from type C polynomials as

in [2], i.e. \mathfrak{B}_{w}(z, t;x)=2^{-s(w)}\mathrm{C}_{w}(z, t;x)\in R' ,
where s(w) is the number of s_{0} in a

reduced expression of w.

Theorem 2.2. [8] There exists a unique family of elements \{\mathrm{C}_{w}\}_{w\in W(C_{\infty})}\subset
 R_{\infty} satisfy ing the equations

\partial_{i}\mathrm{C}_{w}=\left\{\begin{array}{l}
\mathrm{C}_{ws_{i}} if \ell(ws_{i})<\ell(w)\\
0 otherwise
\end{array}\right. , $\delta$_{i}\mathrm{C}_{w}=\left\{\begin{array}{l}
\mathrm{C}_{s_{i}w} if \ell(s_{i}w)<\ell(w)\\
0 otherwise
\end{array}\right.
for all i\geq 0 , together with the condition that the constant term of \mathrm{C}_{w} is zero except for
w=e

,
and that \mathrm{C}_{e}=1.

Theorem 2.3. [8] There exists a unique family of elements \{\mathfrak{D}_{w}\}_{w\in W(D_{\infty})}\subset
 R_{\infty}' satisfy ing the equations

\partial_{i}\mathfrak{D}_{w}=\left\{\begin{array}{ll}
\mathfrak{D}_{ws_{i}} if \ell(ws_{i})<\ell(w) & \\
, & $\delta$_{i}\mathfrak{D}_{w}=\{
\end{array}\right. \mathfrak{D}_{s_{i}w} if \ell(s_{i}w)<\ell(w)
0 otherwise 0 otherwise

for all i\geq 1 and i= î, together with the condition that the constant term of \mathfrak{D}_{w} is zero

except forw=e ,
and that \mathfrak{D}_{e}=1.

We collect here some basic properties of \mathrm{C}_{w}=\mathrm{C}_{w}(z, t;x) . The polynomials \mathfrak{D}_{w} also

have similar properties.
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Theorem 2.4. [8]

1. The double Schubert polynomials \{\mathrm{C}_{w}\}_{w\in W(C_{\infty})} form a Z[t] ‐basis of R_{\infty}.

2. For all w\in W(C_{\infty}) we have

\mathrm{C}_{w}(z, 0;x)=\mathrm{C}_{w}^{BH}(z;x) ,

where \mathrm{C}_{w}^{BH}(z;x) is Billey‐Haiman�s Schubert polynomial([2]).

3. (Symmetry) \mathrm{C}_{w}(-t, -z;x)=\mathrm{C}_{w-1}(z, t;x) .

4. (Positivity) When we write

\displaystyle \mathrm{C}_{w}(z, t;x)=\sum_{ $\lambda$\in \mathcal{S}\mathcal{P}}f_{w, $\lambda$}(z, t)Q_{ $\lambda$}(x) ,

we have f_{w, $\lambda$}(z, t)\in \mathbb{N}[-t_{1}, . . . , -t_{n-1}, z_{1}, . . . , z_{n-1}] if w\in W(C_{n}) .

There are similar results for type B and D (see[8]). For example both \{\mathfrak{B}_{w}\}_{w\in W(B_{\infty})}
and \{\mathfrak{D}_{w}\}_{w\in W(D_{\infty})} form \mathrm{Z}[\mathrm{t}] ‐basis of R_{\infty}'.

For a Grassmannian permutationw =[w_{1}, w_{2}, w_{n}] ,
if the barred part of w is

\overline{b_{1}}, \overline{b_{r}} , we set $\lambda$_{w}= (b_{1}, b_{r}) for type B_{n} and C_{n} ,
while $\lambda$_{w}=(b_{1}-1, b_{r}-1) for

type D_{n}.

Theorem 2.5. [8] If w\in W(X_{\infty}) is a Grassmannian permutation correspond‐

ing to strict partition  $\lambda$=$\lambda$_{w} in S\mathcal{P} , then

\mathfrak{B}_{w}(z, t;x)=P_{ $\lambda$}(x|0, t) for X=B,

\mathrm{C}_{w}(z, t;x)=Q_{ $\lambda$}(x|t) for X=C,

\mathfrak{D}_{w}(z, t;x)=P_{ $\lambda$}(x|t) for X=D.

Example.

\mathfrak{B}_{[\overline{3},\overline{2},1]}=P_{3,2}(x|0, t)=P_{3,2}+P_{3,1}(-t_{1})+P_{2,1}t_{1}^{2},
\mathrm{C}_{[\overline{3},\overline{2},1]}=Q_{3,2}(x|t)=Q_{3,2}+Q_{3,1}(-t_{1})+Q_{2,1}t_{1}^{2},
\mathfrak{D}_{[\overline{3},\overline{2},1]}=P_{2,1}(x|t)=P_{2,1}+P_{2}(-t_{1})+P_{1}t_{1}^{2}.

§3. How to calculate double Schubert polynomials

There are at least three ways to calculate double Schubert polynomials.

(1) use explicit form of single Schubert polynomials,

(2) use transition equation,



92 Ikeda, Naruse

(3) use divided difference and an expression of the longest element w_{0}.

The most efficient way is (2), once we know that factorial Schur P-(\mathrm{o}\mathrm{r}Q-) func‐

tions correspond to Grassmannian permutations.

§3.1. Double Schubert polynomials in terms of single ones

For w\in S_{n} ,
let S(z) be the single Schubert polynomial of type A . For w\in W(C)

(resp. w\in W(D_{n}) ), let F(x) (resp. E(x) ) be the Stanley symmetric function of type
C (resp. type D ), (cf. [2])

F_{w}(x):=\displaystyle \sum_{\mathrm{a}\in R(w)}\sum_{(i_{1}\leq\cdots\leq i_{\ell})\in A(P(\mathrm{a}))}2^{|\mathrm{i}|}x_{i_{1}}x_{i_{2}}\cdots x_{i_{\ell}},
E_{w}(x):=\displaystyle \sum_{\mathrm{a}\in R(w)}\sum_{(i_{1}\leq\cdots\leq i_{\ell})\in A(P(\mathrm{a}))}2^{|\mathrm{i}|-\mathrm{o}(\mathrm{a})}x_{i_{1}}x_{i_{2}}\cdots x_{i_{\ell}},

where R(w) is the set of reduced expressions of w, \mathrm{a}=a_{1}a_{2}\cdots a_{\ell} corresponds to the

reduced expression w=s_{a_{1}}s_{a_{2}}\cdots s_{a_{\ell}} . The condition (i_{1}\leq\cdots\leq i_{\ell})\in A(P(\mathrm{a})) means

that we do not have i_{j-1}=i_{j}=i_{j+1} if a_{j-1}<a_{j}>a_{j+1}. |\mathrm{i}| is the number of distinct

i_{j}'s in the sequence \mathrm{i}= (i_{1}, i_{2}, i_{\ell}) and o(\mathrm{a}) is the total numbers of 1 �s and î�s in \mathrm{a}.

Theorem 3.1. [8] (for single Schubert polynomials [2] Theorem 3A,4A)

\displaystyle \mathrm{C}_{w}(z, t;x)= \sum_{v_{1}uv_{2}=w} \mathfrak{S}_{v_{1}^{-1}}(-t)F_{u}(x)\mathfrak{S}_{v_{2}}(z) ,

\ell(v_{1})+\ell(u)+\ell(v_{2})=\ell(w)
v_{1},v_{2}\in S_{n},u\in W(C)

\displaystyle \mathfrak{D}_{w}(z, t;x)= \sum_{v_{1}uv_{2}=w} \mathfrak{S}_{v_{1}^{-1}}(-t)E_{u}(x)\mathfrak{S}_{v_{2}}(z) .

\ell(v_{1})+\ell(u)+\ell(v_{2})=\ell(w)
v_{1},v_{2}\in S_{n},u\in W(D)

If we set t=0 then these formulas become the original formulas [2].
More generally, we have

\displaystyle \mathrm{C}_{w}(z, t;x)= \sum_{vu=w} \mathfrak{S}_{v}(y, t)\mathrm{C}_{u}(z, y;x) ,

\ell(v)+\ell(u)=\ell(w)

\displaystyle \mathfrak{D}_{w}(z, t;x)= \sum_{vu=w} \mathfrak{S}_{v}(y, t)\mathfrak{D}_{u}(z, y;x) .

\ell(v)+\ell(u)=\ell(w)

Example.

\mathrm{C}_{s_{0}}(z, t;x)=Q_{1}(x) ,

\mathrm{C}_{s_{i}}(z, t;x)=Q_{1}(x)+(z_{1}+\cdots+z_{i}-t_{1}-\cdots-t_{i}) for i\geq 1

\mathrm{C}_{s_{1}s_{0}}(z, t;x)=\mathrm{C}_{s_{1}s_{0}}(z;x)+\mathfrak{S}_{s_{1}}(-t)\mathrm{C}_{s_{0}}(z;x)=Q_{2}(x)+(t)Q(x)
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\mathrm{C}_{s_{1}s_{2}s_{0}s_{1}}(z, t;x)=\mathrm{C}_{s_{1}s_{2}s_{0}s_{1}}(z;x)+\mathfrak{S}_{s_{1}}(-t)\mathrm{C}_{s_{2}s_{0}s_{1}}(z;x)+\mathfrak{S}_{s_{2}s_{1}}(-t)\mathrm{C}_{s_{0}s_{1}}(z;x)
=(Q_{3,1}+z_{1}Q_{3}+z_{1}Q_{2,1}+z_{1}^{2}Q_{2})+(-t_{1})(Q_{3}+Q_{2,1}+2z_{1}Q_{2}+z_{1}^{2}Q_{1})+t_{1}^{2}(Q_{2}+z_{1}Q_{1})
=Q_{3,1}+(z_{1}-t_{1})Q_{3}+(z_{1}-t_{1})Q_{2,1}+(z_{1}-t_{1})^{2}Q_{2}+(-z_{1}t_{1})(z_{1}-t_{1})Q_{1}.

§3.2. Transition equation

For type A Schubert polynomials, it is known that there exists a recurrence relation

called transition equation [13]. S. Billey [1] extended it to other classical types. We

extend Billey�s results to our double Schubert polynomials. The reflections in W(C_{\infty})
are of the form t_{ir}=(i, r)(\overline{i}, r s_{ir}=(i,\overline{r})(\overline{i}, r) ,

and s_{rr}=(r,\overline{r}) . Using equivariant

Chevalley formula, we get the following recurrence formula called transition equation.

(for single Schubert polynomials cf.[1])

Proposition 3.2. For a permutation w=[w(1) , w(2) , w(n) , of type B, C, D,
let r be the last descent of w i.e. the largest r such that w(r)>w(r+1) ,

and s be the

largest index such that s>r and w(s)<w(r) . Put v=wt_{rs} . X represents one of

\mathfrak{B}, \mathrm{C} , D. Then

\displaystyle \mathrm{X}_{w}(z, t;x)=(z_{r}-v(t_{r}))\mathrm{X}_{v}(z, t;x)+\sum_{1\leq i<r}\mathrm{X}_{vt_{ir}}^{*}(z, t;x)+\sum_{i\neq r}\mathrm{X}_{vs_{ir}}^{*}(z, t;x)+ $\chi$ \mathrm{X}_{vs_{rr}}^{*}(z, t;x)
where \mathrm{X}_{u}^{*}=\mathrm{X}_{u} if \ell(u)=\ell(w) and 0 otherwise.  $\chi$=2 , 1, 0 according to type B, C, D.

Using this equation recursively, we can calculate double Schubert polynomials as a

linear combination of factorial Schur P-\mathrm{o}\mathrm{r}Q ‐functions.

Example 1.

w=[3, \overline{1}, 2] \in W(C_{3}) . In this case r=1, s=3 and v=[2, \overline{1}, 3] . Then

\mathrm{C}_{[3,\overline{1},2]}(z, t;x)=(z_{1}-t_{2})\mathrm{C}_{[2,\overline{1},3]}(z, t;x)+\mathrm{C}_{[1,\overline{2},3]}(z, t;x)+\mathrm{C}_{[\overline{2},\overline{1},3]}(z, t;x) .

The term \mathrm{C}_{[2,\overline{1},3]}(z, t;x) and \mathrm{C}_{[1,\overline{2},3]}(z, t;x) can be also rewritten as

\mathrm{C}_{[2,\overline{1},3]}=(z_{1}+t_{1})\mathrm{C}_{[\overline{1},2,3]}+\mathrm{C}_{[\overline{2},1,3]}, \mathrm{C}_{[1,\overline{2},3]}=(z_{1}+t_{2})\mathrm{C}_{[\overline{2},1,3]}+\mathrm{C}_{[\overline{3},1,2]}.

Therefore we get

\mathrm{C}_{[3,\overline{1},2]}=Q_{3}(x|t)+Q_{2,1}(x|t)+2z_{1}Q_{2}(x|t)+(z_{1}-t_{2})(z_{1}+t)Q(xt)
=Q_{3}+Q_{2,1}+Q_{2}(2z_{1}-t_{1}-t_{2})+Q_{1}z_{1}(z_{1}-t_{1}-t_{2}) .

Example 2.

w=[\overline{3}, 1, \overline{2}]\in D_{3} . In this case r=2, s=3 and v=[\overline{3}, \overline{2}, 1] . Then

\mathfrak{D}_{[\overline{3},1,\overline{2}]}=(z_{2}+t_{2})\mathfrak{D}_{[\overline{3},\overline{2},1]}+\mathfrak{D}_{[\overline{2},\overline{3},1]} and \mathfrak{D}_{[\overline{2},\overline{3},1]}=(z_{1}+t_{3})\mathfrak{D}_{[\overline{3},\overline{2},1]}+\mathfrak{D}_{[\overline{4},\overline{3},1,2]}.
Therefore we get
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\mathfrak{D}_{[\overline{3},1,\overline{2}]}=P_{3,1}(x|t)+(z_{1}+z_{2}+t_{2}+t_{3})P_{2,1}(x|t)
=P_{3,1}+P_{2,1}(z_{1}+z_{2}-t_{1})+P_{3}(-t_{1})+P_{2}t_{1}(t_{1}-z_{1}-z_{2})+P_{1}t_{1}^{2}(z_{1}+z_{2}) .

§3.3. The Double Schubert polynomials for the longest elements

The main object of this subsection is to express double Schubert polynomials for

the longest element w_{0} in terms of factorial Schur P‐ or Q‐ functions. For the proof we

use excited Young diagrams.

Theorem 3.3. [8]
B_{n} : \mathfrak{B}_{w_{0,B}^{(n)}}(z, t;x)=P_{$\rho$_{n}+$\rho$_{n-1}}(x|0, -z_{1}, t_{1}, -z_{2}, t_{2} , ,

C_{n}:\mathrm{C}_{w_{0,C}^{(n)}}(z, t;x)=Q_{$\rho$_{n}+$\rho$_{n-1}}(x|-z_{1}, t_{1}, -z_{2}, t_{2} , ,

D_{n} : \mathfrak{D}_{w_{0,D}^{(n)}}(z, t;x)=P_{$\rho$_{n-1}+$\rho$_{n-1}}(x|-z_{1}, t_{1}, -z_{2}, t_{2} , ,

where $\rho$_{n}=(n, n-1, \cdots, 1) .

Example.

\mathrm{C}_{w_{0,C}^{(3)}}(x, z;t)=Q_{5,3,1}(x|-z_{1}, t_{1}, -z_{2}, t_{2})
=Q_{5,3,1}+Q_{4,3,1}(z_{1}+z_{2}-t_{1}-t_{2})+Q_{5,2,1}(z_{1}-t_{1})+Q_{4,2,1}(z_{1}-t_{1})(z_{1}+z_{2}-t_{1}-t_{2})
+Q_{3,2,1}((z_{1}^{2}-z_{1}z_{2}+z_{2}^{2})(z_{2}-t_{2})+z_{1}(-t_{1})(z_{1}-t_{1}))

\mathfrak{D}_{w_{0,D}^{(3)}}(z, t;x)=P_{4,2}(x|-z_{1}, t_{1}, -z_{2}, t_{2})
=P_{4,2}+P_{3,2}(z_{1}+z_{2}-t_{1}-t_{2})+P_{4,1}(z_{1}-t_{1})+P_{3,1}(z_{1}-t_{1})(z_{1}+z_{2}-t_{1}-t_{2})
+P_{2,1}(z_{1}^{2}z_{2}-t_{1}^{2}t_{2}+z_{1}t_{1}t_{2}-z_{1}z_{2}t_{1}+z_{1}^{2}(-t_{1}-t_{2})+t_{1}^{2}(z_{1}+z_{2}))+P(zt)
+P_{3}(-z_{1}t_{1})(z_{1}+z_{2}-t_{1}-t_{2})+P_{2}(-z_{1}t_{1})(-z_{1}t_{1}-z_{2}t_{1}-z_{1}t_{2}+z_{1}z_{2}+t_{1}t_{2})
+P_{1}(z_{1}^{2}t_{1}^{2})(z_{2}-t_{2}) .

The above theorem follows from the next proposition. We only indicate for the

case of type C_{n}.

Proposition 3.4. ([8])
$\delta$_{n}\cdots$\delta$_{1}$\delta$_{0}$\delta$_{1}\cdots$\delta$_{n}Q_{$\rho$_{n+1}+$\rho$_{n}}(x|-z_{1}, t_{1}, -z_{2}, t_{2}, \cdots, -z_{n}, t_{n})

=Q_{$\rho$_{n}+$\rho$_{n-1}}(x|-z_{1}, t_{1}, -z_{2}, t_{2}, \cdots, -z_{n-1}, t_{n-1}) ,

and for each step the polynomial has an expression in terms of a factorial Schur Q‐

function. More precisely,

$\delta$_{i+1}\cdots$\delta$_{n}Q_{$\rho$_{n+1}+$\rho$_{n}}(x|-z_{1}, t_{1}, \cdots, -z_{n}, t_{n})
=Q_{$\rho$_{n+1}+$\rho$_{n}-1^{n-i}}(x|-z_{1}, t_{1}, \cdots, -z_{i}, t_{i}, t_{i+1}, -z_{i+1}, t_{i+2}, -z_{i+2}, \cdots, t_{n}, -z_{n}) ,

$\delta$_{i}\cdots$\delta$_{1}$\delta$_{0}$\delta$_{1}\cdots$\delta$_{n}Q_{$\rho$_{n+1}+$\rho$_{n}}(x|-z_{1}, t_{1}, \cdots, -z_{n}, t_{n})
=Q_{$\rho$_{n}+$\rho$_{n-1}+1^{n-i}}(x|-z_{1}, t_{1}, \cdots, -z_{i}, t_{i}, t_{i+1}, -z_{i+1}, t_{i+2}, -z_{i+2}, \cdots, t_{n}, -z_{n}) .
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Remark: By the duality \mathrm{C}_{w}(z, t;x)=\mathrm{C}_{w-1}(-t, -z;x) and

(w_{0}^{(n+1)})^{-1}=w_{0}^{(n+1)} ,
the sequence \partial_{n}\cdots\partial_{1}\partial_{0}\partial_{1}\cdots\partial_{n}\mathrm{C}_{w_{0}^{(n+1)}}(z, t;x) also has the above

property.
To prove proposition, we use excited Young diagram (EYD). These are defined

in [9] for describing equivariant multiplicity of the Schubert class for Grassmannians.

But EYD can also describe Schur functions and factorial Schur functions [10]. Here we

briefly explain this for the case of factorial Schur Q‐functions.

§3.4. Factorial Q‐function in terms of Excited Young Diagrams.

In order to manipulate infinite variables x_{1}, x_{2} ,
. . .

,
we need infinite rows numbered

1, 2, . . . from bottom to top. We also need infinite columns numbered. . .

, -2, -1, 0 , 1, 2, . . . .

Let D=\{(i, j)|i>0, i, j\in \mathbb{Z}\} be the set of cells. At the cell (row‐i,column‐j) we put

weight wt(i, j) as follows.

wt(i, j)=x_{i}+x_{-j} if j<0 ,
and wt(i, j)=x_{i}-a_{j+2} if j\geq 0.

For a strict partition  $\lambda$=($\lambda$_{1}, $\lambda$_{2}, \ldots, $\lambda$_{r})\in S\mathcal{P} ,
let \mathcal{E}( $\lambda$) be the set of excited Young

diagrams (EYD�s for short) corresponding to  $\lambda$
,

i.e. all the diagrams  C' obtained from

forward and backward elementary excitations C( $\lambda$)\rightarrow\cdots\rightarrow C' ,
where

C( $\lambda$) :=\{(r+1-i, i+j-r-2)|1\leq i\leq r, 1\leq j\leq$\lambda$_{i}\}\subset D.

Forward elementary excitation is as defined as follows ([9]). If a box (i, j)\in C s.t.

(i, j+1) , (i-1, j) , (i-1, j+1)\not\in C ,
we move the box to the position (i-1, j+1) to

make C'=(C\backslash (i, j))\cup\{(i-1, j+1 We call this move C\rightarrow C' a forward elementary
excitation. Backward elementary excitation is the reverse move. Then we have

Proposition 3.5. ([10])

Q_{ $\lambda$}(x|a)= \displaystyle \sum \prod wt(i, j) .

C\in \mathcal{E}( $\lambda$)(i,j)C

Example. for  $\lambda$=(3,1) the diagram C( $\lambda$) is indicated by black boxes.

. . .  x_{2}x_{1}-a_{2}-a_{3}\cdots

 x_{2}

x_{1}

Q_{3,1}(x|a)=2x_{1}2x_{2}(x_{2}+x_{1})(x_{2}-a_{2})+2x_{1}2x_{2}(x_{2}+x_{1})(x_{1}-a_{3})
+2x_{1}2x_{3}(x_{2}+x_{1})(x_{2}-a_{2})+2x_{1}2x_{3}(x_{3}+x_{2})(x_{2}-a_{2})+\cdots
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Remark. In [11] there exists another tabelaux sum formula for  Q_{ $\lambda$}(x|a) . The

relation between two different formulas can be explained by excited Young diagram

arguments cf. [10].

Lemma 3.6. (Local change of weights for Excited Young Diagrams)
For some column j and j+1, j\geq 0 in the diagram D

, if there is a weight pattern

of the form of left hand side of the diagram below, one can replace the weights as shown

in the right hand side without changing the value of weight sum of EYD�s.

 $\beta$ + \mathrm{t} 0

 $\beta$ + \mathrm{t}  $\beta$

\Leftrightarrow

 $\beta$ + \mathrm{t}  $\beta$
 $\beta$ + \mathrm{t}  $\beta$

Proof) Using a determinantal formula for weight sum, it is enough to show the

invariance for the case of one cell and two cells, cf. [10].

Corollary 3.7. For  Q_{ $\lambda$}(x|a) , fix i\geq 2 and assume that there is no C\in \mathcal{E}( $\lambda$)
such that (1, i-2)\in C and (1, i-1)\not\in C ,

then Q(xa) is symmetric foor the variables

a_{i} and a_{i+1}.

Proof) By the condition of  $\lambda$
,

we can replace the weight  x_{1}-a_{i} of the left diagram
to zero, and apply the lemma above. After that we can replace the weight 0 to x_{1}-a_{i+1}

without changing the weight sum.

\Leftrightarrow

Lemma 3.8. (Divided diffe rence and excited Young diagram)
1) If a box \blacksquare of  C( $\lambda$) in the position (p, q) is a corner box, i.e. (p-1, q) , (p, q+1)\not\in

 C( $\lambda$) ,
and a_{p+q+1}=t_{i}, a_{p+q+2}=t_{i+1} for some i>0 ,

then

$\delta$_{i}(Q_{ $\lambda$}(x|a_{2}, \ldots, a_{p+q}, t_{i}, t_{i+1}, a_{p+q+3}, \ldots))=Q_{\overline{ $\lambda$}}(x|a_{2}, \ldots, a_{p+q}, t_{i}, t_{i+1}, a_{p+q+3}, \ldots) ,

where \overline{ $\lambda$} is the shift ed Young diagram obtained from  $\lambda$ by removing \blacksquare

2) If the position (1, -1) of C( $\lambda$) is a corner box \blacksquare and  a_{2}=t_{1} ,
then

$\delta$_{0}(Q_{ $\lambda$} ( x|t_{1}, a_{3} , a4, . . . ) =Q_{\overline{ $\lambda$}} ( x|t_{1}, a_{3} , a4, . . . ),

where \overline{ $\lambda$}=($\lambda$_{1}, $\lambda$_{2}, \ldots, $\lambda$_{r-1}) .
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1) 2)

Using above Corollary 3.7 and Lemma 3.8 we get Proposition 3.4 and Theorem 3.3.

Example.

Q_{5,3,1}(x|-z_{1}, t_{1}, -z_{2}, t_{2})=Q_{5,3,1}(x|-z_{1}, t_{1}, -z_{2}, t_{2}, t_{3})
\rightarrow Q_{4,3,1}(x|-z_{1}, t_{1}, -z_{2}, t_{2})=Q_{4,3,1}(x|-z_{1}, t_{1}, t_{2}, -z_{2})$\delta$_{2}
\rightarrow Q_{4,2,1}(x|-z_{1}, t_{1}, t_{2}, -z_{2})=Q_{4,2,1}(x|t_{1}, -z_{1}, t_{2}, -z_{2})$\delta$_{1}*
\rightarrow Q_{4,2}(x|t_{1}$\delta$_{0}, -z_{1}, t_{2}, -z_{2})=Q_{4,2}(x|t_{1}, t_{2}, -z_{1}, -z_{2})
\rightarrow Q_{4,1}(x|t_{1}, t_{2}$\delta$_{1}, -z_{1}, -z_{2})=Q_{4,1}(x|t_{1}, -z_{1}, t_{2}, -z_{2})

=Q_{4,1}(x|t_{1}, -z_{1}, t_{2}, -z_{2})=Q_{4,1}(x|-z_{1}, t_{1}, t_{2}, -z_{2})=Q_{4,1}(x|-z_{1}, t_{1}, t_{2}, t_{3})

\rightarrow Q_{3,1}(x|$\delta$_{2}-z_{1}, t_{1}, t_{2}, t_{3})=Q_{3,1}(x|-z_{1}, t_{1}) .

§4. Equivariant Schubert calculus for classical flag varieties

The double Schubert polynomials \mathfrak{B}_{w}, \mathrm{C}_{w}, \mathfrak{D}_{w} represent the torus equivariant Schu‐

bert classes $\sigma$_{T}^{w}\in H_{T}^{2\ell(w)}(G/B) of classical full flag varieties G/B of type B, C, D.

§4.1. Specialization

Here we explain for the case of type C_{n} . In this case it is known that the T‐

equivariant cohomology ring H_{T}^{*}(Sp(\mathbb{C})/B) has a presentation \mathbb{Z}[z_{1}, z_{n}, t_{1}, t_{n}]/I_{n},
where the ideal I_{n} is generated by homogeneous parts of \displaystyle \prod_{i=1}^{n}(1-t_{i}^{2})-\prod_{i=1}^{n}(1-z_{i}^{2}) .

There are at least three types of specialization R_{\infty}\rightarrow H_{T}^{*}(Sp_{2n}(\mathbb{C})/B) by which

\mathrm{C}_{w} goes to $\sigma$_{T}^{w} for w\in W(C_{n}) .

t_{i} and z_{i} become zero for i>n. Q(x) is specialized to q_{ $\lambda$}^{(a)} which is given as

follows.
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type 1) \displaystyle \frac{$\Pi$_{i=1}^{n}(1+t_{i})}{$\Pi$_{i=1}^{n}(1+z_{i})}=1+\sum_{k=1}^{\infty}q_{k}^{(1)}.
type 2) \displaystyle \frac{$\Pi$_{i=1}^{n}(1-z_{i})}{$\Pi$_{i=1}^{n}(1-t_{i})}=1+\sum_{k=1}^{\infty}q_{k}^{(2)}.
type 3 ) \displaystyle \sqrt{\frac{$\Pi$_{i_{--}1}^{n}(1+t_{i})$\Pi$_{i--1}^{n}(1-z_{i})}{$\Pi$_{i--1}^{n}(1-t_{i})$\Pi$_{i=1}^{n}(1+z_{i})}}=1+\sum_{k=1}^{\infty}q_{k}^{(3)}.
For i>j, q_{i,j}^{(a)}=q_{i}^{(a)}q_{j}^{(a)}+2\displaystyle \sum_{k=1}^{j}(-1)^{k}q_{i+k}^{(a)}q_{j-k}^{(a)}, q_{ $\lambda$}^{(a)}=\mathrm{P}\mathrm{f}(q_{$\lambda$_{i},$\lambda$_{j}}^{(a)}) .

In type 3 case, \mathrm{C}_{w}(z, t;q^{(3)})\in \mathbb{Q}[z_{1}, z_{n}, t_{1}, t_{n}].

Example. n=3

\mathrm{C}_{s_{0}}(z, t;q^{(a)})=t_{1}+t_{2}+t_{3}-z_{1}-z_{2}-z_{3},
\mathrm{C}_{s_{1}}(z, t;q^{(a)})=t_{2}+t_{3}-z_{2}-z_{3}, \mathrm{C}_{s_{2}}(z, t;q^{(a)})=t_{3}-z_{3}(a=1,2,3) .

\mathrm{C}_{s_{1}s_{0}}(z, t;q^{(1)})=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-t_{1}^{2}+t_{2}t_{3}-(t_{2}+t_{3})(z_{1}+z_{2}+z_{3})+z_{1}z_{2}+z_{1}z_{3}+z_{2}z_{3},
\mathrm{C}_{s_{1}s_{0}}(z, t;q^{(2)})=t_{2}^{2}+t_{2}t_{3}+t_{3}^{2}-(t_{2}+t_{3})(z_{1}+z_{2}+z_{3})+z_{1}z_{2}+z_{1}z_{3}+z_{2}z_{3},
\mathrm{C}_{s_{1}s_{0}}(z, t;q^{(3)})=(t_{1}+t_{2}+t_{3}-z_{1}-z_{2}-z_{3})(-t_{1}+t_{2}+t_{3}-z_{1}-z_{2}-z_{3})/2.

Remark. The type 3 specialization gives Fomin‐Kirillov�s combinatorial double

Schubert polynomials of second kind [4].

§4.2. Schubert calculus

There are product formulas for Schur Q‐functions, such as by Stembridge [19]
or by Shimozono [18]. Therefore in principle we can calculate a product of Schubert

polynomials, but it is rather hard to calculate in general.

Example. \mathrm{C}_{s_{0}s_{1}}\mathrm{C}_{s_{0}}=(Q_{2}(x)+z_{1}Q_{1}(x))\times Q_{1}(x)=Q_{2,1}(x)+2Q_{3}(x)+2zQ(x)
=\mathrm{C}_{s_{0}s_{1}s_{0}}+2\mathrm{C}_{s_{1}s_{0}s_{1}}+2t_{1}\mathrm{C}_{s_{0}s_{1}}.

§5. Future works, problems and comments

There are diverse directions related to double Schubert polynomials. We only point
some of them relating to excited Young diagrams (EYD).

1. One of the most desirable thing to know is a combinatorial description of product
formula for double Schubert polynomials. For the special case of Grassmannians, the

product formulas of Q(x) given by Stembridge [19] or Shimozono [18] may be extended

to that of factorial Schur Q ‐functions. These product formulas, if exist, will serve for

describing further general Littlewood‐Richardson rule for double Schubert polynomials.
2. In many cases the double Schubert polynomials can be expressed using some

variants of excited Young diagram. For example of type C_{3} case, all but two elements

([\overline{1},3,2], [\overline{3}, 2, \overline{1}]) have double Schubert polynomials expressed in terms of EYD. It is
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hoped that vexillary elements of type B, C, D (cf. [3]) as well as type A vexillary
elements (cf. [15]) have this property.

3. Using a generalization of excited Young diagrams we have a candidate of dou‐

ble Grothendieck polynomials to describe equivariant K‐theory. The details will be

explained elsewhere.

4. The expression of double Schubert polynomials for w_{0} (Theorem 3.3) was found

for the first time using excited Young diagrams as described here. But after that we

get another proof not using EYD, that will be included in [8]. This expression means

a degeneracy loci formula, different from Fulton�s [5] and Kresch‐Tamvakis�s [12], and

has a Pfaffian formula.
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