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Catalan numbers and level 2 weight structures of Al(jl_)l

By

Shunsuke Tsuchioka*

Abstract

Motivated by a connection between representation theory of the degenerate affine Hecke

algebra of type A and Lie theory associated with Az(ol_)l, we determine the complete set of

representatives of the orbits for the Weyl group action on the set of weights of level 2 integrable
highest weight representations of sl, = (Az(ol_)l). Applying a crystal technique, we show that
Catalan numbers appear in their weight multiplicities.

§1. Introduction

Let p be a prime number and let F' be an algebraically closed field of characteristic p

and let (AI(DI_)l, IT = {a; }o<icp, 11V, P, PY) be the Cartan datum and let W = W(Az(,l_)l)
be the Weyl group. For each positive integral weight A € PT and n > 0, let us consider
H2, the cyclotomic degenerate affine Hecke algebra of type A [Kle, Chapter 7.3]. The

following gives a motivation in this paper.
Theorem 1.1 ([Kle, Theorem 9.5.1,Corollary 9.6.2]).  As ;[p-module, we have

D Ko(Hh-mod) @7 C = L(A).

n>0

Further, under this isomorpshim, the weight space decomposition of L(A) corresponds
to the block decomposition of {HA},>0.

Here Ky(C) stands for the Grothendieck group of an abelian category C, and we
omit the definition of the action of ;[p on the LHS (for the detail, see [Kle] and the
references therein). Thus, if two weights share a property coming from Lie theory,
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we expect that the corresponding blocks share some properties. A famous example is
Chuang-Rouquier’s slp-categorification asserts that if two weights uq, po of L(A) are in
the same W-orbit, then the corresponding blocks are derived equivalent [CR].

Motivated by this, we are interested in P(A)/W where P(A) = {p € b* | L(A), #
0} is the set of weights of L(A). P(A) is described as follows:

Proposition 1.2 ([Kac, Chapter 12.6]).  Let A € PT be positive level k over an
affine algebra. We have

PA)= || {r-nd|n=>0}
A€max(A)

where max(A) is the set of all mazimal weights of L(A) defined as follows.

max(\) = {\ € P(A) | A+ ¢ P(A)}.

Because max(A) is clearly W-invariant (i.e., max(A) = W - (max(A) NPT)), we are
interested in max(A) NPT and it is described as follows:

Proposition 1.3 ([Kac, Proposition 12.6]).  Let A € PT be positive level k over
an affine algebra. The map X — X defines a bijection from max(A) NPT onto kCapN
(A + Q). In particular, the set of dominant mazimal weights of L(A) is finite (For the
necessary notations, see [Kac]).

It is well-known that max(Ag)NP+ = {Ag}, hence, we deal with the next non-trivial
case, i.e., level 2 case. The following is the main result of this paper.

Theorem 1.4.  Let p > 2 be an integer and consider a level 2 weight A = Ao+ A,
of s/-\[p for some 0 < s < p. The set of all dominant mazimal weights max(A) NPT and
their multiplicities are described as follows.

(1) max(A)NPH={A}U{N|1<I< L%J}u{uf 11<i< ng}, where

( lag + - lag \
Al =A—lag— | +(I = Dag1 + (= 2)asio+ -+ g1 | >
+opgp1++ (1 —2)apo+ (I — 1ap_1
(l—Dag+({1—-2)as+-+a;1 \
pi=A—loo— | a1+ + (1 —2)aso+ (I - Dasy
+Hlog + - lap_
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(ii) mult A} =Dy, multpf = Dy p—s.

Here D, ,, is defined as the number of lattice paths from (0,0) to (n + m,n) with
steps (1,0) and (0,1) that does not exceed the diagonal y = =.

.(n, n) (n+m,n)

(0,0)

Note that D,, o is the usual Catalan number C,, = n+—1 (21?), hence we have mult )\? =C.

Applying the reflection principle of André [Sta, Solutions 6.20.a], we have

2n+m 2n+m m+1 2n+m
o= (M) = (010) - (U0)
n n—1 n+m+1 n

We remark that our proof of Theorem 1.4 (i) is only a calculation along with
Proposition 1.2 and Proposition 1.3, hence contains nothing new. However, our proof of
Theorem 1.4 (ii) uses a recently proved result [AKT, Theorem 9.5] on Uq(sAlp)-crystals,
which combinatorially characterize the connected component (usually called Kleshchev
bipartition in the representation theoretic context) B(Ag+ As) C B(Ag) ® B(Ag) in the
tensor product.

Acknowledgements The author is grateful to Professor Susumu Ariki for suggest-
ing the topics and he also would like to thank Professor Anatol N. Kirillov for useful

comments.

§ 2. Some auxiliary inequalities
Definition 2.1. For [ > 1, we define T; and U; as follows.
T, ={x ="z, - 1) Eleo | Ajxz > 0 and z; = x; = 1}
Ul = {t(1727 L, P 17p<l+2_2p>7p_ ]-7 e 727 1) | 1 S p S |_(l + 1)/2J}

Note that A; = (20;; — di+1,; — 0i—1,5)1<i,j<i is the I x [ Cartan matrix of type A and
p{+2-2p) i an abbreviation of p, - - - , p.
N—_——

1+2—2p

Lemma 2.2. Ifx ="z, - ,x;) €T}, then we have x, > 1 for all 1 < k < 1.
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Proof. Suppose to the contrary, that there exist some @ € T; and 1 < k <[ such
that zx = 0. We denote by ky the minimum among such k. Note that 1 < ky < [. Now
we have the following contradiction.

(A1) iy = —Thyg—1 + 2Tky — Thot1 = —Tho—1 — Thot1 < —Thy—1 < —1.

Proposition 2.3. We have Ty = Uy for all 1 > 1.

Proof. By direct calculation, it is easily checked that U; C T;. Thus, it is enough
to show by induction on [ that T; C U;. The case [ = 1,2 follows from 77 = {(1)} and
Ty = {'(1,1)}. Let us assume [ > 3. If x5 = 1, then (A;x)s = —x1 + 225 — 23 > 0 and
Lemma 2.2 implies x3 = 1. By repeating this, we have xy = --- = x; = 1. This is the
case p = 1. Now we may assume that xo = x;_1 = 2 because

(Alzc)l 22331 — T2 22—11'}2 20
(Aix)—1 =211+ 28 =2—-21_1 >0

and 3 = 1 & x;_; = 1. Note that we have A;1; = *(1,0472 1) for 1, d:eft(lm). This
means that for y = & — 1;, we have (4;y)r > 0 for all 2 < k <[ —1, i.e., we have
(Aiy)k = (Aj29)k—1 forall2 < k <l—1whereg =(za—1,--- ,7;_1—1). By Lemma
2.2 we have y € Zl>_02, thus y € T;_5. By the induction hypothesis, there exists some
1<p< |- 1)/2] such that § = #(1,2,--- ,p — 1,p{=2P) p —1,...,2,1). Therefore

we have x =y +1; = (1,2, - .p,p+ 18420 oo ,2,1). O

Definition 2.4. We say that y = ‘(y1,--- ,%) € Z' is almost non-negative iff
there exists 1 <14 <[ such that y; > -1 and y; > 0forall 1 <j#i <L

Proposition 2.5.  Suppose Ajx is almost non-negative for € € 7' and 1 > 3,
then we have the following 2 logical implications for all 1 < k <[ — 2.

(P(x,k) and Q(z, k)) = P(x,k+1) (and Q(x,k + 1))
R(x,k) = R(z,k+1) or (P(x,k+1) and Q(z, k + 1)),
where P(x, k), Q(x, k) and R(x, k) are statements defined by

def
P(x,k) = TRUE <= 231 < 2, < —1

Q. k) = TRUE <% 1 < Ip < k, (Ajz), = —1

def
R(x,k) = TRUE &= 254, < 21, < 0.
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Proof. First let us assume P(x, k) and Q(x, k). Since A;x is almost non-negative,
we have (Aj@)gr1 = —xf + 2211 — T2 > 0. Hence we have
Tpto < —Tp + 20441 = Thop1 + (T — x) < -1
This implies P(x,k 4+ 1). Now assume R(x, k). If (4;x)r+1 > 0, then we have
Tpto < =Tk + 2041 = (Tpr1 — ) + Thop1 < Thop 1
Thus, we have the implication R(x, k) = R(z,k+ 1). If (Ajx)r+1 = —1, then
T2 <1 —xp + 22501 =14 (Bp41 — 2k) + Thp1 < Tpp1 (< g <0).
Thus, we have the implication R(x, k) = (P(x,k + 1) and Q(x,k + 1)). O

Corollary 2.6. If Az is almost non-negative for x € 7! andl > 2, then x; > 0.

Proof. Suppose that 1 < —1. We need to consider the following 2 cases.
case 1. (A;x); > 0: Since xo < —2, we have R(z, 1).
case 2. (A;x); = —1: Since x9 < —1, we have P(x,1) and Q(x,1).
In either case, we have the following contradiction by Proposition 2.5.
case R(x,l —1): We have (Ajx); = —x;—1 + 227 < —2.
case P(x,l —1) and Q(z,l —1): We have (4jx); = —x;-1+22; < —1 and Q(=x,l—1).
O

Corollary 2.7.  Suppose that Ajx is almost non-negative for € € Z',x; = 0 and
I > 2 and further assume that there exists some 1 < k < I such that xp11 # 0. We
denote by ko the minimum among such k. Then we have (A;x)g, = —1.

Proof. Suppose to the contrary that we have

21 — 9 (k;o = 1)
0 S (Alar;)ko =
—Thy—1 + 2Tky — Tho+1 (1 <ky< l),
then we have zg,+1 < 0 by the choice of ky. This contradicts Corrollary 2.6. O

§3. Proof of Theorem 1.4 (i)

In the following, we denote by {fr | 1 < k < p} and {t; | 1 < k < p} the simple
root system and the simple coroot system of the underlying Lie algebra g respectively
where g = ;[p. We denote by 6 the highest root of g, i.e., 8 = 81 +-- -+ B,_1. We refer
one more necessary fact from [Kac].
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Proposition 3.1 ([Kac, Proposition 12.5.(a)]).  Let L(A) be an integrable mod-
ule of positive level k over an affine algebra. Then

PA)=W-{AePT|X<A}L

§3.1. Proof of Theorem 1.4 (i) : case s =0
By the Proposition 1.3, max(A) NP+ is bijective to 2C,¢ N Q. Note that

p—1
20N Q= {A =) B | A(tx) > 0 for all 1 <k < pand (Af) < 2}.

k=1

It is easy to see that for A = Zz;i x1 Pk, the condition of RHS is equivalent to

4

)\(tl) = 2331 — T2 Z 0
)\(tg) = —x1 + 2.732 — X3 >0

)\(tp_g) = —Tp-3 + pr_g — Tp—1 >0
)\(tp—l) = —Tp-2 + pr—l Z 0
L ()\|9) =x1 + Tp—1 S 2.

A(tg) > 0 for all 1 < k < p implies x; > 0 for all 1 < k < p because A,_; is finite
type. Therefore (A|f) < 2 implies (x1,2,—1) = (0,0),(0,1),(1,0),(1,1). We easily have
21 =04 2,1 = 0 and in this case x;, = 0 for all 1 < k < p. Therefore, we have to
consider the remaing case (z1,2,—1) = (1,1). By definition, we have “(zy, -+ ,z,_1) €
Tp-1.

If ) % A-I-ZZ;(I) qroy € max(A)NPT corresponds to A = ZZ: 218 € 2CNQ by
the map in Proposition 1.3 where g5, € Z<g, then we have z, = qr —qo forall 1 <k <p
since we have g = —(01 + -+ + Bp—1) and for all 0 < m < p we have @,, = ,,. Here
we need to consider the following 2 cases.

case 1. z; =0 for all 1 < k < p: It is equivalently saying that we have ¢ = qo for all
0 <k < p. Since A € max(A) and the basic null root of g is 6 = g+ -+ + ap_1,
we have qo = 0 by Proposition 1.2, i.e., A = A.

case 2. “(xy, -+ ,2p_1) € Tp—1: Then there exists 1 <1 < [p/2] such that

Har, - ap-1) =L+ qo, - L= 14 g0, (L +q0) P20 1 — 14 g0, , 1+ qo),
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by Proposition 2.3. Because qx < 0 for all 1 < k < p, we have ¢y = —[ — r for some
r € Z>o. Hence, we have A = A — rd where

_ (l—l)Oél—l-(l—Q)OéQ—l—"'—l—Oél_l
A=A— lOzo — +
1+ + (1= 2)ap2+ (I — Loy
It is enough to show that in this case we have r = 0. Suppose to the contrary, we

assume r > 1. Note that A\+J < A and A+ € P*. Therefore, by Proposition 3.1,
we have A+ d € P(A), which is a contradiction to A € max(A).

§3.2. Proof of Theorem 1.4 (i) : case s #0
By Proposition 1.3, max(A) NP7 is bijective to 2C, N (As + Q). Note that

p—1

206N (As + Q) =2 {X=A, + Zxkﬁk | A(tr) > 0 for all 1 <k < pand (A|F) < 2}.
k=1

It is easy to see that for A = A, + ZZ;} x1 Pk, the condition of RHS is equivalent to

4

)\(tl) = 2331 — T2 >0
)\(tg) = —x1 + 2.732 — X3 Z 0

A(ts—l) = —Ts 2+2x5 1 — Ty >0
AMts) =1—25 1+ 225 — 2511 >0
A(ts-l-l) = —Zs + 2Ts41 — Tsy2 >

)\(tp_g) = —Tp-3 + pr_g — Tp—1 Z 0
)\(tp—l) = —Tp-2 + pr—l Z 0
((Al0) =1+z1 +2p1 < 2.

If p = 2, then the above is

(AO) =1+2z, <2.

Thus we have x; = 0, which implies Theorem 1.4.

Therefore we may assume p > 3. Note that A, _jx is almost non-negative where
x ="'(x1, -+ ,xp_1) € ZP~!, hence x; > 0 by Corollary 2.6, and x,_1 > 0 by symmetry.
Therefore, there are 3 possible pairs (z1,2,—1) = (0,0), (1,0), (0, 1)



152 SHUNSUKE TSUCHIOKA

It is easy to see that, if (1, zp—1) = (0,0), then we have z; = 0 for all 1 <17 < p.
Now let us assume that (z1,2,-1) = (0,1). In this case, we have

Ty = =25 =0,2541 # 0, —T51 + 225 — T541 = —1

by Corollary 2.7. Thus we have 51 = zp—1 = 1, i.e., “(Xs41, -+ ,p—1) € Tp—s—1. This

contributes to {A\j | 1 <1 <[22 [} as in the proof of s = 0. Apply the same argument

for (x1,2;) = (1,0), we see that this contributes to {p | 1 <1< [5]}.

§4. Proof of Theorem 1.4 (ii)
We apply crystal theory to prove Theorem 1.4 (ii), i.e., we show the following.
Dis = #{A®p € B(Ao) ® B(As) | A® p € B(Ag + Ag), wt(A® p) = Aj}H,
Dip—s = #{A @ p € B(Ao) ® B(As) [ A® p € B(Ag + As), wt(A ® p) = 1}

Here B(Ag + A;) stands for the naturally embedded one in B(Ag) ® B(Ay).
We adapt Misra-Miwa realization [MM] for Uq(glp)—crystal B(Ay,) for 0 <m < p.
We need not know the details of this realization such as the definition of Kashiwara

operator. All we need to know is the following basic things and a recently proved
result [AKT, Theorem 9.5].

e The underlying set of B(A,,) is the set of all p-restricted partitions.

e For each A € B(A,,) and each box x = (7,j) € A (this means x is the box inside
A located at i-th row and j-th column), x has the quantity Res(z) = m — i+ j
(mod pZ)(€ Z/pZ), called the residue of z.

e For each A\ € B(A,,),

wt(z) = A — > #{x € | Res(z) =i} - .

€L/ pZ

Theorem 4.1 ([AKT, Theorem 9.5]).  Let A € B(Ag),pu € B(Ay,). Then \Qu €
B(Ap 4+ Ay if and only if 1., (base(X)) D roof (u).

Here base, 7,,, [AKT] and roof [KLMW] are explicit combinatorially defined maps

base, roof : {p-restricted partition} — {p-core partition}

Tm : {p-core partition} — {p-core partition}

and \ Dy means that \ contains p’ as Young diagrams. We need not know the
precise definitions of maps base, roof and 7,,, however we need the following minimum.
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e For a p-core partition A\, we have A = base(\) = ceil(A) [AKT, Definition 2.5,2.8].

e For a p-core partition A = (A1,--+, ), we have 7,,(\) = (v1,-++ ,Vgtm) [AKT,
Proposition 9.4] where

Ai +(p—m) (I1<i<m)
V; = min{)\i + (p — m) i— m} (m <@ < k)
min{p — m, \i—m} (k <i<k+m).

In the following we show
=#{A@p e B(Ao) ® B(As) | A® p € B(Ao + As), wt(A® p) = Aj}

Let A € B(Ag), p € B(As) and further assume that we have wt(A®@u) = wt(\)+wt(u) =
A;. Comparing wt(A® p) with A7, it is easily seen that A and p exactly divide { x (14 s)
rectangle as follows.

L [4s5—1
RN S L - - ®
Pt L) oo it
(0,0)

Note that 214+s—1<pandp—I+1>1+s—1since 1 <1< |Z52]. Especially, A and
i are both p-core partitions. It is enough to show the following claim.

Claim 4.2. A®pu € B(Ao+ As) if and only if the path which divides X and p is
a lattice path from (0,0) to (I + s,1) with steps (0,1) and (1,0) that does not exceed the
diagonal y = = (we say such a lattice path a good path).

Proof. By Theorem 4.1 and the above remarks, A ® u € B(Ag + As) if and only
if 73(\) D p. First, let us assume the path is not a good path. It is equivalent to
assume that there exists some 1 < 7g < [ such that \;;, = [ — 9 and automatically
Wstio =l — 19 + 1. Thus, we have

min{)‘s-l—io + (p - 8)7 )‘io} < )‘io < Ms+ig

where we put Asy;, = 0 if s+ ig > [(A). Hence, we have 75(\) 2 p.
Conversely, let us assume that the path is a good path. In this case, we have
Ts(A) 2 w as follows.
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For 1 <i < s, we have \; + (p — s) > p; since p — s > 1 > p;.

For s+ 1 <i <[, we have A\; + (p — s) > | > p; since p — s > | > p;. Because the
path is a good path, we have A\;_s > p;. Thus, we have min{\;_s, \i +(p—9)} > p;.

For [ +1 < i <I(u). Because the path is a good path, we have A\;_s > p;. Thus,
we have min{\;_s,p — s} > u; since we have p — s > [ > p;.

O

The proof of mult ij = Dy ;s is similar.

8§5. A remark

Let X be an affine Dynkin diagram belongs to an infinite series except the series
ctV (ie., X = A;}), AP Aéi)_l, szl),Dﬁll), Dfizl) and consider the corresponding affine

2n

Kac-Moody Lie algebra g = g(X) and its level 2 weight A € PT. By our computer

calculation, it seems that for each b € max(A) NPT, mult(b) = D, or mult(b) = (z)

for some x = x(b) and y = y(b). But our motivation comes from a connection between
Lie theory and representation theory of some algebras, we shall stop here.
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