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Catalan numbers and level 2 weight structures of A_{p-1}^{(1)}
By

Shunsuke Tsuchioka*

Abstract

Motivated by a connection between representation theory of the degenerate affine Hecke

algebra of type A and Lie theory associated with A_{p-1}^{(1)} ,
we determine the complete set of

representatives of the orbits for the Weyl group action on the set of weights of level 2 integrable
highest weight representations of \hat{\mathfrak{s}\mathfrak{l}}_{p}=\mathrm{g}(A_{p-1}^{(1)}) . Applying a crystal technique, we show that

Catalan numbers appear in their weight multiplicities.

§1. Introduction

Let p be a prime number and let F be an algebraically closed field of characteristic p

and let (A_{p-1}^{(1)},  $\Pi$=\{$\alpha$_{i}\}_{0\leq i<p}, $\Pi$^{\vee}, \mathcal{P}, \mathcal{P}^{\vee}) be the Cartan datum and let W=W(A_{p-1}^{(1)})
be the Weyl group. For each positive integral weight  $\Lambda$\in \mathcal{P}^{+} and n\geq 0 ,

let us consider

\mathcal{H}_{n}^{ $\Lambda$} ,
the cyclotomic degenerate affine Hecke algebra of type \mathrm{A} [Kle, Chapter 7.3]. The

following gives a motivation in this paper.

Theorem 1.1 ([Kle, Theorem 9.5.1,Corollary 9.6.2]). As \hat{\mathfrak{s}[}_{p} ‐module, we have

\displaystyle \bigoplus_{n\geq 0}\mathrm{K}_{0}(\mathcal{H}_{n}^{ $\Lambda$}-mod)\otimes_{\mathbb{Z}}\mathbb{C}\cong L( $\Lambda$) .

Further, under this isomorpshim, the weight space decomposition of L( $\Lambda$) corresponds
to the block decomposition of \{\mathcal{H}_{n}^{ $\Lambda$}\}_{n\geq 0}.

Here \mathrm{K}() stands for the Grothendieck group of an abelian category C ,
and we

omit the definition of the action of \hat{\mathfrak{s}[}_{p} on the LHS (for the detail, see [Kle] and the

references therein). Thus, if two weights share a property coming from Lie theory,
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we expect that the corresponding blocks share some properties. A famous example is

Chuang‐Rouquier�s \mathfrak{s}\mathfrak{l}_{2} ‐categorification asserts that if two weights $\mu$_{1}, $\mu$_{2} of L( $\Lambda$) are in

the same W‐orbit, then the corresponding blocks are derived equivalent [CR].
Motivated by this, we are interested in P( $\Lambda$)/W where  P( $\Lambda$)=\{ $\mu$\in \mathfrak{h}^{*}|L( $\Lambda$)_{ $\mu$}\neq

 0\} is the set of weights of L( $\Lambda$) . P( $\Lambda$) is described as follows:

Proposition 1.2 ([Kac, Chapter 12.6]). Let  $\Lambda$\in \mathcal{P}^{+} be positive level k over an

affine algebra. We have

P( $\Lambda$)= \sqcup \{ $\lambda$-n $\delta$|n\geq 0\}
 $\lambda$\displaystyle \in\max( $\Lambda$)

where \displaystyle \max( $\Lambda$) is the set of all maximal weights of L( $\Lambda$) defined as follows.

\displaystyle \max( $\lambda$)=\{ $\lambda$\in P( $\Lambda$)| $\lambda$+ $\delta$\not\in P( $\Lambda$)\}.

Because \displaystyle \max( $\Lambda$) is clearly W‐invariant (i.e., \displaystyle \max( $\Lambda$)=W\cdot(\max( $\Lambda$)\cap \mathcal{P}^{+}) ), we are

interested in \displaystyle \max( $\Lambda$)\cap \mathcal{P}^{+} and it is described as follows:

Proposition 1.3 ([Kac, Proposition 12.6]). Let  $\Lambda$\in \mathcal{P}^{+} be positive level k over

an affine algebra. The map  $\lambda$\mapsto\overline{ $\lambda$} defines a bijection from \displaystyle \max( $\Lambda$)\cap \mathcal{P}^{+} onto  kC_{af}\cap
(\overline{ $\Lambda$}+\mathrm{Q}) . In particular, the set of dominant maximal weights of L( $\Lambda$) is finite (For the

necessary notations, see [Kac]).

It is well‐known that \displaystyle \max($\Lambda$_{0})\cap \mathcal{P}^{+}=\{$\Lambda$_{0}\} , hence, we deal with the next non‐trivial

case, i.e., level 2 case. The following is the main result of this paper.

Theorem 1.4. Let p\geq 2 be an integer and consider a level 2 weight  $\Lambda$=$\Lambda$_{0}+$\Lambda$_{S}

of \hat{\mathfrak{s}[}_{p} for some 0\leq s<p . The set of all dominant maximal weights \displaystyle \max( $\Lambda$)\cap \mathcal{P}^{+} and

their multiplicities are described as follows.

(i) \displaystyle \max( $\Lambda$)\cap \mathcal{P}^{+}=\{ $\Lambda$\}\sqcup\{$\lambda$_{l}^{S}|1\leq l\leq \mathrm{L}\frac{p-s}{2}\rfloor\}\sqcup\{$\mu$_{l}^{S}|1\leq l\leq \mathrm{L}\frac{s}{2}\rfloor\} , where

\left\{\begin{array}{l}
$\lambda$_{l}^{s}= $\Lambda$-l$\alpha$_{0}-(_{+$\alpha$_{p-l+1}+\cdot\cdot+(l-2)$\alpha$_{p-2}+(l-1)$\alpha$_{p-1}}+(l-1)$\alpha$_{s+1}.+l($\alpha$_{1}l-+2)$\alpha$_{s+2}l$\alpha$_{S}+\cdots+$\alpha$_{l+s-1}) ,\\
$\mu$_{l}^{s}= $\Lambda$-l$\alpha$_{0}-(+$\alpha$_{s-l+1}(+_{+l$\alpha$_{S}+\cdot l$\alpha$_{p-1}}+(l-.2).$\alpha$_{s-2}.+(l-1)$\alpha$_{s-1}) .
\end{array}\right.
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(ii) mult $\lambda$_{l}^{S}=\mathrm{D}_{l,s} , mult $\mu$_{l}^{s}=\mathrm{D}_{l,p-s}.

Here \mathrm{D}_{n,m} is defined as the number of lattice paths from (0,0) to (n+m, n) with

steps ( 1, 0) and (0,1) that does not exceed the diagonal y=x.

(\mathrm{n} + \mathrm{m},n)

(0,0)

Note that \mathrm{D}_{n,0} is the usual Catalan number C_{n}=\displaystyle \frac{1}{n+1}\left(\begin{array}{l}
2n\\
n
\end{array}\right) ,
hence we have mult $\lambda$_{l}^{0}=C_{l}.

Applying the reflection principle of André [Sta, Solutions 6. 20.\mathrm{a}], we have

\displaystyle \mathrm{D}_{n,m}=\left(\begin{array}{l}
2n+m\\
n
\end{array}\right)-\left(\begin{array}{l}
2n+m\\
-n1
\end{array}\right)=\frac{m+1}{n+m+1}\left(\begin{array}{l}
2n+m\\
n
\end{array}\right).
We remark that our proof of Theorem 1.4 (i) is only a calculation along with

Proposition 1.2 and Proposition 1.3, hence contains nothing new. However, our proof of

Theorem 1.4 (ii) uses a recently proved result [AKT, Theorem 9.5] on U_{q}(\hat{sl}_{p}) ‐crystals,
which combinatorially characterize the connected component (usually called Kleshchev

bipartition in the representation theoretic context) B($\Lambda$_{0}+$\Lambda$_{s})\subseteq B($\Lambda$_{0})\otimes B($\Lambda$_{S}) in the

tensor product.

Acknowledgements The author is grateful to Professor Susumu Ariki for suggest‐

ing the topics and he also would like to thank Professor Anatol N. Kirillov for useful

comments.

§2. Some auxiliary inequalities

Definition 2.1. For l\geq 1 ,
we define T_{l} and U_{l} as follows.

\left\{\begin{array}{l}
T_{l}=\{x={}^{t}(x_{1}, \cdots, x_{l})\in \mathbb{Z}_{\geq 0}^{l}|A_{l}x\geq 0 \mathrm{a}\mathrm{n}\mathrm{d} x_{1}=x_{l}=1\}\\
U_{l}=\{{}^{t}(1,2, \cdots,p-1,p^{\langle l+2-2p\rangle},p-1, \cdots, 2,1)|1\leq p\leq\lfloor(l+1)/2\rfloor\}.
\end{array}\right.
i,j\leq l is the l\times l Cartan matrix of type A and

l+2-2p

Lemma 2.2. If x={}^{t}(x_{1}, \cdots, x_{l}) \in T_{l} ,
then we have x_{k}\geq 1 for all 1\leq k\leq l.
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Proof. Suppose to the contrary, that there exist some x\in T_{l} and 1\leq k\leq l such

that x_{k}=0 . We denote by k_{0} the minimum among such k . Note that 1<k_{0}<l . Now

we have the following contradiction.

(A_{l}x)_{k_{0}}=-x_{k_{0}-1}+2x_{k_{0}}-x_{k_{0}+1}=-x_{k_{0}-1-X_{k_{0}+1}}\leq-x_{k_{0}-1}\leq-1.

\square 

Proposition 2.3. We have T_{l}=U_{l} for all l\geq 1.

Proof. By direct calculation, it is easily checked that U_{l}\subseteq T_{l} . Thus, it is enough
to show by induction on l that T_{l}\subseteq U_{l} . The case l=1

,
2 follows from T_{1}=\{(1)\} and

T_{2}=\{{}^{t}(1,1 Let us assume l\geq 3 . If x_{2}=1 ,
then (A_{l}x)_{2}=-x_{1}+2x_{2}-x_{3}\geq 0 and

Lemma 2.2 implies X3=1 . By repeating this, we have x_{1}=\cdots=x_{l}=1 . This is the

case p=1 . Now we may assume that x_{2}=x_{l-1}=2 because

\left\{\begin{array}{l}
(A_{l}x)_{1}=2x_{1}-x_{2}=2-x_{2}\geq 0\\
(A_{l}x)_{l-1}=-x_{l-1}+2x_{l}=2-x_{l-1}\geq 0
\end{array}\right.
and x_{2}=1\Leftrightarrow x_{l-1}=1 . Note that we have A_{l}1_{l}={}^{t}(1,0^{\langle l-2\rangle}, 1) for 1_{l}\mathrm{d}\mathrm{e}\mathrm{f}={}^{t}(1^{\langle l\rangle} ). This

means that for y=x-1_{l} ,
we have (A_{l}y)_{k}\geq 0 for all 2\leq k\leq l-1 , i.e., we have

(A_{l}y)_{k}= (A‐2ỹ)‐l for all 2\leq k\leq l-1 where \tilde{y}={}^{t}(x_{2}-1, \cdots, x_{l-1}-1) . By Lemma

2.2 we have ỹ \in \mathbb{Z}_{\geq 0}^{l-2} ,
thus ỹ \in T_{l-2} . By the induction hypothesis, there exists some

 1\leq p\leq\lfloor(l-1)/2\rfloor such that \ovalbox{\tt\small REJECT}={}^{t}(1,2, \cdots, p-1,p^{\langle l-2p\rangle},p-1, \cdots, 2,1) . Therefore

we have x=y+1_{l}={}^{t}(1,2, \cdots,p,p+1^{\langle l-2p\rangle},p, \cdots, 2,1) . \square 

Definition 2.4. We say that y={}^{t}(y_{1}, \cdots, y_{l}) \in \mathbb{Z}^{l} is almost non‐negative iff

there exists 1\leq i\leq l such that y_{i}\geq-1 and y_{j}\geq 0 for all1 \leq j\neq i\leq l.

Proposition 2.5. Suppose A_{l}x is almost non‐negative forx\in \mathbb{Z}^{l} and l\geq 3,
then we have the following 2 logical implications for all 1\leq k\leq l-2.

(P(x, k) and Q(x, k))\Rightarrow P(x, k+1) ( and Q(x, k+1))

R(x, k)\Rightarrow R(x, k+1) or (P(x, k+1) and Q(x, k+1)) ,

where P(x, k) , Q(x, k) and R(x, k) are statements defined by

def

P(x, k)= TRUE \Leftrightarrow x_{k+1}\leq X_{k}\leq-1

Q(x, k)= TRUE \Leftrightarrow^{\mathrm{d}\mathrm{e}\mathrm{f}}1\leq\exists p\leq k, (A_{l}x)_{p}=-1
def

R(x, k)= TRUE \Leftrightarrow x_{k+1}<x_{k}\leq 0.
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Proof. First let us assume P(x, k) and Q(x, k) . Since A_{l}x is almost non‐negative,
we have (A_{l}x)_{k+1}=-x_{k}+2x_{k+1}-x_{k+2}\geq 0 . Hence we have

x_{k+2}\leq-x_{k}+2x_{k+1}=x_{k+1}+(x_{k+1}-x_{k})\leq-1.

This implies P(x, k+1) . Now assume R(x, k) . If (A_{l}x)_{k+1}\geq 0 ,
then we have

x_{k+2}\leq-x_{k}+2x_{k+1}=(x_{k+1}-x_{k})+x_{k+1}<x_{k+1}.

Thus, we have the implication R(x, k)\Rightarrow R(x, k+1) . If (A_{l}x)_{k+1}=-1 ,
then

x_{k+2}\leq 1-x_{k}+2x_{k+1}=1+(x_{k+1}-x_{k})+x_{k+1}\leq x_{k+1}(<x_{k}\leq 0) .

Thus, we have the implication R(x, k)\Rightarrow(P(x, k+1) and Q(x, k+1) ). \square 

Corollary 2.6. If A_{l}x is almost non‐negative for x\in \mathbb{Z}^{l} and l\geq 2 ,
then x_{1}\geq 0.

Proof. Suppose that x_{1}\leq-1 . We need to consider the following 2 cases.

case 1. (A_{l}x)_{1}\geq 0 : Since x_{2}\leq-2 ,
we have R(x, 1) .

case 2. (A_{l}x)_{1}=-1 : Since x_{2}\leq-1 ,
we have P(x, 1) and Q(x, 1) .

In either case, we have the following contradiction by Proposition 2.5.

case R(x, l-1) : We have (A_{l}x)_{l}=-x_{l-1}+2x_{l}\leq-2.

case P(x, l-1) and Q(x, l-1) : We have (A_{l}x)_{l}=-x_{l-1}+2x_{l}\leq-1 and Q(x, l-1) .

\square 

Corollary 2.7. Suppose that A_{l}x is almost non‐negative for x\in \mathbb{Z}^{l}, x_{1}=0 and

l\geq 2 and further assume that there exists some 1\leq k<l such that x_{k+1}\neq 0 . We

denote by k_{0} the minimum among such k . Then we have (A_{l}x)_{k_{0}}=-1.

Proof. Suppose to the contrary that we have

0\leq(A_{l}x)_{k_{0}}=\left\{\begin{array}{ll}
2x_{1}-x_{2} & (k_{0}=1)\\
-x_{k_{0}-1}+2x_{k_{0}}-x_{k_{0}+1} & (1<k_{0}<l) ,
\end{array}\right.
then we have x_{k_{0}+1}<0 by the choice of k_{0} . This contradicts Corrollary 2.6. \square 

§3. Proof of Theorem 1.4 (i)

In the following, we denote by \{$\beta$_{k}|1\leq k<p\} and \{t_{k}|1\leq k<p\} the simple
root system and the simple coroot system of the underlying Lie algebra \overline{\mathfrak{g}} respectively
where \mathfrak{g}=\hat{\mathfrak{s}[}_{p} . We denote by  $\theta$ the highest root of \overline{\mathfrak{g}} , i.e.,  $\theta$=$\beta$_{1}+\cdots+$\beta$_{p-1} . We refer

one more necessary fact from [Kac].
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Proposition 3.1 ( [Kac, Proposition 12.5.(\mathrm{a})]) . Let L( $\Lambda$) be an integrable mod‐

ule of positive level k over an affine algebra. Then

\mathcal{P}( $\Lambda$)=W\cdot\{ $\lambda$\in \mathcal{P}^{+}| $\lambda$\leq $\Lambda$\}.

§3.1. Proof of Theorem 1.4 (i) : case s=0

By the Proposition 1.3, \displaystyle \max( $\Lambda$)\cap \mathcal{P}^{+} is bijective to 2C_{\mathrm{a}\mathrm{f}}\cap \mathrm{Q} . Note that

 2C_{\mathrm{a}\mathrm{f}}\cap \mathrm{Q}\cong {  $\lambda$=\displaystyle \sum_{k=1}^{p-1}x_{k}$\beta$_{k}| $\lambda$(t_{k})\geq 0 for all1 \leq k<p and ( $\lambda$| $\theta$)\leq 2 }.

It is easy to see that for  $\lambda$=\displaystyle \sum_{k=1}^{p-1}x_{k}$\beta$_{k} ,
the condition of RHS is equivalent to

\left\{\begin{array}{ll}
 $\lambda$(t_{1})=2x_{1}-x_{2} & \geq 0\\
 $\lambda$(t_{2})=-x_{1}+2x_{2}-x_{3} & \geq 0\\
 $\lambda$(t_{p-2})=-x_{p-3}+2x_{p-2}-x_{p-1} & \geq 0\\
 $\lambda$(t_{p-1})=-x_{p-2}+2x_{p-1} & \geq 0\\
( $\lambda$| $\theta$)=x_{1}+x_{p-1} & \leq 2.
\end{array}\right.
 $\lambda$(t_{k})\geq 0 for all1 \leq k<p implies x_{k}\geq 0 for all1 \leq k<p because A_{p-1} is finite

type. Therefore ( $\lambda$| $\theta$)\leq 2 implies (x_{1}, x_{p-1})=(0,0) , (0,1) , ( 1, 0) , (1, 1). We easily have

x_{1}=0\Leftrightarrow x_{p-1}=0 and in this case x_{k}=0 for all 1\leq k<p . Therefore, we have to

consider the remaing case (x_{1}, x_{p-1})=(1,1) . By definition, we have {}^{t}(x_{1}, \cdots, x_{p-1}) \in

 T_{p-1}.
If $\lambda$^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}} $\Lambda$+\displaystyle \sum_{k=0}^{p-1}q_{k}$\alpha$_{k}\in\max( $\Lambda$)\cap \mathcal{P}^{+} corresponds to \displaystyle \overline{ $\lambda$}=\sum_{k=1}^{p-1}x_{k}$\beta$_{k}\in 2C_{\mathrm{a}\mathrm{f}}\cap\overline{\mathcal{Q}} by

the map in Proposition 1.3 where q_{k}\in \mathbb{Z}_{\leq 0} ,
then we have x_{k}=q_{k}-q_{0} for all1 \leq k<p

since we have \overline{$\alpha$_{0}}=-($\beta$_{1}+\cdots+$\beta$_{p-1}) and for all 0<m<p we have \overline{$\alpha$_{m}}=$\beta$_{m} . Here

we need to consider the following 2 cases.

case 1. x_{k}=0 for all 1\leq k<p : It is equivalently saying that we have q_{k}=q_{0} for all

0\leq k<p . Since  $\Lambda$\displaystyle \in\max( $\Lambda$) and the basic null root of \mathfrak{g} is  $\delta$=$\alpha$_{0}+\cdots+$\alpha$_{p-1},
we have q_{0}=0 by Proposition 1.2, i.e.,  $\lambda$= $\Lambda$.

case 2. {}^{t}(x_{1}, \cdots, x_{p-1}) \in T_{p-1} : Then there exists  1\leq l\leq\lfloor p/2\rfloor such that

{}^{t}(q_{1}, \cdots, q_{p-1})={}^{t}(1+q_{0}, \cdots, l-1+q_{0}, (l+q_{0})^{\langle p+1-2l\rangle}, l-1+q_{0}, \cdots, 1+q_{0}) ,
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by Proposition 2.3. Because q_{k}\leq 0 for all1 \leq k<p ,
we have q_{0}=-l-r for some

r\in \mathbb{Z}_{\geq 0} . Hence, we have  $\lambda$= $\lambda$-r $\delta$ where

\overline{ $\lambda$}= $\Lambda$-l$\alpha$_{0}-\left(\begin{array}{llllll}
 & (l- & 1)$\alpha$_{1}+(l- & +2)$\alpha$_{2}+ & \cdots & +$\alpha$_{l-1}\\
$\alpha$_{p+1-l}+ & \cdots & +(l- & 2)$\alpha$_{p-2}+(l- &  & 1)$\alpha$_{p-1}
\end{array}\right) .

It is enough to show that in this case we have r=0 . Suppose to the contrary, we

assume r\geq 1 . Note that  $\lambda$+ $\delta$\leq $\Lambda$ and  $\lambda$+ $\delta$\in \mathcal{P}^{+} . Therefore, by Proposition 3.1,
we have  $\lambda$+ $\delta$\in \mathcal{P}( $\Lambda$) ,

which is a contradiction to  $\lambda$\displaystyle \in\max( $\Lambda$) .

§3.2. Proof of Theorem 1.4 (i) : case s\neq 0

By Proposition 1.3, \displaystyle \max( $\Lambda$)\cap \mathcal{P}^{+} is bijective to 2C_{\mathrm{a}\mathrm{f}}\cap(\overline{$\Lambda$_{S}}+\mathrm{Q}) . Note that

 2C_{\mathrm{a}\mathrm{f}}\cap(\overline{$\Lambda$_{S}}+\mathrm{Q})\cong {  $\lambda$=\displaystyle \overline{$\Lambda$_{S}}+\sum_{k=1}^{p-1}x_{k}$\beta$_{k}| $\lambda$(t_{k})\geq 0 for all1 \leq k<p and ( $\lambda$| $\theta$)\leq 2 }.

It is easy to see that for  $\lambda$=\displaystyle \overline{$\Lambda$_{S}}+\sum_{k=1}^{p-1}x_{k}$\beta$_{k} ,
the condition of RHS is equivalent to

\ovalbox{\tt\small REJECT}_{( $\lambda$| $\theta$)=1+x_{1}+x_{p-1}}^{ $\lambda$(t_{1})=2x_{1}-x_{2}} $\lambda$(t_{p-1})=-x_{p-2}+2x_{p-1} $\lambda$(t_{p-2})^{=}2 $\lambda$(t_{S+1})-x_{s}+2x_{s+1-X_{S+2}} $\lambda$(t_{S})-x_{s-1} $\lambda$(t_{s-1})2 $\lambda$(t)=-x+2x-x_{3} \leq 2\geq 0\geq 0\geq 0\geq 0\geq 0\geq 0\geq 0.
If p=2 ,

then the above is

\left\{\begin{array}{l}
 $\lambda$(t_{1})=1+2x_{1}\geq 0\\
( $\lambda$| $\theta$)=1+2x_{1}\leq 2.
\end{array}\right.
Thus we have x_{1}=0 ,

which implies Theorem 1.4.

Therefore we may assume p\geq 3 . Note that A_{p-1}x is almost non‐negative where

x={}^{t}(x_{1}, \cdots, x_{p-1})\in \mathbb{Z}^{p-1} ,
hence x_{1}\geq 0 by Corollary 2.6, and x_{p-1}\geq 0 by symmetry.

Therefore, there are 3 possible pairs (x_{1}, x_{p-1})=(0,0) , ( 1, 0) , (0,1)



152 Shunsuke Tsuchioka

It is easy to see that, if (x_{1}, x_{p-1})=(0,0) ,
then we have x_{i}=0 for all 1\leq i<p.

Now let us assume that (x_{1}, x_{p-1})=(0,1) . In this case, we have

x_{1}=\cdots=x_{s}=0, x_{s+1}\neq 0, -x_{s-1}+2x_{S}-x_{s+1}=-1

by Corollary 2.7. Thus we have x_{s+1}=x_{p-1}=1 , i.e., {}^{t}(x_{s+1}, \cdots, x_{p-1}) \in T_{p-s-1} . This

contributes to \displaystyle \{$\lambda$_{l}^{s}|1\leq l\leq \mathrm{L}\frac{p-s}{2}\rfloor\} as in the proof of s=0 . Apply the same argument
for (x_{1}, x_{l})=(1,0) ,

we see that this contributes to \displaystyle \{$\mu$_{l}^{s}|1\leq l\leq \mathrm{L}\frac{s}{2}\rfloor\}.

§4. Proof of Theorem 1.4 (ii)

We apply crystal theory to prove Theorem 1.4 (ii), i.e., we show the following.

\left\{\begin{array}{l}
\mathrm{D}_{l,s}=\#\{ $\lambda$\otimes $\mu$\in B($\Lambda$_{0})\otimes B($\Lambda$_{S})| $\lambda$\otimes $\mu$\in B($\Lambda$_{0}+$\Lambda$_{s}), \mathrm{w}\mathrm{t}( $\lambda$\otimes $\mu$)=$\lambda$_{l}^{S}\},\\
\mathrm{D}_{l,p-s}=\#\{ $\lambda$\otimes $\mu$\in B($\Lambda$_{0})\otimes B($\Lambda$_{s})| $\lambda$\otimes $\mu$\in B($\Lambda$_{0}+$\Lambda$_{s}), \mathrm{w}\mathrm{t}( $\lambda$\otimes $\mu$)=$\mu$_{l}^{S}\}.
\end{array}\right.
Here B($\Lambda$_{0}+$\Lambda$_{S}) stands for the naturally embedded one in B($\Lambda$_{0})\otimes B($\Lambda$_{s}) .

We adapt Misra‐Miwa realization [MM] for U_{q}(\hat{sl}_{p}) ‐crystal B($\Lambda$_{m}) for 0\leq m<p.
We need not know the details of this realization such as the definition of Kashiwara

operator. All we need to know is the following basic things and a recently proved
result [AKT, Theorem 9.5].

\bullet The underlying set of  B($\Lambda$_{m}) is the set of all p‐restricted partitions.

\bullet For each  $\lambda$\in B($\Lambda$_{m}) and each box  x=(i, j)\in $\lambda$ (this means  x is the box inside

 $\lambda$ located at i‐th row and j‐th column),  x has the quantity {\rm Res}(x)=m-i+j
(\mathrm{m}\mathrm{o}\mathrm{d} p\mathbb{Z})(\in \mathbb{Z}/p\mathbb{Z}) ,

called the residue of x.

\bullet For each  $\lambda$\in B($\Lambda$_{m}) ,

wt(x) =$\Lambda$_{m}-\displaystyle \sum_{i\in \mathbb{Z}/p\mathbb{Z}}\#\{x\in $\lambda$|{\rm Res}(x)=i\}\cdot$\alpha$_{i}.
Theorem 4.1 ([AKT, Theorem 9.5]). Let  $\lambda$\in B($\Lambda$_{0}) ,  $\mu$\in B($\Lambda$_{m}) . Then  $\lambda$\otimes $\mu$\in

 B($\Lambda$_{0}+$\Lambda$_{m}) if and only if $\tau$_{m}(\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e}( $\lambda$))\supseteq roof() .

Here base, $\tau$_{m} [AKT] and roof [KLMW] are explicit combinatorially defined maps

\left\{\begin{array}{l}
\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e}, \mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f} : \{p- \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\} \rightarrow\{p- \mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e} \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\}\\
$\tau$_{m}:\{p- \mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e} \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\} \rightarrow\{p- \mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e} \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\}
\end{array}\right.
and $\lambda$'\supseteq$\mu$' means that $\lambda$' contains $\mu$' as Young diagrams. We need not know the

precise definitions of maps base, roof and $\tau$_{m} ,
however we need the following minimum.
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\bullet For a  p‐core partition  $\lambda$
,

we have  $\lambda$=\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e}( $\lambda$)=\mathrm{c}\mathrm{e}\mathrm{i}\mathrm{l}( $\lambda$) [AKT, Definition 2.5,2.8].

\bullet For a  p‐core partition  $\lambda$=($\lambda$_{1}, \cdots, $\lambda$_{k}) ,
we have $\tau$_{m}( $\lambda$)=(v_{1}, \cdots, v_{k+m}) [AKT,

Proposition 9.4] where

v_{i}=\left\{\begin{array}{ll}
$\lambda$_{i}+(p-m) & (1\leq i\leq m)\\
\min\{$\lambda$_{i}+(p-m), $\lambda$_{i-m}\} & (m<i\leq k)\\
\min\{p-m, $\lambda$_{i-m}\} & (k<i\leq k+m) .
\end{array}\right.
In the following we show

\mathrm{D}_{l,s}=\#\{ $\lambda$\otimes $\mu$\in B($\Lambda$_{0})\otimes B($\Lambda$_{S})| $\lambda$\otimes $\mu$\in B($\Lambda$_{0}+$\Lambda$_{s}), \mathrm{w}\mathrm{t}( $\lambda$\otimes $\mu$)=$\lambda$_{l}^{S}\}.

Let  $\lambda$\in B($\Lambda$_{0}) ,  $\mu$\in B($\Lambda$_{S}) and further assume that we have \mathrm{w}\mathrm{t}( $\lambda$\otimes $\mu$)=\mathrm{w}\mathrm{t}( $\lambda$)+\mathrm{w}\mathrm{t}( $\mu$)=
$\lambda$_{l}^{s} . Comparing \mathrm{w}\mathrm{t}( $\lambda$\otimes $\mu$) with $\lambda$_{l}^{s} ,

it is easily seen that  $\lambda$ and  $\mu$ exactly divide  l\times(l+s)
rectangle as follows.

(1 + \mathrm{s},1)
1 + \mathrm{s} 1

—

(0,0)

Note that 2l+s-1<p and p-l+1>l+s-1 since  1\displaystyle \leq l\leq \mathrm{L}\frac{p-s}{2}\rfloor . Especially,  $\lambda$ and

 $\mu$ are both  p‐core partitions. It is enough to show the following claim.

Claim 4.2.  $\lambda$\otimes $\mu$\in B($\Lambda$_{0}+$\Lambda$_{S}) if and only if the path which divides  $\lambda$ and  $\mu$ is

a lattice path from (0,0) to (l+s, l) with steps (0,1) and ( 1, 0) that does not exceed the

diagonal y=x (we say such a lattice path a good path).

Proof. By Theorem 4.1 and the above remarks,  $\lambda$\otimes $\mu$\in B($\Lambda$_{0}+$\Lambda$_{S}) if and only
if  $\tau$_{s}( $\lambda$)\supseteq $\mu$ . First, let us assume the path is not a good path. It is equivalent to

assume that there exists some  1\leq i_{0}\leq l such that $\lambda$_{i_{0}}=l-i_{0} and automatically

$\mu$_{s+i_{0}}=l-i_{0}+1 . Thus, we have

\displaystyle \min\{$\lambda$_{s+i_{0}}+(p-s), $\lambda$_{i_{0}}\}\leq$\lambda$_{i_{0}}<$\mu$_{s+i_{0}}

where we put $\lambda$_{s+i_{0}}=0 if s+i_{0}>l( $\lambda$) . Hence, we have $\tau$_{S}( $\lambda$)\supseteqq $\mu$.
Conversely, let us assume that the path is a good path. In this case, we have

 $\tau$_{S}( $\lambda$)\supseteq $\mu$ as follows.
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\bullet For  1\leq i\leq s ,
we have $\lambda$_{i}+(p-s)\geq$\mu$_{i} since p-s>l\geq$\mu$_{i}.

\bullet For  s+1\leq i<l ,
we have $\lambda$_{i}+(p-s)>l\geq$\mu$_{i} since p-s>l\geq$\mu$_{i} . Because the

path is a good path, we have $\lambda$_{i-s}>$\mu$_{i} . Thus, we have \displaystyle \min\{$\lambda$_{i-s}, $\lambda$_{i}+(p-s)\}\geq$\mu$_{i}.

\bullet For  l+1\leq i\leq l Because the path is a good path, we have $\lambda$_{i-s}>$\mu$_{i} . Thus,
we have \displaystyle \min\{$\lambda$_{i-s}, p-s\}\geq$\mu$_{i} since we have p-s>l\geq$\mu$_{i}.

\square 

The proof of mult $\mu$_{l}^{S}=\mathrm{D}_{l,p-s} is similar.

§5. A remark

Let X be an affine Dynkin diagram belongs to an infinite series except the series

C_{n}^{(1)} (i.e., X=A_{n}^{(1)}, A_{2n}^{(2)}, A_{2n-1}^{(2)}, B_{n}^{(1)}, D_{n}^{(1)}, D_{n+1}^{(2)} ) and consider the corresponding affine

Kac‐Moody Lie algebra \mathfrak{g}=g(X) and its level 2 weight  $\Lambda$\in \mathcal{P}^{+} . By our computer

calculation, it seems that for each b\displaystyle \in\max( $\Lambda$)\cap \mathcal{P}^{+} , mult(b) =\mathrm{D}_{x,y} or mult(b) =\left(\begin{array}{l}
x\\
y
\end{array}\right)
for some x=x(b) and y=y(b) . But our motivation comes from a connection between

Lie theory and representation theory of some algebras, we shall stop here.
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