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Abstract

In these notes, we give an overview of our paper [BKT] which gives an explicit description
of the de Rham and p‐adic realizations of the elliptic polylogarithm, for a general elliptic curve

dened over a subeld of \mathbb{C} in the de Rham case and for a CM elliptic curve dened over

its field of complex multiplication and with good reduction at the primes above p\geq 5 in the

p‐adic case. As explained in the appendix of [BKT], our method also gives a simple proof of

the description of the real Hodge realization of the elliptic polylogarithm for a general elliptic
curve dened over \mathbb{C} . In these notes, we introduce the real Hodge and p‐adic cases in a parallel
fashion to highlight the analogy.

§1. Introduction

The classical polylogarithm for any integer k\geq 0 was first defined as a function

given by the power series

\displaystyle \mathrm{L}\mathrm{i}_{k}(t)=\sum_{n=1}^{\infty}\frac{t^{n}}{n^{k}}
on the open unit disc around the origin. These functions may be expressed as an iterated

integral, of the form

Li(t) =\displaystyle \int_{0}^{t}\mathrm{L}\mathrm{i}_{k}(s)\frac{ds}{s} (k\geq 0) , Li(t) =\displaystyle \frac{t}{1-t},
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which shows that these functions extend to multi‐valued functions on \mathbb{P}^{1}\backslash \{0, 1, \infty\} . By

definition, the polylogarithm functions satisfy the differential equations

(1.1) d\displaystyle \mathrm{L}\mathrm{i}_{k+1}(t)=\mathrm{L}\mathrm{i}_{k}(t)\frac{dt}{t}, (k\geq 0) .

These functions were interpreted by Deligne as period functions of a certain variation of

mixed Hodge structures, called the polylogarithm sheaf, on \mathbb{P}^{1}\backslash \{0, 1, \infty\} ,
and a motivic

interpretation of this sheaf was given by Beilinson and Deligne. The cyclotomic elements

in motivic cohomology, which plays an important role in the proofs of the Beilinson�s

conjecture as well as the Tamagawa number conjecture for Dirichlet motives, may be

reinterpreted in terms of the motivic polylogarithm. The polylogarithm sheaf also plays
an important role in understanding the motivic formalism underlying Zagier�s conjecture

[BD].
The construction of the polylogarithm sheaf was subsequently extended to the case

of elliptic curves minus the identity by Beilinson and Levin [BL]. The corresponding
motivic sheaf reinterprets the Eisenstein classes in motivic cohomology, and the étale

realization of the elliptic polylogarithm was used by Kings [Ki] to prove the Tamagawa
number conjecture for CM elliptic curves.

The main purpose of [BKT] is to explicitly describe the p‐adic realization for a CM

elliptic curve defined over its field of complex multiplication and with good reduction at

the primes above p\geq 5 . The key in proving our result is the explicit description of the

de Rham realization of the elliptic polylogarithm, for an elliptic curve defined over a

subfield of \mathbb{C} . Namely, we construct a family of algebraic functions L(z) on the elliptic
curve which play a role analogous to that of Li(t) =t/(1-t) on \mathbb{P}^{1}\backslash \{0, 1, \infty\} . We

then use L(z) to describe the connection on the module with connection underlying
the elliptic polylogarithm sheaf. Similar results were obtained by Levin and Racinet

[LR] Section 5.1.3 and Besser and Solomon [BS].
As explained in the appendix of [BKT], the explicit description of the algebraic

connection allows us to explicitly determine the period functions of the real Hodge real‐

ization of the elliptic polylogarithm as solutions of certain iterated differential equations

analogous to (1.1). Using this result, we may prove that the specializations of the real

Hodge realization of the elliptic polylogarithm sheaf to points are expressed by spe‐

cial values of Eisenstein‐Kronecker‐Lerch series, which we call the Eisenstein‐Kronecker

numbers. This is a result originally proved by Beilinson‐Levin [BL] and Wildeshaus [Wi]
using a different method. Our method of calculating the elliptic polylogarithm sheaf in

terms of solutions of iterated differential equations analogous to (1.1) closely parallels
the classical case of \mathbb{P}^{1}\backslash \{0, 1, \infty\} ,

and the conceptual simplicity of this method allows

the consideration of a p‐adic analogue.
In the p‐adic case, assume that the elliptic curve has complex multiplication by

the ring of integers \mathcal{O}_{K} of an imaginary quadratic field K . Assume in addition that
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E is defined over K and has good reduction at the primes above p . In this case, we

construct a p‐adic analogue of Eisenstein‐Kronecker numbers using p‐adic interpolation.
We explicitly describe the p‐adic realization of the elliptic polylogarithm sheaf, and prove

that the specializations of this sheaf to torsion points prime to p (more precisely, prime
to \mathfrak{p}) are related to p‐adic Eisenstein‐Kronecker numbers, proving a p‐adic analogue of

the result of Beilinson‐Levin and Wildeshaus. This result is a generalization of the result

of [Ba3], where we have dealt only with the one variable case for an ordinary prime.
A similar result concerning the specializations in the two‐variable case was obtained

in [BKi], again for ordinary primes, using a very different method. The result of the

current paper is valid even when p is supersingular.
The p‐adic Eisenstein‐Kronecker numbers are related to special values of p‐adic

L‐functions associated to Hecke characters of imaginary quadratic fields. The p‐adic

elliptic polylogarithm is expected to be the image by the syntomic regulator of the

motivic elliptic polylogarithm, our result may be interpreted as a p‐adic analogue of

Beilinson�s conjecture.
In these notes, we introduce the real Hodge and p‐adic realizations of the elliptic

polylogarithm in a parallel fashion to highlight the analogy.

The authors would like to thank the organizers Mamoru Asada and Hiroaki Naka‐

mura for the opportunity to present our research at this conference. The authors would

also like to thank the referee for comments. Part of this research was conducted while

the first author was visiting the École Normale Supérieure in Paris, and the second au‐

thor the Institut de Mathématiques de Jussieu. The authors would like to thank their

hosts Yves André and Pierre Colmez for hospitality.

§2. Denition of the Elliptic Polylogarithm sheaf

In this section, we review the construction by Beilinson and Levin of the elliptic

polylogarithm sheaf. The construction is valid for any suitable theory of mixed sheaves‐

even for the conjectural theory of mixed motivic sheaves. Hence the cohomology class of

the realizations of the elliptic polylogarithm sheaf in absolute Hodge and rigid syntomic

cohomologies may be regarded as the image by the regulator maps of the cohomology
class of the motivic elliptic polylogarithm sheaf. The main goal of [BKT] is to explicitly
describe the real Hodge and the p‐adic realizations of the elliptic polylogarithm sheaf.

In the Hodge case, let S= Spec \mathbb{C}, K=\mathbb{R} and F=\mathbb{C} . For any smooth scheme

of finite type over S ,
we let \mathscr{S}(X) be the category of variations of mixed \mathbb{R} ‐Hodge

structures on X . In the p‐adic case, we let S= Spec \mathcal{O}_{K} for the ring of integers \mathcal{O}_{K} of a

finite unramified extension K of \mathbb{Q}_{p} ,
and F=K . For any smooth scheme of finite type

X over S ,
with smooth compactification \overline{X} over S such that the complement D=\overline{X}\backslash X
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is a normal crossing divisor relative to S ,
we denote by \mathscr{S}(X) the category of filtered

overconvergent F ‐isocrystals (previously referred to as admissible syntomic coefficients.

See [Ba1] Definition 1.13 for the definition) on X.

For suitable objects \mathscr{F}\in \mathscr{S}(X) ,
we may define the absolute and relative cohomolo‐

gies H_{\mathscr{A}}^{n}(X, \mathscr{F}) and H^{n}(X, \mathscr{F}) of X with coefficients in \mathscr{F} . The absolute cohomology
is a vector space over K

,
where as relative cohomology is an object in \mathscr{S}(S) . In the

Hodge case, the absolute cohomology is absolute Hodge cohomology and the relative

cohomology is Betti cohomology with its mixed Hodge structure. In the p‐adic case,

we take for absolute cohomology rigid syntomic cohomology and for relative cohomol‐

ogy rigid cohomology with its structure as a filtered Frobenius module (See [Bes1] for

basic facts concerning rigid syntomic cohomology, and [Ba2] for interpretation of rigid

syntomic cohomology as an absolute cohomology.)
For any integer n

,
the category \mathscr{S}(X) contains the Tate object K(n) ,

and for any

\mathscr{F}\in \mathscr{S}(X) ,
we let \mathscr{F}(n) :=\mathscr{F}\otimes_{K}K(n) . In both the Hodge and the p‐adic cases, we

have a canonical isomorphism

(2.1) H_{\mathscr{A}}^{n}(X, \mathscr{F})=\mathrm{E}\mathrm{x}\mathrm{t}_{\mathscr{S}(X)}^{n}(K(0), \mathscr{F})

for n=0 , 1, and a short exact sequence

(2.2) 0\rightarrow H_{\mathscr{A}}^{1}(S, H^{0}(X, \mathscr{F}))\rightarrow H_{\mathscr{A}}^{1}(X, \mathscr{F})\rightarrow H_{\mathscr{A}}^{0}(S, H^{1}(X, \mathscr{F}))\rightarrow 0

relating absolute and relative cohomologies.
We will next give the definition of the elliptic polylogarithm sheaf defined by Beilin‐

son and Levin. We first take an elliptic curve E defined over S . Then the relative

cohomology H^{1}(E) in the Hodge case is given by the pure Hodge structure arising from

the isomorphism

H_{B}^{1}(E(\mathbb{C}), \mathbb{R})\otimes_{\mathbb{R}}\mathbb{C}\cong H_{\mathrm{d}\mathrm{R}}^{1}(E/\mathbb{C}) ,

and the relative cohomology in the syntomic case is given by the filtered Frobenius

module

H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{1}(E_{k}/K)\cong H_{\mathrm{d}\mathrm{R}}^{1}(E/K) ,

where k is the residue field of \mathcal{O}_{K} and the left hand side is the rigid cohomology of

E_{k}:=E\otimes k.
We let \mathscr{H}=H^{1}(E)^{\vee} ,

where \vee denotes the dual, and we denote by \mathscr{H}_{E} the pull‐
back of \mathscr{H} to E by the structure morphism. Since H^{n}(E, \mathscr{H}_{E})=H^{n}(E)\otimes \mathscr{H} , (2.2)
gives the exact sequence

0\rightarrow H_{\mathscr{A}}^{1}(S, \mathscr{H})\rightarrow H_{\mathscr{A}}^{1}(E, \mathscr{H}_{E})\rightarrow H_{\mathscr{A}}^{0}(S, \mathscr{H}^{\vee}\otimes \mathscr{H})\rightarrow 0

which splits via the pull‐back with respect to the identity [0] : S\rightarrow E . We define the

first logarithm sheaf \mathscr{L}\mathrm{o}\mathrm{g}^{(1)} to be a sheaf in \mathscr{S}(E) whose extension class in H_{\mathscr{A}}^{1}(E, \mathscr{H}_{E})
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maps to the identity in H_{\mathscr{A}}^{0}(S, \mathscr{H}^{\vee}\otimes \mathscr{H})=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathscr{S}(S)}(\mathscr{H}, \mathscr{H}) and is zero when pulled‐
backed to H_{\mathscr{A}}^{1}(S, \mathscr{H}) . We then define the logarithm sheaf \mathscr{L}\mathrm{o}\mathrm{g} to be the pro‐object

\displaystyle \mathscr{L}\mathrm{o}\mathrm{g}=\lim_{n} Sy \mathrm{m}^{}\mathscr{L}\mathrm{o}\mathrm{g}^{(1)}\leftarrow

in \mathscr{S}(E) . From the definition, the graded module of \mathscr{L}\mathrm{o}\mathrm{g} with respect to the weight
filtration is given by \mathrm{G}\mathrm{r}_{-n}^{W}(\mathscr{L}\mathrm{o}\mathrm{g})= Sy \mathrm{m}^{} \mathscr{H}_{E} for integers n\geq 0 . By definition of

\mathscr{L}\mathrm{o}\mathrm{g}^{(1)} ,
the pull‐back of \mathscr{L}\mathrm{o}\mathrm{g} by the identity gives a splitting of the weight filtration

(2.3) [0]^{*}\displaystyle \mathscr{L}\mathrm{o}\mathrm{g}\cong\prod_{j=0}^{\infty} Sy \mathrm{m}^{} \mathscr{H}

which is unique due to reason of weights. The following result was proved by Beilinson

and Levin.

Lemma 2.1. The relative cohomology of the logarithm sheaf is given by

H^{2}(E, \mathscr{L}\mathrm{o}\mathrm{g})=K(-1) , H^{n}(E, \mathscr{L}\mathrm{o}\mathrm{g})=0 (n\neq 2) .

Proof. The statement was originally proved in [BL]. See also [HK] Lemma A1.4

or [Ba3] Lemma 3.4. One first calculates the cohomology of Sy \mathrm{m}^{} \mathscr{L}\mathrm{o}\mathrm{g}^{(1)} for n\geq 0 by
induction on n

, considering the long exact sequence for cohomology associated to the

short exact sequence

0\rightarrow \mathrm{S}\mathrm{y}\mathrm{m}^{n+1}\mathscr{H}\rightarrow \mathrm{S}\mathrm{y}\mathrm{m}^{n+1}\mathscr{L}\mathrm{o}\mathrm{g}^{(1)}\rightarrow \mathrm{S}\mathrm{y}\mathrm{m}^{n}\mathscr{L}\mathrm{o}\mathrm{g}^{(1)}\rightarrow 0.

Our result is obtained by considering the inverse limit with respect to n. \square 

Let D=[0] and U=E\backslash [0] . Then the residue sequence associated to the inclusion

U\mapsto E

\rightarrow H^{n}(E, \mathscr{L}\mathrm{o}\mathrm{g}(1))\rightarrow H^{n}(U, \mathscr{L}\mathrm{o}\mathrm{g}(1))\rightarrow H^{n-1}\mathrm{r}\mathrm{e}\mathrm{s}(D, [0]^{*}\mathscr{L}\mathrm{o}\mathrm{g})\rightarrow\cdots

for relative cohomology gives the isomorphism  H^{0}(U, \mathscr{L}\mathrm{o}\mathrm{g}(1))\leftarrow\cong H^{0}(E, \mathscr{L}\mathrm{o}\mathrm{g}(1))=0
and the short exact sequence

0\rightarrow H^{1}(U, \mathscr{L}\mathrm{o}\mathrm{g}(1))\rightarrow \mathrm{r}\mathrm{e}\mathrm{s}H^{0}(D, [0]^{*}\mathscr{L}\mathrm{o}\mathrm{g})\rightarrow H^{2}(E, \mathscr{L}\mathrm{o}\mathrm{g}(1))\rightarrow 0.

Since H^{n}(U, \mathscr{H}_{\check{U}}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1))=H^{n}(U, \mathscr{L}\mathrm{o}\mathrm{g})\otimes \mathscr{H}^{\vee}(1) ,
the exact sequence (2.2) gives an

isomorphism

(2.4) H_{\mathscr{A}}^{1}(U, \mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1))\rightarrow\cong H_{\mathscr{A}}^{0}(S, H^{1}(U, \mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1))) .
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By Lemma 2.1 and the fact that the weight of \mathscr{H}^{\vee} is one, we have

H_{\mathscr{A}}^{0}(S, H^{2}(E, \mathscr{H}_{E}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1)))=H_{\mathscr{A}}^{0}(S, \mathscr{H}^{\vee})=0.

Hence H_{\mathscr{A}}^{0}(S, -) applied to the residue sequence gives an isomorphism

(2.5) H_{\mathscr{A}}^{0}(S, H^{1}(U, \mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1)))\rightarrow\cong H_{\mathscr{A}}^{0}(S, \mathscr{H}^{\vee}\otimes \mathscr{H})=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathscr{S}(S)}(\mathscr{H}, \mathscr{H}) .

Here, the first isomorphism follows from the splitting (2.3), which implies that

H_{\mathscr{A}}^{0}(S, H^{0}(D, \mathscr{H}^{\vee}\otimes[0]^{*}\mathscr{L}\mathrm{o}\mathrm{g}))=H_{\mathscr{A}}^{0} (S, \displaystyle \mathscr{H}^{\vee}\otimes\prod_{j=0}^{\infty} Sym \mathscr{H} ) =H_{\mathscr{A}}^{0}(S, \mathscr{H}^{\vee}\otimes \mathscr{H})

due to reason of weights. We define the residue isomorphism

\mathrm{r}\mathrm{e}\mathrm{s}:H_{\mathscr{A}}^{1}(U, \mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1))\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathscr{S}(S)}(\mathscr{H}, \mathscr{H})

to be the composition of (2.4) and (2.5).

Denition 2.2 (Beilinson‐Levin). The elliptic polylogarithm sheaf \mathscr{P} is defined

to be an extension of \mathscr{L}\mathrm{o}\mathrm{g}(1) by \mathscr{H} in \mathscr{S}(U) ,
whose extension class [P] in

\mathrm{E}\mathrm{x}\mathrm{t}_{\mathscr{S}(U)}^{1}(\mathscr{H}_{U}, \mathscr{L}\mathrm{o}\mathrm{g}(1))=H_{\mathscr{A}}^{1}(U, \mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1))

maps to the identity through the residue isomorphism.

The main object of [BKT] is to explicitly describe \mathscr{P} in the p‐adic case, using
functions obtained as solutions of certain iterated differential equations.

§3. The Kronecker theta function and the connection function

In this section, we will construct the connection functions L_{n}(z) ,
which are rational

functions on the elliptic curve which will be used to describe the connection on the

coherent module with connection underlying the elliptic polylogarithm sheaf. We let  $\Gamma$

be a lattice in \mathbb{C} . We define  $\theta$(z; $\Gamma$) to be the reduced theta function associated to the

divisor [0] on \mathbb{C}/ $\Gamma$ ,
normalized so that  $\theta$'(0; $\Gamma$)=1 . This function may be written in

terms of the Weierstrass sigma function  $\sigma$(z; $\Gamma$) for the lattice  $\Gamma$ as

 $\theta$(z; $\Gamma$)=\exp(-e_{0,2}^{*}z^{2}/2) $\sigma$(z; $\Gamma$) ,

where e_{0,2}^{*}:=\displaystyle \lim_{s\rightarrow 0}\sum_{ $\gamma$\in $\Gamma$\backslash \{0\}}$\gamma$^{-2}| $\gamma$|^{-2s} . In what follows, we fix a lattice  $\Gamma$\subset \mathbb{C} and

for simplicity, we omit  $\Gamma$ from the notation and write  $\theta$(z) for  $\theta$(z; $\Gamma$) .
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Denition 3.1 (Kronecker theta function). We let

 $\Theta$(z, w):= $\theta$(z+w)/ $\theta$(z) $\theta$(w) .

Let A be the fundamental area of  $\Gamma$ divided by  $\pi$=3.14\cdots . The Kronecker theta

function satisfies the transformation formula

(3.1)  $\Theta$(z+$\gamma$_{1}, w+$\gamma$_{2})=\displaystyle \exp[\frac{$\gamma$_{1}\overline{ $\gamma$}_{2}}{A}]\exp[\frac{z\overline{ $\gamma$}_{2}+w\overline{ $\gamma$}_{1}}{A}] $\Theta$(z, w)
for any $\gamma$_{1},  $\gamma$_{2}\in $\Gamma$ ,

which in particular shows that  $\Theta$(z, w) is a reduced theta function

associated to the Poincaré bundle of \mathbb{C}/ $\Gamma$ . We let

 F_{1}(z)=\displaystyle \lim_{w\rightarrow 0}( $\Theta$(z, w)-w^{-1})=$\theta$'(z)/ $\theta$(z)
and ---(z, w)=\exp(-F_{1}(z)w) $\Theta$(z, w) . Then (3.1) shows that ---(z+ $\gamma$, w)= $\Xi$(z, w) for

any  $\gamma$\in $\Gamma$.

Denition 3.2. We define the connection functions L(z) to be the coefficients

 $\Xi$(z, w)=\displaystyle \sum_{n=0}^{\infty}L_{n}(z)w^{n-1}
of the Laurent expansion of ---(z, w) with respect to w.

L(z) are elliptic functions on \mathbb{C}/ $\Gamma$ with poles only at [0]\in \mathbb{C}/ $\Gamma$ . The connection

functions satisfy the following algebraicity result ([BKT] Proposition 1.6).

Lemma 3.3. Suppose there exists an elliptic curve  E : y^{2}=4x^{3}-g_{2}x-g_{3}
defined over a field L\subset \mathbb{C} , such that the pull‐back of  $\omega$:=dx/y by the uniformization

\mathbb{C}/ $\Gamma$\cong E(\mathbb{C}) , z\mapsto(\wp(z):\wp'(z):1)

gives the invariant differential dz . Then the functions L(z) correspond through the

above uniformization to rational functions on E defined over L.

Proof. One may prove that ---(z, w)=\exp(- $\zeta$(z)w) $\sigma$(z+w)/ $\sigma$(z) $\sigma$(w) ,
where

 $\zeta$(z)=$\sigma$'(z)/ $\sigma$(z) is the Weierstrass  $\zeta$‐function. The condition of the lemma implies
that the Laurent expansions of  $\sigma$(z) and  $\zeta$(z) at z=0 have coefficients in L

,
hence the

same also holds true for L_{n}(z) . By definition, L(z) is a function whose only pole on \mathbb{C}/ $\Gamma$
is at  z=0 ,

whose order is necessarily \geq 2 . The Laurent expansions of \wp(z)=-$\zeta$'(z)
and \wp'(z) also have coefficients in L . Since the only poles of \wp(z) and \wp'(z) on \mathbb{C}/ $\Gamma$ are

at  z=0 of order 2 and 3, one may take a suitable polynomial f(X, Y)\in L[X, Y] such

that the function L_{n}(z)-f(\wp(z), \wp'(z)) has no poles on \mathbb{C}/ $\Gamma$ . This difference must be
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a constant, necessarily in  L since all the Laurent coefficients of the functions appearing
in this difference is also in L . This shows that L_{n}(z)\in L[\wp(z), \wp'(z)] as required. \square 

The connection functions play the role for elliptic curves of Li(t) =t/(1-t) in

the classical case. We will describe the module with connection underlying the elliptic

polylogarithm using these connection functions.

§4. Module with connection underlying the elliptic polylogarithm

In this section, we will use the connection function L(z) defined in the previous
section to explicitly describe the coherent module with connection underlying the elliptic

polylogarithm sheaf. Let L be a field of characteristics zero, and let X_{L} be a scheme

smooth and of finite type defined over L . We let \mathscr{M}(X) be the category of coherent

modules M on X_{L} with integrable connection \nabla :  M\rightarrow M\otimes$\Omega$_{X_{L}}^{1} . For any \mathcal{F}\in \mathscr{M}(X) ,

we denote by H_{\mathrm{d}\mathrm{R}}^{n}(X_{L}, \mathcal{F}) the de Rham cohomology of X_{L} with coefficients in \mathcal{F} . Then

we have an isomorphism

(4.1) H_{\mathrm{d}\mathrm{R}}^{n}(X_{L}, \mathcal{F})=\mathrm{E}\mathrm{x}\mathrm{t}_{\mathscr{M}(X_{L})}^{n}(\mathcal{O}_{X_{L}}, \mathcal{F})
for n=0 ,

1.

Let the notations be as in §2. In both the Hodge and the p‐adic cases, any sheaf

in \mathscr{S}(X) has an underlying coherent module with connection on X_{F}:=X\otimes_{S}F . In

other words, there exists a canonical functor For : \mathscr{S}(X)\rightarrow \mathscr{M}(X_{F}) . For any object

\mathscr{F}\in \mathscr{S}(X) and underlying module \mathcal{F}=\mathrm{F}\mathrm{o}\mathrm{r}(\mathscr{F})\in \mathscr{M}(X_{F}) ,
there exists a canonical

isomorphism

H^{n}(X, \mathscr{F})\otimes_{K}F\cong H_{\mathrm{d}\mathrm{R}}^{n}(X_{F}, \mathcal{F}) ,

hence a natural inclusion H_{\mathscr{A}}^{0}(S, H^{n}(X, \mathscr{F}))\mapsto H_{\mathrm{d}\mathrm{R}}^{n}(X_{F}, \mathcal{F}) . The functor For on

extension classes is given by the composition  H_{\mathscr{A}}^{1}(X, \mathscr{F})\rightarrow H_{\mathscr{A}}^{0}(S, H^{1}(X, \mathscr{F}))\mapsto
 H_{\mathrm{d}\mathrm{R}}^{1}(X_{F}, \mathcal{F}) . In other words, we have a commutative diagram

(4.2) H_{\mathscr{A}}^{1}(X, \mathscr{F})-H_{\mathscr{A}}^{0}(S, H^{1}(X, \mathscr{F}))-H_{\mathrm{d}\mathrm{R}}^{1}(X_{F}, \mathcal{F})

\downarrow\cong \downarrow\cong
\mathrm{E}\mathrm{x}\mathrm{t}_{\mathscr{S}(X)}^{1}(K(0), \mathscr{F})\rightarrow^{\mathrm{F}\mathrm{o}\mathrm{r}}\mathrm{E}\mathrm{x}\mathrm{t}_{\mathscr{M}(X_{F})}^{1}(\mathcal{O}_{X_{F}}, \mathcal{F}) .

We will calculate the module \mathcal{P}=\mathrm{F}\mathrm{o}\mathrm{r}(\mathrm{P}) underlying the elliptic polylogarithm sheaf.

We return to the case of the elliptic curve. We denote by \mathcal{H}, \mathcal{H}_{U} and \mathcal{L}\mathrm{o}\mathrm{g}
the modules with connection underlying \mathscr{H}, \mathscr{H}_{U} and \mathscr{L}\mathrm{o}\mathrm{g} . In particular, we have

\mathcal{H}=H_{\mathrm{d}\mathrm{R}}^{1}(E_{F})^{\vee} . Since the de Rham cohomology of H_{\mathrm{d}\mathrm{R}}^{1}(E_{F}) may be calculated using
differentials of the second kind on U_{F}:=E_{F}\backslash [0] ,

we have

H_{\mathrm{d}\mathrm{R}}^{1}(E_{F})\cong $\Gamma$(E_{F}, $\Omega$^{1}(2[0])) .
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In the Hodge case or when the prime p\geq 5 in the p‐adic case, we may assume that E

is given by the Weierstrass equation E:y^{2}=4x^{3}-g_{2}x-g_{3} defined over S . Then the

differentials  $\omega$=dx/y and  $\eta$=xdx/y are differentials of the first and second kinds. If

we denote by \underline{ $\omega$} and \underline{ $\eta$} their classes in H_{\mathrm{d}\mathrm{R}}^{1}(E_{F}) ,
we have H_{\mathrm{d}\mathrm{R}}^{1}(E_{F})\cong F\underline{ $\omega$}\oplus F\underline{ $\eta$}.

We now let L be a subfield of \mathbb{C} with a fixed embedding L\mapsto F . We may take

L=F in the Hodge case. Assume that the Weierstrass model of our elliptic curve is

also defined over L
,

and let  $\Gamma$ be the period lattice of  E with respect to the invariant

differential  $\omega$=dx/y . There exists a uniformization \mathbb{C}/ $\Gamma$\cong E() , z\mapsto((z) : \wp'(z) : 1)
such that  $\omega$ corresponds to  dz . If we let $\omega$^{*}=dF_{1}(z) ,

then $\omega$^{*} is also a differential of

the second kind defined over L(e_{0,2}^{*}) . If we assume in addition that e_{0,2}^{*}\in L ,
then we

have H_{\mathrm{d}\mathrm{R}}^{1}(E_{L})\cong L $\omega$\oplus L$\omega$^{*} and \mathcal{H}=L\underline{ $\omega$}^{\vee}\oplus L$\omega$^{*\mathrm{v}} ,
where $\omega$^{*} denotes the class of $\omega$^{*}

Remark. In what follows, we will assume that e_{0,2}^{*}\in L . In this case, the dif‐

ferential form $\omega$^{*} is defined over L . This condition is not necessary in describing the

module with connection underlying the polylogarithm sheaf if we use  $\eta$=xdx/y instead

of $\omega$^{*}=dF_{1} . However, since the class of $\omega$^{*} is equal to that of d\overline{z}/A in H_{\mathrm{d}\mathrm{R}}^{1}(E_{\mathbb{C}}) ,
the

differential $\omega$^{*} is much more amiable with calculations related to Eisenstein‐Kronecker

numbers.

The sheaf \mathcal{L}\mathrm{o}\mathrm{g} on U_{F} in both the Hodge and the p‐adic cases is given by

\displaystyle \mathcal{L}\mathrm{o}\mathrm{g}=\prod_{m,n\underline{>}0}\mathcal{O}_{U_{F}$\omega$^{m,n}},
with connection given by \nabla(\underline{ $\omega$}^{m,n})=\underline{ $\omega$}^{m+1,n}\otimes $\omega$+\underline{ $\omega$}^{m,n+1}\otimes$\omega$^{*} . The weight filtration

on \mathcal{L}\mathrm{o}\mathrm{g} is given by W_{-k}(\displaystyle \mathrm{o}\mathrm{g})=\prod_{m,n\geq k}\mathcal{O}_{U_{F}}\underline{ $\omega$}^{m,n} ,
and the canonical splitting

\mathrm{G}\mathrm{r}_{-k}^{W}\mathcal{L}\mathrm{o}\mathrm{g}|_{U_{F}}\cong \mathrm{S}\mathrm{y}\mathrm{m}^{k}\mathcal{H}_{U_{F}}
maps \underline{ $\omega$}^{m,n} to \underline{ $\omega$}^{\vee m}$\omega$^{*\vee n} . Note that in the above description of Lg, the connection has

poles at D_{F}=[0] . This follows from the fact that the sections \underline{ $\omega$}^{m,n} do not extend to

sections of \mathcal{L}\mathrm{o}\mathrm{g} on E_{F} . However, the logarithm sheaf itself extends to a module with

holomorphic connection on the whole of E_{F} . Since U_{F} is an affine scheme, the de Rham

cohomology of U_{F} with coefficients in \mathcal{H}_{U}^{\vee}\otimes \mathcal{L}\mathrm{o}\mathrm{g} may be calculated as the cohomlogy
of the complex

 $\Gamma$(U_{F}, \mathcal{H}_{U}^{\vee}\otimes \mathcal{L}\mathrm{o}\mathrm{g})\rightarrow $\Gamma$(U_{F}, \mathcal{H}_{U}^{\vee}\otimes \mathcal{L}\mathrm{o}\mathrm{g}\otimes$\Omega$_{U_{F}}^{1})\nabla.
Since we have assumed that our elliptic curve is also defined over L

,
the connection

functions L_{n} of Definition 3.2 are also defined over L . We may consider these functions

as rational functions on E_{F} through the fixed embedding L\mapsto F . If we let pol be the

section

pol :=-\displaystyle \underline{ $\omega$}\otimes\underline{ $\omega$}^{0,0}\otimes$\omega$^{*}+\sum_{n=0}^{\infty}L_{n+1} $\omega$\otimes$\omega$^{1,n}\otimes $\omega$+\sum_{n=0}^{\infty}L_{n}$\omega$^{*}\otimes$\omega$^{0,n}\otimes $\omega$
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in  $\Gamma$(U_{F}, \mathcal{H}_{U}^{\vee}\otimes \mathcal{L}\mathrm{o}\mathrm{g}\otimes$\Omega$_{U_{F}}^{1}) ,
then this element determines a class [pol] in H_{\mathrm{d}\mathrm{R}}^{1}(U_{F}, \mathcal{H}_{U}^{\vee}\otimes

\mathcal{L}\mathrm{o}\mathrm{g}) . Then we have the following (see [BKT] Theorem 1.20).

Theorem 4.1. The class [pol] \in H_{\mathrm{d}\mathrm{R}}^{1}(U_{F}, \mathcal{H}_{U}^{\vee}\otimes \mathcal{L}\mathrm{o}\mathrm{g}) maps to the identity in

\displaystyle \mathrm{H}\mathrm{o}\mathrm{m}_{F}(\mathcal{H}, \mathcal{H})=\mathcal{H}^{\vee}\otimes \mathcal{H}\subset \mathcal{H}^{\vee}\otimes\prod_{j=0}^{\infty} Sy \mathrm{m}^{} \mathcal{H} through the residue map

\displaystyle \mathrm{r}\mathrm{e}\mathrm{s}:H_{\mathrm{d}\mathrm{R}}^{1}(U_{F}, \mathcal{H}_{U}^{\vee}\otimes \mathcal{L}\mathrm{o}\mathrm{g})\rightarrow H_{\mathrm{d}\mathrm{R}}^{0}(D_{F}, \mathcal{H}^{\vee}\otimes[0]^{*}\mathcal{L}\mathrm{o}\mathrm{g})=\mathcal{H}^{\vee}\otimes\prod_{j=0}^{\infty} Sy \mathrm{m}^{} \mathcal{H}.

The compatibility of the residue maps for de Rham and relative cohomologies gives
the commutative diagram

\cong

\mathrm{E}\mathrm{x}\mathrm{t}_{\mathscr{S}(U)}^{1}(K(0), \mathscr{H}_{\check{U}}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1))\rightarrow H_{\mathscr{A}}^{1}(U, \mathscr{H}_{\check{U}}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1))\rightarrow^{\mathrm{r}\mathrm{e}\mathrm{s}}\mathrm{H}\mathrm{o}\mathrm{m}_{\mathscr{S}}(S)(\mathscr{H}, \mathscr{H})

For \ovalbox{\tt\small REJECT}\cap
\cong  H_{\mathscr{A}}^{0}(S, H^{1}(U, \mathscr{H}_{\check{U}}\downarrow\cap\downarrow\cong\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1)))\rightarrow \mathrm{r}\mathrm{e}\mathrm{s}^{\mathrm{r}\mathrm{e}\mathrm{s}}H_{\mathscr{A}}^{0}(S, \mathscr{H}^{\vee}\downarrow\cap\downarrow=\otimes \mathscr{H})

\displaystyle \mathrm{E}\mathrm{x}\mathrm{t}_{\mathscr{M}(U)}^{1}(\mathcal{O}_{U_{F}}, \mathcal{H}_{\check{U}}\otimes \mathcal{L}\mathrm{o}\mathrm{g})\rightarrow H_{\mathrm{d}\mathrm{R}}^{1}(U_{F}, \mathcal{H}_{\check{U}}\otimes \mathcal{L}\mathrm{o}\mathrm{g})\rightarrow \mathcal{H}^{\vee}\otimes\prod_{j\geq 0}\mathrm{S}\mathrm{y}\mathrm{m}^{j}\mathcal{H}.

Hence the cohomology class [pol] corresponds to the class of \mathcal{P}= For(P), where \mathscr{P}

is the polylogarithm sheaf. The relation between extensions and classes in de Rham

cohomology gives the following corollary (see [BKT] Corollary 1.21).

Corollary 4.2. The \mathcal{O}_{U_{F}} ‐module with connection \mathcal{P} in \mathscr{M}(U_{F}) is the extension

0\rightarrow \mathcal{L}\mathrm{o}\mathrm{g}\rightarrow \mathcal{P}\rightarrow \mathcal{H}_{U}\rightarrow 0

whose underlying module is \mathcal{P}=\mathcal{H}_{U}\oplus \mathcal{L}\mathrm{o}\mathrm{g} and whose connection is given by

\displaystyle \nabla($\omega$^{\vee})=-$\omega$^{0,0}\otimes$\omega$^{*}+\sum_{n=0}^{\infty}L_{n+1}$\omega$^{1,n}\otimes $\omega$, \nabla($\omega$^{*\mathrm{v}})=\sum_{n=0}^{\infty}L_{n}$\omega$^{0,n}\otimes $\omega$.
The above result gives the explicit description of the module with connection \mathcal{P}

underlying the polylogarithm sheaf \mathscr{P}.

§5. Eisenstein‐Kronecker numbers

In this section, we define the complex and p‐adic version of Eisenstein‐Kronecker

numbers. The complex Eisenstein‐Kronecker numbers are defined as special values of

Eisenstein‐Kronecker series, where as the p‐adic Eisenstein‐Kronecker numbers which

are defined for CM elliptic curves are constructed using p‐adic interpolation.
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We first review the definition of Eisenstein‐Kronecker‐Lerch series following [We].
Let  $\Gamma$\subset \mathbb{C} be as before and let a be an integer. Then the Eisenstein‐Kronecker‐Lerch

series is defined as the sum

K_{a}^{*}(z_{0}, w_{0}, s)= \displaystyle \sum \frac{(\overline{z}_{0}+\overline{ $\gamma$})^{a}}{|z_{0}+ $\gamma$|^{2s}}\langle $\gamma$, w_{0}\rangle,
 $\gamma$\in $\Gamma$\backslash \{-z_{0}\}

where \langle z, w\rangle=\exp((z\mathrm{W}-\overline{z}w)/A) and A is the fundamental area of  $\Gamma$ divided by  $\pi$=

 3.1415\cdots . The sum above converges absolutely for {\rm Re}(s)>a/2+1 ,
and K_{a}^{*}(z_{0}, w_{0}, s)

continues meromorphically to a function on the whole s‐plane, with a simple pole only
at s=1 if a=0 and  w_{0}\in $\Gamma$ ([BKT] Proposition 2.2). We define the complex Eisenstein‐

Kronecker numbers as follows.

Denition 5.1. Let  a and b be integers, and let z_{0} and w_{0} be points in \mathbb{C}

satisfying  w_{0}\not\in $\Gamma$ when (a, b)=(-1,1) . We define the Eisenstein‐Kronecker number

e_{a,b}^{*}(z_{0}, w_{0}) by e_{a,b}^{*}(z_{0}, w_{0}) :=K_{a+b}^{*}(z_{0}, w_{0}, b) . In addition, for  z_{0}\not\in $\Gamma$ ,
we let

 e_{a,b}^{*}(z_{0}) :=e_{a,b}^{*}(0, z_{0})=K_{a+b}^{*}(0, z_{0}, b) .

The numbers e_{a,b}^{*}(z_{0}) will be used to express the specializations to torsion points
of the real Hodge realization of the elliptic polylogarithm sheaf. We will next define the

p‐adic analogues of e_{a,b}^{*}(z_{0}) by p‐adic interpolation, when  $\Gamma$\subset \mathbb{C} corresponds to a CM

elliptic curve defined over the field of complex multiplication, with good reduction at

p . The crucial fact for the construction is the following theorem, which asserts that the

Eisenstein‐Kronecker numbers e_{a,b+1}^{*}(z_{0}, w_{0}) for a, b\geq 0 are generated by the Kronecker

theta function ([BK1] Theorem 1.17. See also [BK2] Theorem 2.11).

Theorem 5.2. For any z_{0}, w_{0}\in \mathbb{C} , let

$\Theta$_{z_{0},w_{0}}(z, w):=\displaystyle \exp[-\frac{z_{0}\overline{w}_{0}}{A}]\exp[-\frac{z\overline{w}_{0}+w\overline{z}_{0}}{A}] $\Theta$(z+z_{0}, w+w_{0}) .

Then we have

$\Theta$_{z_{0},w_{0}}(z, w)=\displaystyle \frac{$\delta$_{z_{0}}}{z}\langle w_{0}, z_{0}\rangle+\frac{$\delta$_{w_{0}}}{w}+\sum_{a,b\geq 0}(-1)^{a+b}\frac{e_{a,b+1}^{*}(z_{0},w_{0})}{a!A^{a}}z^{b}w^{a},
where $\delta$_{x}=1 if  x\in $\Gamma$ and  $\delta$_{x}=0 otherwise.

Remark. A similar expansion was proved in [Zag] §3 Theorem for z_{0}=w_{0}=0,
for a slightly different normalization of the theta function.

We first define F_{z_{0},b}(z) to be meromorphic functions on \mathbb{C} defined as the coefficients

$\Theta$_{z_{0},0}(z, w)=\displaystyle \sum_{b=0}^{\infty}F_{z_{0},b}(z)w^{b-1}
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of the Laurent expansion of $\Theta$_{z_{0},0}(z, w) with respect to the variable w
,

and we define

F_{b}(z) :=F_{0,b}(z) . Note that F_{0}(z)\equiv 1 and F(z) is equal to $\theta$'(z)/ $\theta$(z) as before. The

function F_{z_{0},b}(z) depends only on the choice of z_{0} modulo  $\Gamma$
,

hence the  z_{0} of F_{z_{0},b}(z)
will denote its class in \mathbb{C} modulo  $\Gamma$.

We now assume that \mathbb{C}/ $\Gamma$ has a model  E:y^{2}=4x^{3}-g_{2}x-g_{3} mapping the invariant

differential dz to  $\omega$=dx/y ,
such that E is defined over the ring of integers \mathcal{O}_{K} of an

imaginary quadratic field K with good reduction at the primes above p\geq 5 . We assume

in addition that E has complex multiplication by \mathcal{O}_{K} . In this case, Damerell�s theorem

asserts that the numbers e_{a,b+1}^{*}(z_{0}, w_{0})/A^{a} for z_{0}, w_{0}\in $\Gamma$\otimes \mathbb{Q} and a, b\geq 0 are in \overline{\mathbb{Q}}.
Then for any non‐zero torsion point  z_{0}\in( $\Gamma$\otimes \mathbb{Q})/ $\Gamma$ and  b\geq 0 ,

the Taylor expansion of

F(z) at z=0 has coefficients in \overline{\mathbb{Q}}.
We denote by Ê the formal group of E associated to the parameter s=-2x/y,

and we denote by  $\lambda$(s) the formal logarithm of Ê normalized so that $\lambda$'(0)=1 . We let

\hat{F}_{z_{0},b}(s):=F_{z_{0},b}(z)|_{z= $\lambda$(s)}\in\overline{\mathbb{Q}}[[s]]
be the composition as formal power series of the Taylor expansion of F_{z_{0},b}(z) at z=0

with  $\lambda$(s) . We fix a prime \mathfrak{p} of \mathcal{O}_{K} above p ,
and we fix an embedding \overline{\mathbb{Q}}\mapsto \mathbb{C}_{p} such

that the completion of K in \mathbb{C}_{p} is K_{\mathfrak{p}} . Then we have the following.

Lemma 5.3. Suppose z_{0} is a non‐zero torsion point of E() of order prime to

\mathfrak{p} . Then the power series \hat{F}_{z_{0},b}(s)\in C[[s]] converges on the open unit disc B^{-}(0,1) :=

\{s\in \mathbb{C}_{p}||s|_{p}<1\}.

We will use the above theorem and the theory of Schneider and Teitelbaum [ST]
to construct our p‐adic distribution. The formal group Ê is a Lubin‐Tate group with

action by \mathcal{O}_{K_{\mathfrak{p}}} . We have a \mathcal{O}_{K_{\mathfrak{p}}} ‐linear isomorphism

\mathcal{O}_{K_{\mathfrak{p}}}\rightarrow\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{K}\mathfrak{p}} (Ê, \hat{\mathbb{G}}_{m} ),

which is not canonical and depends on the choice of a p‐adic period as follows. There

exists $\Omega$_{\mathfrak{p}}\in \mathbb{C}_{p}^{\times} such that the formal power series \exp( $\lambda$(s)/$\Omega$_{\mathfrak{p}}) is an element in \mathcal{O}_{\mathbb{C}_{p}}[[s]].
For a suitable choice of $\Omega$_{\mathfrak{p}} ,

we may construct an isomorphism as above by associating
to any x\in \mathcal{O}_{K_{\mathfrak{p}}} the homomorphism of formal groups defined by the power series

\exp(x $\lambda$(s)/$\Omega$_{\mathfrak{p}}) . In what follows, we fix a choice of $\Omega$_{\mathfrak{p}} . Let C^{\mathrm{a}\mathrm{n}}(, \mathbb{C}_{p}) be the set of

locally K_{\mathfrak{p}} ‐analytic functions on \mathcal{O}_{K_{\mathfrak{p}}} . We define the distribution $\mu$_{z_{0},b} as follows.

Denition 5.4. Let z_{0} be a non‐zero torsion point of E(\overline{\mathbb{Q}}) of order prime to

\mathfrak{p} . For any integer b\geq 0 ,
we define $\mu$_{z_{0},b} to be the p‐adic distribution on C^{\mathrm{a}\mathrm{n}}(\mathcal{O}_{K_{\mathfrak{p}}}, \mathbb{C}_{p})

corresponding by the theory of [ST] to the power series \hat{F}_{z_{0},b}(s) , satisfying

\displaystyle \int_{\mathcal{O}_{K}}\mathfrak{p}\exp(x $\lambda$(s)/$\Omega$_{\mathfrak{p}})d$\mu$_{z_{0},b}(x)=\hat{F}_{z_{0},b}(s) .
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Since \partial_{\mathrm{l}\mathrm{o}\mathrm{g},s}:=\partial_{s}/$\lambda$'(s)=\partial_{z} ,
we have by construction

$\Omega$_{\mathfrak{p}}^{-a}\displaystyle \int_{\mathcal{O}_{K\mathfrak{p}}}x^{a}d$\mu$_{z_{0},b}(x)=\partial_{\log}^{a},{}_{s}\hat{F}_{z_{0},b}(s)|_{s=0}=(-1)^{a+b+1}\frac{e_{a,b}^{*}(z_{0})}{A^{a}}
for any integer a\geq 0 . We will use this distribution to construct the p‐adic Eisenstein‐

Kronecker numbers.

Denition 5.5. Let z_{0} be a non‐zero torsion point of E(\overline{\mathbb{Q}}) of order prime to \mathfrak{p}.

We define the p‐adic Eisenstein‐Kronecker numbers for integers a, b\in \mathbb{Z} with b\geq 0 by

e_{a,b}^{(p)}(z_{0})=$\Omega$_{\mathfrak{p}}^{b-1}\displaystyle \int_{\mathcal{O}_{K\mathfrak{p}}^{\times}}x^{a}d$\mu$_{z_{0},b}(x) .

Remark. Let the notations be as above, and let  $\psi$:=$\psi$_{E/K} be the Grossenchar‐

acter of K associated to E
,

and we let  $\pi$:= $\psi$(\mathfrak{p}) . The interpolation property of $\mu$_{z_{0},b}

and the distribution relation for F_{z_{0},b}(z) show that we have

\displaystyle \frac{e_{a,b}^{(p)}(z_{0})}{$\Omega$_{\mathfrak{p}}^{a+b-1}}=(-1)^{a+b-1}(\frac{e_{a,b}^{*}(z_{0})}{A^{a}}-\frac{$\pi$^{a}e_{a,b}^{*}( $\pi$ z_{0})}{\overline{ $\pi$}^{b}A^{a}})
for any a, b\geq 0 . This is why we view e_{a,b}^{(p)}(z_{0}) as p‐adic analogues of Eisenstein‐Kronecker

numbers.

§6. The main results

In this section, we state the main results of [BKT] in the real Hodge and the p‐

adic cases. We first consider the real Hodge case. Let z_{0} be a point in E() and let

i_{z_{0}} : S\mapsto E be the natural inclusion. The calculation of absolute Hodge cohomology in

the real Hodge case gives an isomorphism

H_{\mathscr{A}}^{1}(S, \mathscr{H}^{\vee}\otimes \mathrm{S}\mathrm{y}\mathrm{m}^{j}\mathscr{H}(1))\cong M_{\mathbb{R}}^{(j)}/M_{\mathbb{R}}^{(j)}\cap(M_{\mathbb{R}}^{(j)}(1)+F^{1}M_{\mathbb{C}}^{(j)}) ,

where M^{(j)} :=\mathscr{H}^{\vee}\otimes \mathrm{S}\mathrm{y}\mathrm{m}^{j}\mathscr{H} . Hence we have an isomorphism

(6.1) H_{\mathscr{A}}^{1}(S, i_{z_{0}}^{*}(\displaystyle \mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1)))\cong\prod_{j\geq 0}M_{\mathbb{R}}^{(j)}/M_{\mathbb{R}}^{(j)}\cap(M_{\mathbb{R}}^{(j)}(1)+F^{1}M_{\mathbb{C}}^{(j)})
We note that when restricted to z_{0} ,

the mixed Hodge structure i_{z_{0}}^{*}(\mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1)) )
splits into pure components. The main result in this case is the following.

Theorem 6.1. Denote by i_{z_{0}}^{*}\mathscr{P} be the pull‐back of \mathscr{P} by i_{z_{0}} to S. Then the

image of [i_{z_{0}}^{*}\mathscr{P}] in H_{\mathscr{A}}^{1}(S, i_{z_{0}}^{*}(\mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1))) through the isomorphism (6.1) is

\displaystyle \sum_{m,k\underline{>}1}(-1)^{k-1^{e_{-m,k}^{*}(z_{0})}}\overline{A-m}( $\omega$\otimes$\omega$^{m,k-1}+$\omega$^{*}\otimes$\omega$^{m-1,k})
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The above result was originally proved in [BL]. See also [Wi] III Theorem 4.8. In

[BKT] Theorem A.17, we give a different proof using the explicit form of \mathcal{P} obtained

by solving explicit iterated integrals.

We next state our main result in the p‐adic case. We again assume that \mathbb{C}/ $\Gamma$ has

a model  E:y^{2}=4x^{3}-g_{2}x-g_{3} defined over the ring of integers \mathcal{O}_{K} of an imaginary

quadratic field K
,

with good reduction at the primes above p\geq 5 . We assume in

addition that E has complex multiplication by \mathcal{O}_{K} . We fix a prime \mathfrak{p} of K above p,

and we denote by K a finite unramified extension of K_{\mathfrak{p}}.
Let z_{0} be a K‐rational torsion point of order prime to \mathfrak{p} ,

and denote again by

i_{z_{0}} : S\mapsto E the inclusion defined by z_{0} . We define the absolute cohomology in the

p‐adic case, using the lifting of the absolute Frobenius in the ordinary case and using
the square Frobenius, which is the Frobenius whose action on the residue field is the

square of the absolute Frobenius, in the supersingular case. This gives an isomorphism

H_{\mathscr{A}}^{1}(S, \mathscr{H}^{\vee}\otimes \mathrm{S}\mathrm{y}\mathrm{m}^{j}\mathscr{H}(1))\cong(\mathscr{H}^{\vee}\otimes \mathrm{S}\mathrm{y}\mathrm{m}^{j}\mathscr{H})/K $\omega$\otimes$\omega$^{*\vee j}.

Hence we have an isomorphism

(6.2) H_{\mathscr{A}}^{1}(S, i_{z_{0}}^{*}(\displaystyle \mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1)))\cong\prod_{j\geq 0}(\mathscr{H}^{\vee}\otimes \mathrm{S}\mathrm{y}\mathrm{m}^{j}\mathscr{H})/K $\omega$\otimes$\omega$^{0,j}.
We note that when restricted to torsion points z_{0} ,

the filtered Frobenius module  i_{z_{0}}^{*}(\mathscr{H}_{U}^{\vee}\otimes
\mathscr{L}\mathrm{o}\mathrm{g}(1))) splits into pure components. Our main result in the p‐adic case is the follow‐

ing.

Theorem 6.2 ([BKT] Theorem 5.6). Denote by i_{z_{0}}^{*}\mathscr{P} be the pull‐back of \mathscr{P} by

i_{z_{0}} to S. Then the image of [i_{z_{0}}^{*}\mathscr{P}] in H_{\mathscr{A}}^{1}(S, i_{z_{0}}^{*}(\mathscr{H}_{U}^{\vee}\otimes \mathscr{L}\mathrm{o}\mathrm{g}(1))) through the isomor‐

phism (6.2) is

\displaystyle \sum_{m,k\underline{>}1}\frac{e_{-m,k}^{(p)}(z_{0})}{$\Omega$_{\mathfrak{p}}^{k-m-1}}( $\omega$\otimes$\omega$^{m,k-1}+$\omega$^{*}\otimes$\omega$^{m-1,k})
Remark. When p\geq 5 is an ordinary prime, our result for m=k=1 essentially

coincides with the calculation of the syntomic regulator for CM elliptic curves given in

[CD] and [Bes2].

§7. The elliptic polylogarithm function

The proof of the main theorems are given by solving explicit differential equations
in each realization. In the real Hodge case, holomorphic functions giving the \mathbb{R}‐Hodge
structure of the elliptic polylogarithm satisfy the iterated differential equations. In the
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p‐adic case, the p‐adic overconvergent functions giving the Frobenius structure of the

elliptic polylogarithm sheaf satisfy an analogous iterated differential equations.
In the real Hodge case, the differential equation giving the \mathbb{R}‐Hodge structure un‐

derlying the elliptic polylogarithm sheaf is given by

dD_{m,n}(z)=-D_{m-1,n}(z)dz-D_{m,n-1}(z)dF(z)

for m>0, n\geq 0 ,
with D_{0,n}(z)=L_{n}(z) ,

and D_{m,n}(z)=0 for n<0 . This is the

elliptic analogue of the differential equation (1.1), and we solve this equation in terms

of functions related to the Eisenstein‐Kronecker‐Lerch series. See the original paper

[BKT] for details.

We next consider the p‐adic case. In the case of \mathbb{P}^{1}\backslash \{0, 1, \infty\} ,
the p‐adic analogues

\ell(p)(t) of Li(t) are given as the unique solutions as overconvergent functions of the

differential equations

\displaystyle \ell_{k+1}^{(p)}(t)=\ell_{k}^{(p)}(t)\frac{dt}{t} (k\geq 0) ,

where

\displaystyle \ell_{0}^{(p)}(t)=\frac{t}{1-t}-\frac{t^{p}}{1-t^{p}}.
These equations are the p‐adic analogues of (1.1). We consider such an analogue for

elliptic curves with complex multiplication. Let the notations be as in §6, before The‐

orem 6.2. In addition, let  $\pi$:=$\psi$_{E/K}(\mathrm{p}) as in the remark after Definition 5.5. We let

$\Theta$^{(p)}(z, w) := $\Theta$(z, w)-\overline{ $\pi$}^{-1} $\Theta$( $\pi$ z, w/\overline{ $\pi$}) and

---(p)(z, w):=\exp(-F_{1}(z)w)$\Theta$^{(p)}(z, w) .

Denition 7.1. We define the p‐adic version L_{n}^{(p)}(z) of the connection functions

as the coefficients

$\Xi$^{(p)}(z, w)=\displaystyle \sum_{n=0}^{\infty}L_{n}^{(p)}(z)w^{n-1}
of the Laurent expansion of ---(p)(z, w) with respect to w.

The functions L_{n}^{(p)}(z) correspond to a rational function of E defined over K . The

differential equation for the p‐adic elliptic polylogarithm function is given by

(7.1) dD_{m,n}^{(p)}=-D_{m-1,n}^{(p)}dz-D_{m,n-1}^{(p)}dF_{1}
for m>0, n>0 ,

with D_{0,n}^{(p)}=L_{n}^{(p)} and D_{m,n}^{(p)}=0 for n\leq 0.

Proposition 7.2. The differential equation (7.1) has a unique system of solu‐

tions as overconvergent functions on E minus the residue disc around [0].

The proof of the above result follows from the following stronger result.
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Proposition 7.3. We let D_{m,n}^{(p)} form=0 or n\leq 0 as above. Then for integers

m, n>0 ,
there exists a unique system of overconvergent functions D_{m,n}^{(p)} on E minus

the residue disc around [0] iteratedly satisfy ing

(1) The differential equation dD_{m,n}^{(p)}=-D_{m-1,n}^{(p)} $\omega$-D_{m,n-1}^{(p)}$\omega$^{*}
(2) The distribution relation

(7.2) \displaystyle \sum_{z_{1}\in E[\mathfrak{p}](K)}G_{m,n}^{(p)}(z+z_{1})=0,
where F_{1}^{(p)}(z) :=F_{1}(z)-$\pi$^{-1}F_{1}( $\pi$ z) and

G_{m,n}^{(p)}=\displaystyle \sum_{k=0}^{n}\frac{(F_{1}^{(p)})^{n-k}}{(n-k)!}D_{m,k}^{(p)}.
Proof. See [BKT] Proposition 3.4 for details. The proof is done by induction on

N=m+n . The distribution relation for n=0 follows from the fact that G_{m,0}^{(p)}=
D_{m,0}^{(p)}=0 ,

and the result for m=0 follows from the definition of $\Theta$_{z_{0},0}^{(p)}(z, w) and the

distribution property of $\Theta$_{z_{0},0}(z, w) ([BKT] Proposition 2.14). Let N be an integer \geq 0

and suppose D_{a,b}^{(p)} exists for any a, b such that a+b<N . For any integer m, n>0

such that m+n=N ,
the differential

-D_{m-1,n}^{(p)} $\omega$-D_{m,n-1}^{(p)}$\omega$^{*}
defines a class in H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{1}(U_{k}/K) ,

where U_{k}:=U\otimes k for k:=\mathcal{O}_{K_{\mathfrak{p}}}/\mathfrak{p} and H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{1}(U_{k}/K) is

the rigid cohomology of U_{k} . It is known that H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{1}(U_{k}/K)=K $\omega$\oplus K$\omega$^{*} and that rigid

cohomology give the obstruction of integration of differential forms by overconvergent
functions. Hence for suitable constants c_{m,n}, c_{m,n}^{*}\in K ,

the differential form

-D_{m-1,n}^{(p)} $\omega$-D_{m,n-1}^{(p)}$\omega$^{*}+c_{m,n} $\omega$+c_{m,n}^{*}$\omega$^{*}
is integrable by some overconvergent function \overline{D}_{m,n} . From the distribution relation (7.2)
for D_{m-1,n}^{(p)} and D_{m,n-1}^{(p)} and the fact that the classes of  $\omega$ and  $\omega$^{*} in H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{1} are translation

invariant, we may prove that c_{m,n}=c_{m,n}^{*}=0 . If we let D_{m,n}^{(p)}:=\overline{D}_{m,n}+c for some

constant c\in K ,
then D_{m,n}^{(p)} also satisfies the distribution relation (7.2). This proves our

assertion. \square 

The Frobenius structure (or the square‐Frobenius structure in the supersingular

case) of the elliptic polylogarithm sheaf may be described explicitly using the functions

D_{m,n}^{(p)}(z) . The main ingredient in the proof of Theorem 6.2 is the following proposition,
which gives the relation between the p‐adic elliptic polylogarithm functions D_{m,n}^{(p)} and

the p‐adic distribution used in defining the p‐adic Eisenstein‐Kronecker numbers.
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Proposition 7.4. Let D_{m,n}^{(p)} be as above and let z_{0} be a non‐zero torsion point

of E(K) of order prime to \mathfrak{p} . Denote by

\hat{D}_{z_{0},m,n}^{(p)}(s):=D_{m,n}^{(p)}(z+z_{0})|_{z= $\lambda$(s)}

the expansion of D_{m,n}^{(p)}(z+z_{0}) with respect to the formal parameter s=-2x/y at the

origin. Then we have the equality

\displaystyle \sum_{n=0}^{b}\frac{\hat{F}_{z_{0},1}(s)^{b-n}}{(b-n)!}\hat{D}_{z_{0},m,n}^{(p)}(s)=(-$\Omega$_{\mathfrak{p}})^{m}\int_{\mathcal{O}_{K\mathfrak{p}}^{\times}}x^{-m}\exp(x $\lambda$(s)/$\Omega$_{\mathfrak{p}})d$\mu$_{z_{0},b}(x)
of formal power series in \mathbb{C}_{p}[[s]].

Proof. See [BKT] Proposition 3.9 for details of the proof. We prove the proposition
for any integer b\geq 0 by induction on m . The case for m=0 follows from the formula

\displaystyle \sum_{n=0}^{b}\frac{(-F_{1}(z))^{b-n}}{(b-n)!}L_{n}(z)=F_{b}(z)
and the calculation of the restriction of the measure $\mu$_{z_{0},b} from \mathcal{O}_{K_{\mathfrak{p}}} to \mathcal{O}_{K_{\mathfrak{p}}}^{\times} , noting
that D_{0,n}(z)=L(z) and that the distribution $\mu$_{z_{0},b} is defined using F_{b}(z) . Suppose
that the statement is true for m>0 . We first prove that the two sides for m+1 differ

only by a constant, using the induction hypothesis and the fact that both sides satisfy
the differential equation  df_{m+1}=-f_{m} $\omega$ ,

where  $\omega$=$\lambda$'(s)ds on each residue disc. We

then prove that the constant is zero, using that both sides of the equality satisfy a

distribution relation on each residue disc with respect to  $\pi$‐torsion points (derived from

(7.2) for the left hand side, and derived from the fact that  $\mu$_{z_{0},b} is a distribution for the

right hand side). \square 
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