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Unramied extensions and geometric \mathbb{Z}_{p}‐extensions

of global function fields

By

Tsuyoshi Itoh *

Abstract

We study on finite unramified extensions of global function fields (that is, function fields

of one variable over a finite field). We show two results. One is an extension of Perret�s result

about the ideal class group problem. Another is a construction of a geometric \mathbb{Z}_{p} ‐extension

which has a certain property.

§1. Main theorems

Throughout the present paper, we fix a prime number p and a finite field \mathrm{F} of

characteristic p . Let q be the number of elements of F. Recall that a global function

field is a function field of one variable over a finite field. Let k be a global function

field with full constant field F. We also recall that a finite algebraic extension K/k is

geometric if and only if the constant field of K is also F.

It is known that there is a finite abelian group G which is not isomorphic to the

divisor class group of degree 0 of any global function field (Stichtenoth [20]). On the

other hand, Perret [16] showed the following:

Theorem 1.1 ([16]). For any given finite abelian group G ,
there is a finite sep‐

arable geometric extension k/\mathrm{F}(T) such that \mathrm{C}1(\mathcal{O})\cong G ,
where \mathcal{O} is the integral closure

of \mathrm{F}[T] in k and \mathrm{C}1() is the ideal class group of \mathcal{O}.

This theorem is shown by using the following:
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Theorem 1.2 ([16]). For any given finite abelian group G ,
there is a global func‐

tion field k with full constant field \mathrm{F} and a non‐empty finite set S of places of k such

that Cl(k) \cong G ,
where Cl(k) is the S ‐class group of k.

Let S be a non‐empty finite set of places of k
,

and H(k) the S‐Hilbert class

field of k
,

that is, the maximal unramified abelian extension field of k in which all

places of S split completely (see [17]). We note that Cl(k) \cong \mathrm{G}\mathrm{a}1(H_{S}(k)/k) by class

field theory. Hence Theorem 1.2 also implies the existence of k and S which satisfy

\mathrm{G}\mathrm{a}1(H_{S}(k)/k)\cong G. (More precisely, we can take k and S such that H_{S}(k)/k is a

geometric extension. See [16].)
In the present paper, we extend the above result to non‐abelian finite groups. We

will show the following:

Theorem 1.3. For any given finite group G ,
there is a global function field

k with full constant field \mathrm{F} and a non‐empty finite set S of places of k such that

\mathrm{G}\mathrm{a}1(\tilde{H}_{S}(k)/k)\cong G ,
where H(k) denotes the maximal unramied Galois extension

field of k in which all places of S split completely. Moreover, we can take k and S such

that \tilde{H}_{S}(k)/k is a geometric extension.

See Ozaki [15] for the number field case.

We will prove Theorem 1.3 in section 2. Our proof is due to Perret�s idea (see
[16]). That is, we will construct an unramified G‐extension, and take a sufficiently large
set S of places such that \mathrm{G}\mathrm{a}1(\tilde{H}_{S}(k)/k)\cong G. (We use the term

((G‐extension� as a

Galois extension whose Galois group is isomorphic to G. ) To construct an unramified

G‐extension, we shall show an analog (Theorem 2.2) of Fröhlich�s classical result [4] for

number fields.

In section 3, we shall apply Perret�s idea to Iwasawa theory. Let k be a global
function field with full constant field \mathrm{F}, S a non‐empty finite set of places of k . We

recall that a \mathbb{Z}_{p} ‐extension is an infinite Galois extension whose Galois group is topo‐

logically isomorphic to the additive group of the ring \mathbb{Z}_{p} of p‐adic integers. Let k_{\infty}/k
be a geometric \mathbb{Z}_{p} ‐extension, that is, k_{\infty}/k is a \mathbb{Z}_{p} ‐extension which satisfies that every

finite subextension over k is a geometric extension (see, e.g., [7]). (Recall that p is the

characteristic of F.) We assume that

(A) only finitely many places of k ramify in k_{\infty}/k ,
and

(B) all places of S split completely in k_{\infty}/k.

Under these assumptions, we can treat Iwasawa theory for the S‐class group (see [17]).
For a non‐negative integer n

,
let k_{n} be the nth layer of k_{\infty}/k . That is, k_{n} is the unique

subfield of k_{\infty} which is a cyclic extension over k of degree p^{n} . Moreover, let A_{n} be the
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Sylow p‐subgroup of the S‐class group of k_{n} . (Here we use the same symbol S as the

set of places of k_{n} lying above S. ) We put X_{S}=\displaystyle \lim_{\leftarrow}A_{n} ,
where the projective limit is

taken with respect to the norm maps. We call X_{S} the Iwasawa module of k_{\infty}/k for the

S‐class group. We put  $\Lambda$=\mathbb{Z}_{p}[[\mathrm{G}\mathrm{a}1(k_{\infty}/k)]] . Note that  $\Lambda$\cong \mathbb{Z}_{p}[[T]] . It is known that

X_{S} is a finitely generated torsion  $\Lambda$‐module, and the �Iwasawa type formula� holds for

 A_{n} (see [17]). That is, there are non‐negative integers  $\lambda$,  $\mu$ ,
and an integer  v such that

|A_{n}|=p^{ $\lambda$ n+ $\mu$ p^{n}+ $\nu$} for all sufficiently large n . Aiba [1] studied these invariants  $\lambda$,  $\mu$ ,
and

 v for certain geometric \mathbb{Z}_{p} ‐extensions.

There is a natural problem: characterize the  $\Lambda$‐modules which appear as  X_{S} . (For
the number field case, the same problem is dealt in, e.g., [14], [5].) Concerning this

problem, we shall give the following result including �non‐abelian� cases.

Theorem 1.4. For any given finite p ‐group G ,
there exist a global function

field k with full constant field \mathrm{F}
,

a non‐empty finite set S of places of k
,

and a ge‐

ometric \mathbb{Z}_{p} ‐extension k_{\infty}/k satisfy ing the above assumptions (A) and (B) such that

\mathrm{G}\mathrm{a}1(\tilde{L}_{S}(k_{n})/k_{n})\cong G (as groups) for all n\geq 0 ,
where L(k) is the maximal unramied

Galois pro‐p‐extension field of k_{n} in which all places lying above S split completely.

For the number field case, Ozaki [14] showed that every �finite  $\Lambda$‐module� appears

as the Iwasawa module of a \mathbb{Z}_{p} ‐extension. Theorem 1.4 for G abelian gives a weak

analog of Ozaki�s result. That is, every finite  $\Lambda$‐module on which \mathrm{G}\mathrm{a}1(k_{\infty}/k) acts

trivially appears as X_{S} . We will prove Theorem 1.4 in section 3.

The author would like to express his thanks to the referee for giving valuable

comments. Especially, the referee gave many suggestions for improving the presentation.

§2. Proof of Theorem 1.3

§2.1. Function field analog of Fröhlich�s result

At first, we shall show that for any finite group G ,
there is an unramified geometric

extension K/k of global function fields such that \mathrm{G}\mathrm{a}1(K/k)\cong G . Recall that any finite

group can be embedded into a finite symmetric group. Hence it is sufficient to consider

the case that G is a finite symmetric group. For the number field case, Fröhlich already
showed the following result.

Theorem 2.1 ([4]). For every positive integer n
,

there is an unramied Galois

extension K/k of algebraic number fields such that \mathrm{G}\mathrm{a}1(K/k)\cong \mathfrak{S}_{n} , where \mathfrak{S}_{n} denotes

the symmetric group of degree n.

We will show the following:
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Theorem 2.2. For every positive integer n
,

there is a global function field k

with full constant field \mathrm{F} and an unramied geometric Galois extension K/k such that

\mathrm{G}\mathrm{a}1(K/k)\cong \mathfrak{S}_{n} . More precisely, there exist a geometric Galois extension K/\mathrm{F}(T) and a

subextension k/\mathrm{F}(T) of K/\mathrm{F}(T) such that K/k is unramied and that \mathrm{G}\mathrm{a}1(K/k)\cong \mathfrak{S}_{n}.

To prove this, we follow Fröhlich�s original argument (see also Malinin [10]). That

is, we construct a certain (ramified) \mathfrak{S}_{n} ‐extension over \mathrm{F}(T) and then we take a certain

base change of this extension. Let \infty be the infinite place of \mathrm{F}(T) .

Lemma 2.3. There is a Galois extension k' over \mathrm{F}(T) which satises all of the

following properties.

\bullet  k'/\mathrm{F}(T) is a geometric extension,

\bullet \mathrm{G}\mathrm{a}1(k'/\mathrm{F}(T))\cong \mathfrak{S}_{n} , and

\bullet \infty is unramied in  k'/\mathrm{F}(T) .

Proof. At first, we must see that there is an \mathfrak{S}_{n} ‐extension over \mathrm{F}(T) . This follows

from the fact that \mathrm{F}(T) is a Hilbertian field (see, e.g, [3, Corollary 16.2.7]). We put

A=\mathrm{F}[T] . For an element r of A
,

let \deg(r) be the degree of r as a polynomial of T.

Fix a monic separable polynomial F(X)\in A[X] of degree n such that the splitting field

of F(X) over \mathrm{F}(T) is an \mathfrak{S}_{n} ‐extension.

We claim that there is an element N_{F}\in A which satisfies the following property: if a

monic polynomial G(X)\in A[X] of degree n satisfies G(X)\equiv F(X)(\mathrm{m}\mathrm{o}\mathrm{d} N_{F}) ,
then the

splitting field of G(X) over \mathrm{F}(T) is also an \mathfrak{S}_{n} ‐extension. We shall show this claim. By

using the Chebotarev density theorem, we can take an irreducible monic polynomial p_{1}

such that if G(X)\equiv F(X)(\mathrm{m}\mathrm{o}\mathrm{d} p_{1}) then G(X) is irreducible and separable. Similarly,
we can take distinct irreducible monic polynomials p_{2}, p_{3} of A=\mathrm{F}(T) which are distinct

from p_{1} and satisfy the following properties: (i) if G(X)\equiv F(X)(\mathrm{m}\mathrm{o}\mathrm{d} p_{2}) then the

Galois group of G(X) contains a cycle of length n-1 (as a subgroup of \mathfrak{S}_{n} ), and (ii) if

G(X)\equiv F(X)(\mathrm{m}\mathrm{o}\mathrm{d} p_{3}) then the Galois group of G(X) contains a transposition. We

put N_{F}=p_{1}p_{2}p_{3} . This N_{F} satisfies the above claim. Moreover, we can take N_{F} which

is prime to T by the Chebotarev density theorem. We also fix such N_{F}.

To construct a geometric \mathfrak{S}_{n} ‐extension which is unramified at the infinite place,
we take G(X) as follows:

G(X)\equiv F(X) (\mathrm{m}\mathrm{o}\mathrm{d} N_{F}) ,

 G(X)\equiv ( \mathrm{a} product of distinct monic polynomials of degree 1) (\mathrm{m}\mathrm{o}\mathrm{d} r) ,
and

 G(X)\equiv ( \mathrm{a} separable polynomial) (\mathrm{m}\mathrm{o}\mathrm{d} T) ,

where r is a monic irreducible polynomial of A=\mathrm{F}[T] such that n<q^{\deg(r)}, \deg(r) is

odd, and r is prime to TN_{F} . By the first congruence, we see that the splitting field k'
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of G(X) is an \mathfrak{S}_{n} ‐extension. We shall show that the constant field of k' is F. Let \mathrm{F}

be the algebraic closure of F. We note that M:=k'\mathrm{n}\mathrm{F}(T) is a finite cyclic extension

over \mathrm{F}(T) . Since \mathrm{G}\mathrm{a}1(k'/\mathrm{F}(T))\cong \mathfrak{S}_{n}, M must be \mathrm{F}(T) or the unique quadratic subfield

in k'/\mathrm{F}(T) . If M\neq \mathrm{F}(T) ,
then no odd degree place of \mathrm{F}(T) splits in M . However,

we see that the place of \mathrm{F}(T) corresponding to r splits completely in k' by the second

congruence. It is a contradiction.

By the third congruence, we see that the place of \mathrm{F}(T) corresponding to T is

unramified in k' . We replace the indeterminate T by U=1/T ,
then the infinite place

of \mathrm{F}(U) is unramified in k' (and the former two conditions are also satisfied). \square 

We shall prove Theorem 2.2. We may assume that n\geq 2 . Fix a geometric \mathfrak{S}_{n^{-}}
extension k'/\mathrm{F}(T) satisfying the properties of Lemma 2.3. We put m=n! . We can

take a separable monic polynomial F(X)\in A[X] of degree m (as a polynomial of X )
whose splitting field over \mathrm{F}(T) is k' . Let M' be the unique quadratic subextension field

of \mathrm{F}(T) contained in k'

We define the following notation.

\bullet \{\mathfrak{p}_{1}, . ::, \mathfrak{p}_{t}\} : the set of distinct places of \mathrm{F}(T) which ramify in k' (hence are distinct

from \infty ).

\bullet \mathfrak{p}_{t+1} : a place \neq\infty, \mathfrak{p}_{1} ,
. . .

, \mathfrak{p}_{t} of \mathrm{F}(T) which is inert in M' and has degree >\displaystyle \frac{\log(m)}{\log(q)}.
\bullet \mathfrak{p}_{t+2} : a place \neq\infty of \mathrm{F}(T) which splits completely in k' and has odd degree

>\displaystyle \frac{\log(m)}{\log(q)} (hence is distinct from \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}, \mathfrak{p}_{t+1} ).

\bullet  p_{1} ,
. . .

, p_{t+2} : irreducible monic polynomials of A=\mathrm{F}[T] corresponding to \mathfrak{p}_{1} ,
. :.

; \mathfrak{p}_{t+2},

respectively.

Note that we can take \mathfrak{p}_{t+1} (resp. \mathfrak{p}_{t+2} ) by using Theorem 9. 13\mathrm{B} of [18], which is an

effective version of the Chebotarev density theorem for global function fields. (See also

[12], etc.) Indeed, by this theorem, there is a place of \mathrm{F}(T) of arbitrary sufficiently large

degree which is inert in M' (resp. splits completely in k' ), as M'/\mathrm{F}(T) is a geometric

cyclic extension (resp. k'/\mathrm{F}(T) is a geometric Galois extension).
By using Lemma 2.3, we can also construct an \mathfrak{S}_{m} ‐extension over \mathrm{F}(T) . Let H(X)

be a monic polynomial in A[X] of degree m which gives an \mathfrak{S}_{m} ‐extension. Then there is

an element N_{H} of A having the following property: if a monic polynomial G(X)\in A[X]
of degree m satisfies G(X)\equiv H(X)(\mathrm{m}\mathrm{o}\mathrm{d} N_{H}) ,

then the splitting field of G(X) over

\mathrm{F}(T) is also an \mathfrak{S}_{m} ‐extension (see the proof of Lemma 2.3). We can also take N_{H} such

that it is prime to p_{1} ,
. . .

, p_{t+2}.

We take a monic polynomial G(X) of A[X] (having degree m) which satisfies the

following conditions (2.1)(2.4).

(2.1) G(X)\equiv H(X) (\mathrm{m}\mathrm{o}\mathrm{d} N_{H}) .
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If G(X) satisfies (2.1), then G(X) gives an \mathfrak{S}_{m} ‐extension. Let L be the splitting field

of G(X) over \mathrm{F}(T) .

(2.2)  G(X)\equiv (a product of distinct monic polynomials of degree 1) (\mathrm{m}\mathrm{o}\mathrm{d} p_{t+1}) .

If G(X) satisfies (2.1) and (2.2), then we see that \mathfrak{p}_{t+1} splits in the unique quadratic

subextension, say M_{L} ,
over \mathrm{F}(T) contained in L . On the other hand, \mathfrak{p}_{t+1} is inert

in the unique quadratic subextension M' over \mathrm{F}(T) contained in k' . We claim that

k'\cap L=\mathrm{F}(T) . Indeed, suppose that k'\cap L\neq \mathrm{F}(T) . Then k'\cap L is a quadratic extension

over \mathrm{F}(T) . If n=2
,

this is clear. For n\geq 3 ,
we have \mathrm{G}\mathrm{a}1(L/\mathrm{F}(T))\cong \mathfrak{S}_{m} ,

where

m=n!\geq 5 . Observe also that k'\cap L\neq L ,
as m>n . Now, since the alternating group

\mathfrak{A}_{m} is the unique nontrivial proper normal subgroup of \mathfrak{S}_{m} when m\geq 5 (see, e.g., [19]),
k'\cap L is a quadratic extension over \mathrm{F}(T) . Since this quadratic extension is contained

in both k' and L
,

it must coincide with both M' and M_{L} at a time. This contradicts

the above observation on the behavior of \mathfrak{p}_{t+1} in M' and M_{L} . Thus, we have proved
the claim. Then we see Gal(Lk�/L) \cong \mathfrak{S}_{n}.

(2.3)  G(X)\equiv (a product of distinct monic polynomials of degree 1) (\mathrm{m}\mathrm{o}\mathrm{d} p_{t+2}) .

If G(X) satisfies (2.1)(2.3), then the odd degree place \mathfrak{p}_{t+2} splits completely in Lk'/\mathrm{F}(T) .

We claim that Lk'/\mathrm{F}(T) is a geometric extension. Note that the degree of a place of k' ly‐

ing above \mathfrak{p}_{t+2} is also odd because \mathfrak{p}_{t+2} splits completely in k' . Since Gal(Lk� /k' ) \cong \mathfrak{S}_{m}

and an odd degree place splits completely in Lk'/k' ,
we see that Lk'/k' is also a geo‐

metric extension. Hence the claim follows. By using Krasner�s lemma, we can see that

there is a positive integer s_{i} for each i=1
,

.

::,
t depending only on F(X) such that if

G(X)\equiv F(X)(\mathrm{m}\mathrm{o}\mathrm{d} p_{i}^{s_{i}}) then L\mathrm{F}(T)_{\mathfrak{p}_{i}}=k'\mathrm{F}(T)_{\mathfrak{p}_{i}} ,
where \mathrm{F}(T)_{\mathfrak{p}_{i}} is the completion of

\mathrm{F}(T) at \mathfrak{p}_{i} (see, e.g., [13]). Hence if we take G(X) satisfying (2.1)(2.3) and

(2.4) G(X)\equiv F(X) (\mathrm{m}\mathrm{o}\mathrm{d} p_{i}^{s_{i}}) for i=1
,

.

::, t,

then we can see that Lk'/L is unramified at all places.
We can take G(X) satisfying (2.1)(2.4). By the above arguments, the extension

Lk'/L satisfies the assertion of Theorem 2.2. \square 

Remark. When G is abelian, an unramified geometric G‐extension was con‐

structed by Angles [2]. Moret‐Bailly [11] also gives a result which is very close to

ours. Probably, it seems that one can prove our main theorems by using the result

given in [11] instead of Theorem 2.2.

§2.2. Proof of Theorem 1.3

Since G is embedded into \mathfrak{S}_{n} for some n>0 ,
Theorem 2.2 implies that there exists

a global function field k with full constant field \mathrm{F} and an unramified geometric Galois

extension K/k such that \mathrm{G}\mathrm{a}1(K/k)\cong G.
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Proposition 2.4. There is a non‐empty finite set S of places of k such that (i)
all places of S split completely in K

,
and (ii) \tilde{H}_{S}(k)/k is a finite extension.

Proof. The crucial point of this proposition is choosing a set S to satisfy (ii). For

a positive integer N
,

we put

B_{N}= { \mathfrak{p}|\mathfrak{p} is a place of k having degree N, \mathfrak{p} splits completely in K/k. }.

Since K/k is a geometric extension, Theorem 9. 13\mathrm{B} of [18] implies that

|B_{N}|=\displaystyle \frac{q^{N}}{|G|N}+O(\frac{q^{N/2}}{N})
(recall that q is the number of elements of F). In particular, if N is sufficiently large,
then we obtain the inequality

|B_{N}|>\displaystyle \frac{q^{N/2}-1}{N}{\rm Max}(g-1,0) ,

where g is the genus of k . We fix an integer N which satisfies the above inequality.

According to Ihara�s theorem [8, Theorem 1(FF)], if S\supset B_{N} ,
then \tilde{H}_{S}(k)/k is a finite

extension. Hence we can take S to satisfy the conditions (i) and (ii). \square 

The rest of the proof of Theorem 1.3 is quite similar to Perret�s argument given in

[16]. We choose a set S of places which satisfies the conditions of Proposition 2.4. We

remark that K is contained in \tilde{H}_{S}(k) . For a nontrivial element  $\sigma$ of \mathrm{G}\mathrm{a}1(\tilde{H}_{S}(k)/K) ,
we

can take a place \mathfrak{P} of H(k) corresponding to  $\sigma$ by the Chebotarev density theorem.

We can take \mathfrak{P} which is unramified in \tilde{H}_{S}(k)/K . Let \mathfrak{p} be the place of k which is lying
below \mathfrak{P} . Since the decomposition field of \mathfrak{P} in \tilde{H}_{S}(k)/k contains K and K/k is a Galois

extension, we see that \mathfrak{p} splits completely in K/k . Then we see \tilde{H}_{S}(k)<\supset\tilde{H}_{S\cup\{\mathfrak{p}\}}(k)\supset K.
Replacing S\cup\{\mathfrak{p}\} by S and repeating the above operation, we can see that \tilde{H}_{S}(k)=K
for some finite set S . This implies \mathrm{G}\mathrm{a}1(\tilde{H}_{S}(k)/K)\cong G.

We recall that K/k is a geometric extension. Hence the final part of the theorem

follows. \square 

§3. Proof of Theorem 1.4

Firstly, we shall show the following:

Theorem 3.1. Let k be a finite Galois extension over \mathrm{F}(T) . Then, there exist a

non‐empty finite set S of places of \mathrm{F}(T) and a geometric \mathbb{Z}_{p} ‐extension F_{\infty}/\mathrm{F}(T) which

satisfy the following properties.
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\bullet F_{\infty}\cap k=\mathrm{F}(T) ,

\bullet all places of  S split completely in k,

\bullet both of  F_{\infty}/\mathrm{F}(T) and F_{\infty}k/k satisfy the assumptions (A) and (B) in section 1, and

\bullet the Sylow  p ‐subgroup of \mathrm{C}1(\mathrm{F}\mathrm{k}) is trivial for all n\geq 0,

where F_{n} is the nth layer of F_{\infty}/\mathrm{F}(T) . (We use the same symbol S as the set of places

lying above S. )

Proof. We take a place \mathfrak{p}_{0} of \mathrm{F}(T) which splits completely in k . We also take a

place \mathfrak{r} of \mathrm{F}(T) which is distinct from \mathfrak{p}_{0} and unramified in k . We claim that there is a

geometric \mathbb{Z}_{p} ‐extension F_{\infty}/\mathrm{F}(T) unramified outside \mathfrak{r} which satisfies that

\bullet \mathfrak{r} is totally ramified, and

\bullet \mathfrak{p}_{0} splits completely.

We shall show this claim. Let M be the maximal pro‐p abelian extension over \mathrm{F}(T)
which is unramified outside \mathfrak{r} . We know that \mathrm{G}\mathrm{a}1(M/\mathrm{F}(T)) is isomorphic to a countable

infinite product of the additive group of \mathbb{Z}_{p} (see [21], [9]). Hence there are infinitely

many geometric \mathbb{Z}_{p} ‐extensions which satisfy the above conditions.

By the above choice of F_{\infty} ,
we see F_{1}\cap k=\mathrm{F}(T) . We put k_{1}=F_{1}k . Then k_{1}/\mathrm{F}(T)

is a Galois extension, and \mathfrak{p}_{0} splits completely in k_{1} . We set S_{0}=\{\mathfrak{p}_{0}\} ,
and we use the

same symbol to denote the set of places lying above \mathfrak{p}_{0} . We can see that H(k) is a

finite Galois extension over \mathrm{F}(T) . We take a nontrivial element $\sigma$_{1} of \mathrm{G}\mathrm{a}1(H_{S_{0}}(k_{1})/k_{1}) .

By using the above argument, we can take a geometric \mathbb{Z}_{p} ‐extension F_{\infty}'/\mathrm{F}(T)
unramified outside \mathfrak{r} which satisfies

\bullet F_{\infty}'\cap F_{\infty}=\mathrm{F}(T) ,

\bullet \mathfrak{r} is totally ramified in F_{\infty}'F_{\infty} ,
and

\bullet \mathfrak{p}_{0} splits completely in F_{\infty}'.

Let F_{1}' be the initial layer of F_{\infty}'/\mathrm{F}(T) . Then we see that Fí \cap k_{1}=\mathrm{F}(T) and

k_{1}F_{1}'\cap H_{S_{0}}(k_{1})=k_{1} . We note that

Gal (F_{1}'H_{S_{0}}(k_{1})/k_{1})\cong Gal (F_{1}'k_{1}/k_{1})\times \mathrm{G}\mathrm{a}1(H_{S_{0}}(k_{1})/k_{1}) , Gal (F_{1}'k_{1}/k_{1})\cong Gal (F_{1}'/\mathrm{F}(T)) .

Hence there is an isomorphism

Gal (F_{1}'/\mathrm{F}(T))\times \mathrm{G}\mathrm{a}1(H_{S_{0}}(k_{1})/k_{1})\rightarrow^{\sim} Gal (F_{1}'H_{S_{0}}(k_{1})/k_{1}) .
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Let  $\tau$ be a generator of the cyclic group \mathrm{G}\mathrm{a}1(F_{1}'/\mathrm{F}(T)) ,
and $\tau$_{1} an element of

\mathrm{G}\mathrm{a}1(F_{1}'H_{S_{0}}(k_{1})/k_{1}) which is the image of ( $\tau,\ \sigma$_{1}) under the above isomorphism. We

can regard  $\tau$ as an element of \mathrm{G}\mathrm{a}1(F_{1}'H_{S_{0}}(k_{1})/\mathrm{F}(T)) . By the Chebotarev density theo‐

rem, there is a place \mathfrak{P}_{1} of F_{1}'H(k) which corresponds to $\tau$_{1} . Let \mathfrak{p}_{1} be the place of

\mathrm{F}(T) lying below \mathfrak{P}_{1} . We can take \mathfrak{P}_{1} such that \mathfrak{p}_{1} is not ramified in FíH (k1). Then

we see that \mathfrak{p}_{1} splits completely in k_{1} and is inert in Fí. We put S_{1}=S_{0}\cup\{\mathfrak{p}_{1}\}.
In general, \mathfrak{p}_{1} may not split completely in F_{\infty} . This is a problem because we need

the assumption (B). We remark that F_{\infty}F_{\infty}'/\mathrm{F}(T) is a \mathbb{Z}_{p}^{2} ‐extension unramified outside

\mathfrak{r} . We recall that \mathfrak{p}_{1} does not split in F_{1}' . Hence the decomposition field of F_{\infty}F_{\infty}'/\mathrm{F}(T)
for \mathfrak{p}_{1} is a \mathbb{Z}_{p} ‐extension over \mathrm{F}(T) . We denote it by F_{\infty}'' . We also note that F_{\infty}''/\mathrm{F}(T) is

the unique \mathbb{Z}_{p} ‐extension contained in F_{\infty}F_{\infty}' such that \mathfrak{p}_{1} splits completely. Then the

initial layer of F_{\infty}''/\mathrm{F}(T) must coincide with F_{1} . We replace F_{\infty} by F_{\infty}''.
We note that H_{S_{0}}(k_{1})<\supset H(k) by the definition of \mathfrak{p}_{1} . Similarly, we can choose

a place \mathfrak{p}_{2} , put S_{2}=S_{1}\cup\{\mathfrak{p}_{2}\} ,
and modify the \mathbb{Z}_{p} ‐extension such that all places of S_{2}

splits completely. Repeating this operation, we see that H_{S_{t}}(k_{1})=k_{1} for some finite set

S_{t} . From the above construction, we see that F_{\infty}\cap k=\mathrm{F}(T) and that F_{\infty}k/k satisfies

the assumptions (A) and (B).
Finally, we shall give an Iwasawa‐theoretic argument. In F_{\infty}k/k ,

all ramified places

(which are lying above r) are totally ramified. From this, we also see H_{S_{t}}(k)=k . Let

A_{n} be the Sylow p‐subgroup of \mathrm{C}1_{S_{t}}(kF_{n}) . By the above results, we see that both of

A_{0} and A_{1} are trivial. In this situation, we can use the method given in Fukuda [6].
Namely, if all places which ramify in F_{\infty}k/k are totally ramified and both of A_{0} and

A_{1} are trivial, then A_{n} is trivial for all n\geq 0 . (See [6, Theorem 1]. We note that the

same method is also applicable for our situation.) Hence we see that A_{n} is trivial for

all n\geq 0. \square 

We shall show Theorem 1.4. We fix a finite p‐group G . By using Theorem 2.2, we

can take a geometric Galois extension K/\mathrm{F}(T) and a subextension k/\mathrm{F}(T) of K/\mathrm{F}(T)
such that K/k is unramified and \mathrm{G}\mathrm{a}1(K/k)\cong G . By Theorem 3.1, we can take a

geometric \mathbb{Z}_{p} ‐extension F_{\infty}/\mathrm{F}(T) and a set S of places of \mathrm{F}(T) such that F_{\infty}\cap K=

\mathrm{F}(T) ,
all places of S split completely in K

,
both of F_{\infty}/\mathrm{F}(T) and F_{\infty}K/K satisfy the

assumptions (A) and (B), and A_{n} is trivial for all n\geq 0 (where A_{n} is the Sylow p‐

subgroup of \mathrm{C}1_{S}(F_{n}K) ,
and F_{n} is the nth layer of F_{\infty}/\mathrm{F}(T) ). We note that F_{\infty}k/k

also satisfies the assumptions (A) and (B). We claim that \tilde{L}_{S}(F_{n}K)=F_{n}K for all

n\geq 0 . Indeed, if \tilde{L}_{S}(F_{n}K)/F_{n}K is nontrivial, then there is a nontrivial finite Galois

p‐subextension over F_{n}K . Moreover, there is a nontrivial finite abelian p‐subextension

over F_{n}K because every p‐group is solvable. Since A_{n} is trivial, it is a contradiction.

We have shown the above claim. This implies that \tilde{L}_{S}(F_{n}k)=F_{n}K because F_{n}K/F_{n}k
is unramified and all places of F_{n}k lying above S split completely in F_{n}K . Hence
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\mathrm{G}\mathrm{a}1(\tilde{L}_{S}(F_{n}k)/F_{n}k)\cong G for all n\geq 0 . Then the theorem follows. \square 
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