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Abstract

In this paper we review some of our recent results on discrete‐state spiking neuron models.

The discrete‐state spiking neuron model is a wired system of shift registers and can generate
various spike‐trains by adjusting the pattern of the wirings. In this paper we show basic

relations between the wiring pattern and characteristics of the spike‐train. We also show a

learning algorithm which utilizes successive changes of the wiring pattern. It is shown that

the learning algorithm enables the neuron to approximate various spike‐trains generated by a

chaotic analog spiking neuron.

§1. Introduction

Various simplified spiking neuron models have been investigated from both fun‐

damental and application viewpoints [1]-[17] . For example, integrate‐and‐fire models

(including periodically driven ones) have been used to investigate spike‐based infor‐

mation coding functions [3]-[26] . Also, the integrate‐and‐fire models have been used

to construct pulse‐coupled neural networks whose application potentials include image

processing based on synchronization phenomena [7][6]. Inspired by such neuron models,
we have proposed discrete‐state spiking neurons (DSNs) [11]-[17] that can be regarded as

discrete‐state versions of simple analog neuron models as shown in Fig.1. The DSN can

be implemented as a wired system of shift registers. We emphasize that the wiring pat‐

tern among the registers is a key parameter because the DSN can generate spike‐trains

having various inter‐spike intervals (ISIs) by adjusting the wiring pattern. We have

explored some fundamental questions on the DSN and have investigated approaches
towards the questions as the followings.
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Figure 1. (a) Basic dynamics of integrate‐and‐fire neuron models in [2] [8] [10]. A potential v

repeats integrate‐and‐fire dynamics between a threshold Th and a reset level  $\rho$(t) . The periodic
reset level  $\rho$(t) can realize rich bifurcation phenomena. z(t) is an output spike‐train. (b) Basic

dynamics of the discrete‐state spiking neuron [11]. The black box corresponds to the potential
v and the white circle corresponds to the reset level  $\rho$(t) . The black box repeats shift‐and‐reset
dynamics that can be regarded as a discrete‐state version of the integrate‐and‐fire dynamics.
Y is an output spike‐train.

\bullet Pulse coding: What kind of information set can the DSN encode into spike‐trains? We

have analyzed basic characteristics of the spike‐train and its symbolic dynamics [11][12].
\bullet Communication application: Are the spike‐trains of the DSN applicable to some engi‐

neering applications? We have clarified that the DSN can be applied to so‐called ultra‐

wide band impulse radio technology [18] which utilizes spike‐trains as spread spectrum

codes [13][14].
\bullet Learning: Can the DSN mimic unknown neuron dynamics? We have shown that the

DSN can mimic another DSN with unknown parameter and an analog chaotic spiking
neuron model by using a learning algorithm which utilizes successive changes of the

wiring pattern [15]-[17].

In this paper we review some of our recent results on the last topic. First, we show basic

relations between the wiring pattern and ISI characteristics. Some important results

are summarized into a theorem. Second, based on the theorem, we show a learning

algorithm. We then consider learning abilities of the DSN, where the DSN is used as

a student and a chaotic analog spiking neuron [9] is used as a teacher. It is shown

that, using the learning algorithm, the student can approximate various spike‐trains

generated by the analog teacher.

Significances of this paper are many, include the following points.

(a) Various discrete‐state dynamical systems have been investigated from both funda‐

mental and application viewpoints, e.g., cellar automaton and pseudo‐random number

generator [19]-[22] . Then our problem setting
�

synthesis of a spiking neuron model by
discrete‐state dynamics� per se would be an important fundamental problem. In ad‐

dition, consideration of such a problem will contribute to develop a new discrete‐state
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Figure 2. discrete‐state spiking neuron (DSN). M=7 . (a) The DSN is a wired system
of x‐cells and p‐cells that are shift registers. (b) The shift‐and‐reset dynamics. (c) Output
spike‐train Y.

dynamical system with bio‐inspired learning and/or coupling mechanisms [5][23].

(b) The presented learning algorithm is based on change of the wiring pattern and thus

it is suited for implementation based on reprogramming of a crossbar‐switch on a field

programmable gate array. On the other hand, if a learning algorithm utilizes change of

analog parameter values, it is troublesome to implement the algorithm in an electronic

circuit.

(c) We have investigated a simple pulse‐coupled network of DSNs and its applications
to spike‐based information coding and multiplex communication [11]. We have also in‐

vestigated application of the DSN to ultra‐wide‐band impulse‐radio technology [13][14].
The results of this paper will contribute to develop learning methods for such digital

pulse‐coupled network and applications.

(d) The neural prosthesis (replacement of damaged biological neurons by artificial neu‐

rons, e.g., cochlea implant and brain implant) is a recent hot topic [24]-[27] . In order

to develop the neural prosthesis, a fundamental problem is construction of an artificial

neuron model that can mimic biological neurons. Hence the results of this paper will

be fundamentals to develop the neural prosthesis in the future.

§2. Discrete‐State Spiking Neuron

In this section we introduce the discrete‐state spiking neuron (DSN) and explain
its basic dynamics [11]. The DSN operates on a discrete time t=0 , 1, 2, \cdots

. As shown

in Fig.2(a), the DSN has  M pieces of p‐cells that are indexed by i\in\{0, 1, \cdots, M-1\},
where M\geq 2 . Each p‐cell has a digital state p_{i}(t)\in B :=\{0 ,

1 \} . The p‐cells are
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ring‐coupled and are governed by

p_{i}(t+1)=p(t) for 1\leq i\leq M-1,
(2.1)

p_{0}(t+1)=p_{M-1}(t) .

In this paper initial states of the p‐cells are fixed to p_{0}(0)=1 and p_{k}(0)=0 for all

k\neq 0 . Then the p‐cells oscillate periodically with period M . As shown in Fig.2(a),
the DSN has one‐way reconfigurable wirings from the left terminals (l_{0}, \cdots, l_{M-1}) to

the right terminals (r_{0}, \cdots, r_{M-1}) . The left terminals accept a state vector P(t) :=

(p_{0}(t), \cdots,p_{M-1}(t))^{t}\in B^{M} of the p‐cells. Each left terminal l_{i} has one wiring, and

each right terminal r_{j} can accept any number of wirings. In order to describe pattern

of the wirings, let us introduce an M\times M wiring matrix A whose element is defined

by a(j, i)=1 if the left terminal l_{i} is wired to the right terminal r_{j} ; and a(j, i)=0
otherwise. The DSN in Fig.2(a) has the following wiring matrix.

(2.2) A=\left(\begin{array}{l}
0000000\\
0010000\\
1000000\\
0000000\\
0000101\\
0100000\\
0001010
\end{array}\right)
The wiring matrix A has one �1� in each column. The right terminals (r_{0}, \cdots, r_{M-1})
output a base signal b(t) :=(b_{0}(t), \cdots, b_{M-1}(t))^{t}\in B^{M} which can be described by

(2.3) b(t)=AP(t) .

In Fig.2(b), white circles represent a base signal b(t) which corresponds to the wiring

pattern in Fig.2(a). Here let us consider the x‐cells. Each j‐th x‐cell has a digi‐
tal state x_{j}(t)\in B . Also, as shown in Fig.2(a), the x‐cell has three digital inputs

\{b_{j}, x_{M-1}, x_{j-1}\} ,
where x_{-1}:=0 . The x‐cell operates as follows: x_{j}(t+1)=x_{j-1}(t) if

x_{M-1}(t)=0 ,
and x_{j}(t+1)=b(t) if x_{M-1}(t)=1 . Let (x_{0}(t), \cdots, x_{M-1}(t))^{t}:=X(t)\in

 B^{M} be a state vector of the x‐cells, and let S((x_{0}, \cdots, x_{M-1})^{t})=(0, x_{0}, \cdots, x_{M-2})^{t}
be a shift operator. Then dynamics of the x‐cells is described by

(2.4) X(t+1)=\left\{\begin{array}{l}
S(X(t)) \mathrm{i}\mathrm{f} x_{M-1}(t)=0, (\mathrm{S}\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{t})\\
b(t) \mathrm{i}\mathrm{f} x_{M-1}(t)=1. (\mathrm{R}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{t})
\end{array}\right.
Basic dynamics of the x‐cells is shown in Fig.2(b). A black box at (t, j) represents that

the x‐cell has state x_{j}(t)=1 . If the black box is below the highest position which is

indexed by j=M-1 ,
the black box is shifted upward. If the black box reaches the

highest position at t=t_{n} (i.e., x_{M-1}(t_{n})=1 ), the black box at t=t_{n}+1 is reset to
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Figure 3. Maps corresponding to the DSN in Fig.2. (a) Base index function $\beta$_{A}. (b) Phase map

F . The initial condition is $\theta$_{1}=0 and the phase map F generates the sequence ($\theta$_{1}, $\theta$_{2}, \cdots $\theta$_{7})=
(0,5,6,2,1,3,4). (c) Sequence (D_{1}, D_{2}, \cdots D_{7})= (5,1,3,6,2,1,3)of ISIs on the (D_{n}, D_{n+1}) ‐

plane.

the position of the white circle at t=t_{n} . At this reset moment, the DSN outputs a

spike x_{M-1}(t_{n})=1 . Repeating such shift‐and‐reset dynamics, the DSN oscillates. Let

(2.5) Y:=\{x_{M-1}(0), x_{M-1}(1), x_{M-1}(2), \}

and call Y a spike‐train. As a result, the dynamics of the DSN is described by Equations

(2.1), (2.3), (2.4) and (2.5). Also the DSN is characterized by the following parameters:

number M of p‐cells; number M of x‐cells; and elements a(j, i) of M\times M wiring matrix

A . Relations between the parameters (M, A) and characteristics of the spike‐train Y

is studied in the next section.

§3. Various Spike‐Trains and Problem Statement

In this section we show that the DSN can generate various spike‐trains Y by ad‐

justing the parameters (M, A) . Let us begin with defining inter‐spike interval (ISI) and

its periodicity (see also Fig. 2(\mathrm{c}) ).

Definition: An integer t\in Z_{\geq 0}=\{0 , 1, 2, \} is the spike position \mathrm{d}\mathrm{e}\mathrm{f}\Leftrightarrow x_{M-1}(t)=1.
Let us denote the spike positions by  t_{0}=0<t_{1}<\cdots in increasing order and call  t_{n}

the n‐th spike position. Let D_{n}=t_{n+1}-t_{n} and call it the n‐th ISI. A spike‐train Y is

periodic if there exists a positive integer Q such that t_{n+Q}\equiv t_{n}(\mathrm{m}\mathrm{o}\mathrm{d} M) for all n\geq 1.

In this case the minimum integer Q such that t_{n+Q}\equiv t_{n}(\mathrm{m}\mathrm{o}\mathrm{d} M) is said to be ISI

number of the periodic spike‐train Y . A sequence D:=(D_{1}, D_{2}, \cdots, D_{Q}) is said to be

ISI sequence of the periodic spike‐train Y. T:=\displaystyle \sum_{n=1}^{Q}D_{n} is said to be period of the

periodic spike‐train Y.

The spike‐train Y in Fig.2(c) can be characterized by

ISI number Q=7,
(3.1)

ISI sequence D= (5,1,3,6,2,1,3).
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In order to consider time evolution of spike position t_{n} (i.e., dynamics of t_{n} ), let us

define a base index function $\beta$_{A} : \mathrm{Z}_{\geq 0}\rightarrow \mathrm{Z}_{M}:=\{0, 1, \cdots, M-1\}, t\mapsto$\beta$_{A}(t) ,
which

satisfies

a($\beta$_{A}(t), t)=1

where t is treated as modulo M. Fig.3(a) shows the base index function $\beta$_{A}(t) corre‐

sponding to the DSN in Fig.2. As shown in these figures, the base index function $\beta$_{A}(t)
can be regarded as a time‐waveform of the base signal b(t) . Let us define the n‐th spike

phase $\theta$_{n} by

$\theta$_{n}=t_{n} (\mathrm{m}\mathrm{o}\mathrm{d} M)

where $\theta$_{n}\in Z_{M} . Then we obtain the following proposition.

Proposition:

(3.2) $\theta$_{n+1}=F($\theta$_{n}) :=$\theta$_{n}+M-$\beta$_{A}($\theta$_{n}) (\mathrm{m}\mathrm{o}\mathrm{d} M) , F:Z_{M}\rightarrow Z_{M}.

Proof of this proposition can be found in [15]. We refer to F as the phase map. In

addition, the ISI D_{n} is given by a function of the spike position t_{n} as follows.

D_{n}=M-$\beta$_{A}($\theta$_{n}) .

Fig.3(b) and (c) show the phase map F and a sequence of ISI D_{n} on the (D_{n}, D_{n+1}) ‐

plane that correspond to the DSN in Fig.2. In these figures, the initial condition is

$\theta$_{1}=0 ,
and the sequences ($\theta$_{1}, $\theta$_{2}, \cdots, $\theta$_{7})= (0,5,6,2,1,3,4) and (D_{1}, D_{2}, \cdots, D_{7})=

(5,1,3,6,2,1,3) are obtained. We can clarify basic relations between parameters (M, A)
and characteristics of the output spike‐train Y as follows.

\bullet The possible longest ISI is determined by the number  M of x‐cells, i.e., 1\leq D_{n}\leq M.

\bullet The possible maximum ISI number is determined by the number  M of p‐cells, i.e.,

1\leq Q\leq M . This is because the domain Z_{M} of the phase map F has M elements.

\bullet Various shapes of the phase map  F (i.e., rich dynamics of the phase $\theta$_{n} ) can be

realized by adjusting the wiring matrix A . This is because various shapes of the base

index function $\beta$_{A}(t) can be realized by adjusting the wiring matrix A.

In the next section we consider an approach toward the question.

Based on such richness of the spike phase dynamics, in this paper we consider the prob‐
lem statement depicted in Fig.4. The teacher spike‐train Ỹ is a given spike‐train which

has a teacher ISI sequence \tilde{D}=(\tilde{D}_{1}, \cdots,\tilde{D}_{Q^{-}}) ,
where the tilde� \sim, ,

represents �teacher�

hereafter. The teacher ISI sequence \tilde{D} is input to a student DSN. The student DSN

generates a student spike‐train Y which has a student ISI sequence D=(D_{1}, \cdots, D_{Q}) .

Now we have the following fundamental question.
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Can the student DSN reproduce or approximate the teacher ISI sequence \tilde{D} by using
a learning algorithm which utilizes successive changes of the wiring matrix A?

§4. Basic theorem and learning algorithm

In this section we give a basic theorem and define a distance between ISI sequences.

Using the theorem and the distance, we present a learning algorithm and demonstrate

its abilities by illustrative examples.

§4.1. {\rm Re}‐Wiring Theorem

Let us consider change of a wiring matrix A^{old} into a different wiring matrix A^{new}

We refer to such change of wiring matrix as re‐wiring. The superscripts �old� and

�new� represent �original version� and �re‐wired version,� respectively, hereafter. As

an example of A^{old}
,

let us use the M\times M wiring matrix A in Equation (2.2). First, the

wiring matrix A^{old} whose element is denoted by a^{old}(j, i) is transformed into an M\times M

matrix H^{old} whose element h^{old}(j, i) is defined by

(4.1) h^{old}(j, i)=\left\{\begin{array}{ll}
a^{old}(i-j, i) & \mathrm{f}\mathrm{o}\mathrm{r} j\leq i,\\
a^{old}(i-j+M, i) & \mathrm{f}\mathrm{o}\mathrm{r} j>i.
\end{array}\right.
TeacherTeacher

Spike‐trainSpike‐train

Teacher ISI sequenceTeacher ISI sequence

Student DSNStudent DSN

Student ISI sequenceStudent ISI sequence

Figure 4. A problem setting: can the student DSN reproduce or approximate the teacher

ISI sequence \tilde{D}=(\tilde{D}_{1}, \cdots,\tilde{D}_{Q^{-}}) by using a learning algorithm which is based on successive

changes of the wiring matrix A ?
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The wiring matrix A^{old}=A in Equation (2.2) is transformed into

(4.2) H^{old}=\left(\begin{array}{l}
0000100\\
0010000\\
0000001\\
0100000\\
0001000\\
1000000\\
0000010
\end{array}\right)
This matrix H^{old} can be regarded as transition matrix representation of the phase map

F in Fig.3(b). Hence we refer to H^{old} as transition matrix. Second, the transition

matrix H^{old} is changed into a different transition matrix H^{new} by swapping the r‐th

and the s‐th rows, and then swapping the r‐th and the s‐th columns. We refer to the

integers (r, s) as re‐wiring positions. As an example, let us use (r, s)=(5,6) . Then the

transition matrix H^{old} in Equation (4.2) is changed into

(4.3) H^{new}=\left(\begin{array}{l}
0000100\\
0010000\\
0000010\\
0100000\\
0001000\\
0000001\\
1000000
\end{array}\right)
Finally, the transition matrix H^{new} whose element is denoted by h^{new}(j, i) is trans‐

formed into a an M\times M wiring matrix A^{new} whose element a^{new}(j, i) is defined by

(4.4) a^{new}(j, i)=\left\{\begin{array}{ll}
h^{new}(i-j, i) & \mathrm{f}\mathrm{o}\mathrm{r} j\leq i,\\
h^{new}(i-j+M, i) & \mathrm{f}\mathrm{o}\mathrm{r} j>i.
\end{array}\right.
The matrix H^{new} in Equation (4.3) is transformed into

(4.5) A^{new}=\left(\begin{array}{l}
0000000\\
1010001\\
0000000\\
0000010\\
0000100\\
0100000\\
0001000
\end{array}\right)
Fig.5(a) shows the DSN with the re‐wired matrix A^{new} in Equation (4.5). We note that

a re‐wiring leads to change of at most four wirings of the DSN. In the case of Fig.5(a),
the three bold wiring are different from the wirings in Fig.2(a). Fig.5(b) shows the

phase map F^{new} of the re‐wired DSN. Let us explain how the phase map is changed by
the re‐wiring. We denote a transposition of m\in Z_{M} and n\in Z_{M} by $\sigma$_{m,n}( $\theta$) , i.e.,

(4.6) $\sigma$_{m,n}(m)=n, $\sigma$_{m,n}(n)=m and  $\sigma$_{m,n}( $\theta$)= $\theta$ for  $\theta$\neq m, n.
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Figure 5. {\rm Re}‐wired DSN. (a) The bold wirings are difference from the wirings in Fig.2(a). (b)
Phase map F^{new} . (c) Sequence of ISI D_{n} on the (D_{n}^{new}, D_{n+1}^{new}) ‐plane. (d) Output spike‐train
Y^{new} whose ISI sequence is difference from the ISI sequence in Fig.2(c).

Then, for given re‐wiring positions (r, s) ,
we have a relation F^{new}=$\sigma$_{r,s}\mathrm{o}F\mathrm{o}$\sigma$_{r,s}.

Actually, by comparing Fig.3(b) and Fig.5(b), we can confirm F^{new}=$\sigma$_{5,6}\circ F\circ$\sigma$_{5,6}.
\mathrm{F}\mathrm{i}\mathrm{g}.5(\mathrm{c}) shows a sequence of ISI D_{n} on the (D_{n}, D_{n+1}) ‐plane generated by the re‐wired

DSN. Fig.5(d) shows the spike‐train Y^{new} which is characterized by

ISI number Q^{new}=7,
(4.7)

ISI sequence D^{new}=(6,6,4,6,2,1,3) .

Comparing Equations (4.7) and (3.1), we can see that the ISI number is invariant

(Q^{new}=Q) but the ISI sequence is changed (D^{new}\neq D) by the re‐wiring. In the

following, we give some generalized results. We assume that the re‐wiring positions

satisfy 1\leq r<s\leq M-1 . We then introduce the following.

{\rm Re}‐wiring rule: A wiring matrix A^{old} is transformed into a transition matrix H^{old}

via Equation (4.1). The transition matrix H^{old} is changed into a transition matrix

H^{new} by swapping the r‐th and the s‐th lows, and then swapping the r‐th and the s‐th

columns. The transition matrix H^{new} is transformed into the re‐wired matrix A^{new}

via Equation (4.4).

We assume that the initial states x_{j}^{old}(0) and x_{j}^{new}(0) of the original and the re‐wired

DSNs are fixed to

x_{M-1}^{old}(0)=x_{M-1}^{new}(0)=1,
(4.8)

x_{k}^{old}(0)=x_{k}^{new}(0)=0 for k\neq M-1.

This initial state setting guarantees that the 1‐st spike positions of the original DSN

and the re‐wired DSN are to be t_{1}^{old}=0 and t_{1}^{new}=0 , respectively. Then we obtain
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the following theorem.

Theorem: Let a DSN have a wiring matrix A^{old} and let it generate a periodic spike‐
train with ISI number Q^{old} . Then, for arbitrary re‐wiring positions (r, s) ,

the re‐wired

DSN generates a periodic spike‐train with ISI number Q^{new}=Q^{old} . That is, the ISI

number is invariant under the re‐wiring rule.

Proof of this theorem can be found in [15]. By comparing Equations (3.1) and (4.7), we

can confirm the theorem. A role of the theorem in a learning is discussed in section 5.

§4.2. Distance of ISI sequences

Let a teacher ISI sequence \tilde{D} and a student ISI sequence D^{old} have the same ISI

number \tilde{Q} . We then define a distance between \tilde{D} and D^{old} as follows.

(4.9) C(\displaystyle \tilde{D}, D^{old})=\frac{1}{\tilde{T}}\sum_{n=1}^{\tilde{Q}}|\tilde{D}_{n}-D_{n}^{old}|, \tilde{T}=\sum_{n=1}^{\tilde{Q}}\tilde{D}_{n}.
That is, C is a Manhattan distance between \tilde{D} and D^{old} normalized by period \tilde{T} of the

teacher spike‐train Ỹ. For example ISI sequences \tilde{D}=(1,2,3) and D^{old}=(3,2,1) have

distance C=(|1-3|+|2-2|+|3-1|)/(1+2+3)=4/6 . The distance C measures

degree of differences between the ISI sequences \tilde{D} and D^{old} as follows.

\bullet  C(\tilde{D}, D^{old})=0 implies \tilde{D}=D^{old} . In this case the student DSN reproduces the

teacher ISI sequence \tilde{D}.

\bullet  C(\tilde{D}, D^{old})>0 implies \tilde{D}\neq D^{old} . In this case the student DSN approximates
the teacher ISI sequence \tilde{D} with distance C . A smaller distance C means a smaller

approximation error.

§4.3. Learning Algorithm

Using the distance C and the re‐wiring rule, we present the following learning

algorithm whose flow‐chart is in Fig.6.

Step 1. Initialization: Initialize the wiring matrix A^{old} as

(4.10) a^{old}(j, i) :=\left\{\begin{array}{l}
1\mathrm{f}\mathrm{o}\mathrm{r} j=M-1 \mathrm{a}\mathrm{n}\mathrm{d} i\neq\tilde{Q}-1,\\
1\mathrm{f}\mathrm{o}\mathrm{r} j=Q-1 \mathrm{a}\mathrm{n}\mathrm{d} i=\tilde{Q}-1,\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
for all i and j ,

where � denotes �substitution of the right side into the left side�

hereafter. Initialize a counter k for iteration number to k:=0.

Step 2. Re‐wiring: Generate random integers (r, s) such that 1\leq r<s\leq M-1.
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newnew
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\mathrm{K}\mathrm{k}\geq\mathrm{K}\mathrm{k}\geq

Figure 6. Learning algorithm.

Applying the re‐wiring rule with the re‐wiring positions (r, s) to A^{old}
,

create a re‐wired

matrix A^{new}

Step 3. Selection: If C(\tilde{D}, D^{new})\leq C(\tilde{D}, D^{old}) then go to step 4. If C(\tilde{D}, D^{new})>
C(\tilde{D}, D^{old}) then go to step 5. That is, the distance C is used as a cost function.

Step 4. Update: Update the wiring matrix as A^{old}:=A^{new}

Step 5. Termination: Let K be a given maximum iteration number. Increment the

counter k by one. If k<K ,
then go to step 2. If k\geq K ,

then terminate the algorithm.

In order to explore abilities of the learning algorithm, let us consider the following

example.

§4.4. Example: Approximation of analog chaotic neuron

As an example, let us study a problem setting where the teacher spike‐train Ỹ is

generated by an analog neuron model. As an example, let us use a chaotic analog spiking
neuron (ASN) that can be regarded as a two‐dimensional version of the integrate‐and‐
fire neuron [9]. The dynamics of the ASN is described by

\displaystyle \frac{d}{d $\tau$}\left\{\begin{array}{l}
x\\
y
\end{array}\right\}=\left\{\begin{array}{ll}
 $\delta$ & 1\\
-1 $\delta$ & 
\end{array}\right\}\displaystyle \left\{\begin{array}{l}
x\\
y
\end{array}\right\} for x<1,

(x($\tau$^{+}), y($\tau$^{+}))=( $\mu$, y( $\tau$)- $\lambda$(1- $\mu$))\mathrm{i}\mathrm{f}x( $\tau$)=1,

(4.11) z( $\tau$)=\left\{\begin{array}{l}
0 \mathrm{f}\mathrm{o}\mathrm{r} x( $\tau$)<1,\\
1 \mathrm{i}\mathrm{f} x( $\tau$)=1
\end{array}\right.
where  $\tau$ is a continuous time,  $\tau$^{+} denotes \displaystyle \lim_{ $\epsilon$\rightarrow 0} $\tau$+ $\epsilon$, x and y are analog states, and

z is an output. The ASN is characterized by the analog parameters ( $\lambda$,  $\mu$,  $\delta$) . Basic
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dynamics of the ASN is shown in Fig.7. If x<1 ,
the state x vibrates as shown

in Fig.7(a) and the trajectory of (x, y) rotates around the origin (0,0) as shown in

Fig.7(b). If x=1
,

the states (x, y) are reset to (, y- $\lambda$(1- $\mu$)) and a spike z=1 is

generated as shown in Fig.7(a). In the parameter case of Fig.7(b), the ASN generates a

periodic spike‐train z( $\tau$) whose ISIs \{s_{n}\} have real number values. In a steady state, we

sample q ISIs s:=(s_{1}, \cdots, s_{q}) ,
where the number of samples q=10 is commonly used

in this paper. The ISI sequence s in Fig.7(b) can be integerized into an ISI sequence

\tilde{D}= (4,6,4,6,4,6,4,6,4,6) with ISI number \tilde{Q}=2 . This ISI sequence \tilde{D} is used as a

teacher ISI sequence. Fig.8(a) shows a teacher spike‐train Ỹ represented by this teacher

ISI sequence \tilde{D} . As a student, a DSN with system size M=q is used. Fig.8(b) shows

the student spike‐trains Y^{old} just after the initialization in step 1. By the initialization,
the ISI number Q^{old} of the student spike‐train Y^{old} is to be identical with the ISI number

\tilde{Q}=2 of the teacher spike‐train Ỹ. The theorem guarantees that the ISI number Q^{old}
is invariant during the learning. Fig.8(c) and (d) show the student spike‐trains Y^{old}

after k=10 and k=50 learning iterations, respectively. In the case of Fig.8(d), the

student DSN reproduces the teacher ISI sequence \tilde{D} . Fig.9 shows characteristics of the

distance C . We can see that the DSN can approximate the teacher ISI sequence \tilde{D}

within distance C\simeq 0.01 in average after about k=150 learning iterations, and can

reproduce \tilde{D} in some learning trials.

Now, let us consider the case where the ASN generates a chaotic spike‐train. In

the parameter case of Fig.10, the ASN generates a chaotic spike‐train z( $\tau$) whose

ISIs \{s_{n}\} have real number values. In a steady state, we sample q=10 ISIs s:=

(s_{1}, \cdots, s_{q}) . The ISI sequence s in Fig.10 can be integerized into an ISI sequence

\tilde{D}= (3,6,8,3,8,1,3,7,2,9). This ISI sequence \tilde{D} is used as a teacher ISI sequence.

Fig.11(a) shows a teacher spike‐train Ỹ which is represented by this teacher ISI sequence

\tilde{D} . As a student, a DSN with system size M=q is used. The student accepts the ISI

sequence \tilde{D} as an input and obeys the learning algorithm. Fig. 11(\mathrm{b})-(\mathrm{d}) show student

spike‐trains Y^{old} in a learning trial. We can confirm that the student ISI sequence

D^{old} approaches to the teacher ISI sequence \tilde{D} as the learning proceeds. In the case of

Fig.11(d), the student DSN approximates the teacher ISI sequence \tilde{D} with the distance

C=6/50 . Fig.12 shows characteristics of the distance C . We can see that the DSN

can approximate the teacher ISI sequence \tilde{D} within distance C\simeq 0.15 in average after

about k=500 learning iterations. Note that, from a mathematical viewpoint, the DSN

with an arbitrary system size M (including  M\rightarrow\infty ) can be investigated. From a VLSI

implementation view point, however, the system size  M (number of shift registers) is

limited. Now we are analyzing relations between learning performances (e.g., conver‐

gence speed, number of local minima and their attraction domains, approximation error,

VLSI power consumption) for the system size M.
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(b)

(a)(a)(a)

101010

202020

Figure 7. Analog spiking neuron [9]. (a) Basic dynamics. (b) Periodic attractor and periodic
spike‐train z( $\tau$) .  $\delta$=0.18,  $\lambda$=1.0 and  $\mu$=-0.75.
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oldold
(b)(b)
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5050
oldold
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Figure 8. A learning trial. (a) Teacher spike‐train Ỹ whose ISI sequence \tilde{D} =

(4,6,4,6,4,6,4,6,4,6) is given by integerizing the periodic ISI sequence s in Fig.7(b). (\mathrm{b})-
(d) Student spike‐trains Y^{old} . (b) After initialization. D^{old}= (1,9,1,9,1,9,1,9,1,9) and

C= 30/50. (c) After k=10 learning iterations. D^{old}= (5,5,5,5,5,5,5,5,5,5) and

C= 10/50. (d) After k=50 learning iterations. D^{old}=\tilde{D} and C=0 . The student

DSN reproduces the teacher ISI sequence \tilde{D}.

80.80.

40.40.

\mathrm{a}\mathrm{v}\mathrm{e}.\mathrm{a}\mathrm{v}\mathrm{e}.
\displaystyle \max.\displaystyle \max.

\displaystyle \min.\displaystyle \min. 500500 10001000
Learning iterationsLearning iterations

Figure 9. Characteristics of the distance C for 40 learning trials. M=q=10 . The teacher

ISI sequence \tilde{D} is the integerized periodic ISI sequence in Fig.8.
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1010

2020 4040 6060

Figure 10. Chaotic attractor and chaotic spike‐train z( $\tau$) of the analog spiking neuron.  $\delta$=

0.18,  $\lambda$=1.0 and  $\mu$=-0.18.
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Figure 11. A learning trial. (a) Teacher spike‐train Ỹ whose ISI sequence \tilde{D} =

(3,6,8,3,8,1,3,7,2,9) is given by integerizing the samples chaotic ISI sequence s in

Fig.10. (\mathrm{b})-(\mathrm{d}) Student spike‐trains Y^{old} in a learning trial. (b) After initialization.

D^{old}= (1,1,1,1,1,1,1,1,1,1) and C= 40/50. (c) After 1 learning iteration. D^{old}=

(1,1,1,4,8,1,4,8,1,1) and C = 32/50. (d) After 150 learning iterations. D^{old} =

(3,3,8,3,8,3,4,7,2,9) and C=6/50.

80.80.

\mathrm{a}\mathrm{v}\mathrm{e}.\mathrm{a}\mathrm{v}\mathrm{e}.
40.40.
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\displaystyle \min.\displaystyle \min.

500500 10001000
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Figure 12. Characteristics of the distance C for 40 learning trials. M=q=10 . The teacher

ISI sequence \tilde{D} is the integerized and sampled chaotic ISI sequence in Fig.10.
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§5. Conclusions

We have introduced the DSN which is a wired system of shift registers. We have

shown basic relations between the pattern of the wirings and characteristics of the

spike‐train. We have also introduced the learning algorithm which utilizes successive

changes of the wiring pattern. We have shown that the DSN can approximate various

spike‐trains from the analog spiking neuron.

Let us consider the case where the ISI number of a teacher spike‐train is \tilde{Q}=M.
In this case the number of all the wiring matrixes of the student DSN is M^{M} . If the

learning algorithm randomly creates a re‐wired matrix without obeying the theorem,
the search space of the learning is the set of M^{M} wiring matrixes. In these M^{M} wiring

matrixes, however, there exist only (M-1)! wiring matrixes that lead to ISI number

M of the student spike‐trains. The significance of the theorem is that is can restrict the

search space from the M^{M} wiring matrixes into the (M-1)! wiring matrixes.

Future problems include the followings. (a) Analysis of the learning performances.

(b) Clarification of class of neuron models (and biological neurons) that can be mimicked

by the DSN. (c) Application of the DSN to neural prosthesis, e.g., cochlea implant and

brain implant [24]-[27].
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