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The Periodic Box-ball System and Tropical Curves

By

Shinsuke ITWAO*

Abstract

In this article, we study the box-ball system with finitely many kinds of balls. The box-ball
system is obtained from the hungry discrete Toda equation (hpd Toda eq.) by ultradiscretiza-
tion. We study the applications of the algebraic geometry and the tropical geometry to the
ultradiscrete integrable system(s).

§1. Introduction

The periodic box-ball system (pBBS) is a discrete dynamical system which consists
of an array of finitely many boxes in a line and a finite number of balls (see the figure
below). We regard that the rightmost box is connected to the leftmost one. In this
article, we consider pBBSs with finitely many kinds of balls. We distinguish these kinds
of balls by indices of positive integers written on them.

QO@ | @ 0O,

The time evolution rule of pBBS is defined as follows.
i) For each filled box, create a copy of the ball with index 1.
ii) Move each copy respectively to the nearest empty box on the right of it.
iii) Delete the original balls with index 1.

iv) Do the same procedure i)—iii) for the balls with index 2.
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v) Repeat these procedures for the balls with 3,4, ... until all the balls have moved.

We show an example of the time evolution of pBBS below. The letter “m” means

W

a ball with index m, and the sign means an empty box. (¢ : time).

t= L 1135002400
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We call a sequence of nondecreasing positive integers (for example “1135”, “24”) soliton.
The number of solitons does not change under the time evolution [8]. An N-soliton
system is a pBBS with N solitons. (The pBBS in the figure above is a 2-soliton system.)

Let M € Z~q. Let us consider N-soliton systems with M kinds of balls. Choose
one soliton arbitrarily and regard it as the “leftmost” soliton formally. (Of course actual

leftmost soliton cannot exist by periodicity). At time t € 7Z, let fomT_l be the number
of balls with index m in the n-th soliton from the left, and W be the number of empty
boxes between the n-th soliton and the (n + 1)-th soliton. Note that Qf,, vy = Q, and
W} .y =W, ForneZandt e (1/M)-Z, the time evolution rule of pBBS is expressed
as follows [8]:

(11) Q4 =min [W, Q4+ XL, Wi = Qhyy + Wi — QL
(X7 = maxp o' M, (Q, — Wi )])
(12) Zn:l Qib < ZnZI W’rtl

The inequality (1.2) reflects the fact that the number of empty boxes must be larger than

the number of moving balls. The integer Wy '™ M (k=1,2,...,M — 1) is the number of
empty boxes between two solitons when the balls with 1ndex k having finished moving.

Let {QY, M QMM WO}, be the initial condition of pBBS. Let us con-
sider the general solution {Q%, W'}, ;. Although it seems to be quite difficult to solve
the system (1.1)—(1.2) directly, the following proposition gives us another method to
obtain the solution.

Proposition 1.1.  ([5, 8]) Let € > 0 be a positive parameter. Assume that there
exists a set of functions {I' (), V.!(e)}nt such that

n

t
It vt
t—l—l ’

(14) Hn 1 n <Hn 1

(13) ItHi=rt pytoyita oyt

L n=I1Vin=V)
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If the limits
Qf = —lim._ o+ (clogll), W} :=—lim._o+ (clogV}!)
exist, then the set {QL, W} }n satisfies (1.1) and (1.2).

The discrete system (1.3)—(1.4) is called hungry periodic d-Toda equation (hpd Toda
eq.), and the operation ‘— lim,_,q+ £log -’ is usually called wltradiscretization. According
to the proposition above, the general solution of pBBS is the ultradiscretization of the
solution of hpd Toda equation.

In this article, we research the method to calculate the general solutions of pBBSs.
This article is organized as follows: In section 2, we introduce the method to solve the
hpd Toda equation according to [3]. In section 3, we review the integration theory
over tropical curves according to [4]. The results introduced in these two sections are
applied to pBBS in section 4. We study the relative cycle of pBBS by using the theory
of tropical curves.

§2. Solutions of the hpd Toda equation

We briefly introduce the theory of hpd Toda equation in this section. See [3], for
details.

§2.1. Linearization

Let y be a complex parameter. Define the matrices L;(y) and R;(y) as follows.

1 VE1/y Iy 1
Vil It
Lw=| " | R =| F
.. .. : 1
Vior 1 y It

The hpd Toda equation (1.3)—(1.4) is equivalent to the following equation:

(2.1) Ly (y)Reva(y) = Re(y)Le(y), te (/M) Z.

Define the new matrix X¢(y) := Li(y)R,  u_1(y)--- Ry 1 (y)Ri(y). Then equation

5
(2.1) becomes

(2.2) X (WR(y) = Ru(y)Xely),  te (/M) Z.

By equation (2.2), the characteristic polynomial of X;(y) does not depend on time ¢.
Therefore the algebraic curve defined by det(X;(y) — xE) = 0 does not depend on ¢
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either. (E is the unit matrix). Let
O(x,y) := det(Xy(y) — xF)
= fol@)y™ + fi(@)y™ -+ fa(@) + by

where f;(z) (¢ =0,1,..., M) is a polynomial in = of degree < iN/M, and h is a constant
[3, 7]. The plane complex curve defined by ® = 0 is called spectral curve. The spectral
curve is determined by the initial data {I9, I,{”Lf e I:IT_I , V01, of hpd Toda equation.
Let C' be the plane curve defined by ® = 0. The isospectral set Tc is a set of matrices
X (y) of which the spectral curve is C.

Assume C' is smooth hereafter. If (x,y) € C and X(y) € 7¢, then the number x
is an eigenvalue of X(y). Let v(x,y) be an eigenvector of X(y) which belongs to x.
Naturally v(z, y) is regarded as an element of PNV ~1. Moreover, when z is a simple root
of ®(z,y) (for fixed y), the element v(z,y) € PN~! is determined uniquely. As C is
smooth, the map (z,y) — v(z,y) can be extended to the proper map vy, : C — PN 1
uniquely. It is known that the image v x ) (C) C PN—1 is a projective curve of degree
d:=g+ N —1([3], §2.2). (g is the genus of C).

Let us consider the twisting sheaf Opn-1(1) over

U (y)Orrv-1(1).

The sheaf 1% ) Opn-1(1) can be identified to the element of Pic?C which is defined by
the pullback of C N H C PN~ (H is a hyperplane). The map oc : 7o 3 X(y) —
w}(y)OpN_l (1) e PictC is called eigenvector map.

PN—1 and its pullback

Let v(x,y) = (91,92, .-.,9nv_1,1)T, where g1,...,gn_1 are appropriate meromor-
phic functions of # and y. Then the element ¢ (X (y)) € Pic?C is the positive divisor
& of minimal degree such that (gz) +& > 0 (Vk). In fact, £ is the pullback of the

hyperplane {Xn = 0}, where (X; : X2 :---: Xy) is a set of homogeneous coordinates
for PN -1,
Remark 2.1. By concrete calculations, we can obtain the relation : (g1)e = €

([5], Remark 2.4), (7). This relation is quite convenient to calculate the image of given
matriz X (y) by the eigenvector map.

Let P : (z,y) = (0c0,00) and @ : (z,y) = (00,0) be two points on C. It follows
that:
el There exists a general effective divisor D of degree g s.t. pc(X(y)) = (91)00 =

D+ (N -1)Q.
2 po:To — Pic?C is injective.
* See [7]).

By the statement o2, to analyze X (y) € 7o and to analyze (X (y)) € PictC is
equivalent.
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Remark 2.2.  There uniquely exist two points P(c0,00), Q(00,0) on C. This is
a special property of the spectral curves of hpd Toda equation. In [7], they researched the
spectral curves on which {g.c.d.(N, M)} points Py, P,,....Pg : (z,y) = (00,00) ezist.
(G ={g.c.d.(N,M)}).

Let us proceed to the hpd Toda equation. Let X;(y) € 7¢ be the matrix defined
by the equation below (2.1). Let o (resp.T) be the action on 7¢ induced by the shift
of the indices of Q!, and W! as n + n + 1 (resp.t +— t + 1). These actions naturally
induce the action on Image(p¢).

It is possible to calculate these actions concretely. Define the complex numbers

Yo, Yis -+ YM—1 DY Y := (—1)N . Hfl\;l Iff/M. Hence it can be checked easily that there
exist M points Ag(0,¥0), 41(0,41), ..., Apr—1(0,ypr—1) on C.
Theorem 2.1.
L pc(o(X(y) =pc(X(y) + P —Q,

2. po(r(X(®) =pc(X(Y) + Ao+ A1+ + Ay — M- P.
Proof. [3], Prop 2.6 and Prop 2.16. O

The points P, Q, Ao, ..., Ay—1 do not depend on ¢ nor n. And the actions of o and
7 are commutative. Therefore, the arbitrary composite of o and 7 can be expressed as:

Corollary 2.2. LetD,:=P—Q, Dy :=Ag+A1+---+Ay_1— M -P. Then
pc(o"o%(X(y))) = pc(X(y)) + 1Dy + 8Dy
O

. .. . . d
In a word, the actions of o and 7 is linearized on Pic“C'.

8§ 3. The lattice integral over tropical curve

We introduce the theory of tropical curves in this section. The lattice integral over
tropical curve is an analogy of the holomorphic integral over complex curve [1, 6]. We
study the relation between these two “integrals” , according to [4].

§3.1. The tropical curve

A Tropical curve is an algebraic curve defined over the tropical semifield T :=
R U {400} equipped with the min-plus operation: “z + y”=min{z,y} and “zy”’ =z +y.
Here we consider tropical plane curves only.
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Definition 3.1.  Let ¢1, ¢2,. .., ¢y be polynomials of the form: ¢;(X,Y) = a; X+
b;Y +¢; (a;,b; € Z,c; € R). A tropical plane curve € is a subset of R? defined by

(3.1) ¢ :={(X,Y) € R?| the function min}_, [¢;(X,Y)] is not smooth.}

Hereafter we call these curves “tropical curves” simply. A tropical curve consists
of finitely many segments and half-lines, that are called edges of the tropical curve. A
verter of a tropical curve is a point which is contained by more than two segments or
half-lines.

The condition appeared in (3.1) is rewritten as:

(3.2) il ¢i(X,Y) = mini’_ [¢; (X, Y)]} > 2.
Hence, for A = (X,Y) € €, we define the non-negative integer I(A) by
I(A) 1= 4{i | 6:(X, V) = min_, [65(X, )]} — 2.
Definition 3.2.  The tropical curve € is reqular if
I1(A) =0 < A is a inner point of an edge, I[(A)=1<%< A is a vertex.

Remark 3.1. € is regular = € is 3-valent.

For the purpose of arguing about the ultradiscretization of algebraic curves, it is
convenient to consider the algebraic curves over the Puiseux field. Let e := e~/ and
K :=J3, C((e*?)). The Puiseux field K has the valuation map val : K — QU {+o0}
(val (e) =1, val(0) = +o00). When the ultradiscrete limit X := —lim._,pelogz (z € K)
exists, it follows that val (z) = X.

Define the subring R := {x € K |val(z) > 0} C K and the multiplicative group

R* :={z € K |val(x) = 0}.

Let ®(z,y) = >, ; ri jz'y? € K[z,y] be a polynomial over K. The tropicalization

of the algebraic curve C': ®(z,y) =0 is a set
TropC := {(X,Y) € R? | min; ; [val(r; ;) +iX + jY] is not smooth.}.
§3.2. Examples
3.2.1. Example 1

(3.3) O(z,y) = y* + (¢® + ex + e’y + e’
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Figure 1. Trop C and C' (Example I).

Let C be the algebraic curve defined by ®. Then it follows that:
TropC' = {(X,Y) | min[2Y,2X + Y, X +Y + 1,Y + 5, 20] is not smooth.}

(figure 1).

Trop C has four vertices. The vertex (X,Y) = (1,2) is associated with the points
in the curve C that are expressed by (z,y) = (rel,se?) (r,s € R*). Substituting
r =re! and y = se? to ®(z,y) = 0, we obtain 0 = s?e* + (r?e? + re? + e°)se? + el =
(52 + 125 + rs)e* + se” + e!'. When we take the limit ¢ — 0% (e — 0), the factor
52 4+ r2s 4+ rs must be dominant. Now we consider the Riemann surface defined by
s2 4+ 1r?s +rs = 0. First note that r,s € R*, which implies r,s # 0. The surface
{s+7r?+r =0} is a Riemann sphere with genus 0.

Similarly, vertices (1,9), (4,5), (4,6) are also associated with the following “small”
Riemann surfaces respectively:

r?s+rs+1=0, ?+rs+s=0, rs+s+1=0.

Each curve is of genus 0.

Figure 1 shows us the relation between C' and Trop C' schematically. Each Rie-
mann sphere is associated with a vertex. Let us call these “small” Riemann surfaces
subsurfaces.

3.2.2. Example II

C:®x,y)=y*+(@*+er* +elr+e)y+e’=0
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10

The subsurfaces associated with (1,3), (1,7) and (2,5) are expressed by:
s+ +1*=0, ris+1r’s+1=0, s*+r’s+rs+1=0

respectively. The first two are of genus 0, and the third one is of genus 1.
The figure above shows us the relation between C' and Trop C'. Although the genus
of C is 2, the genus of Trop C is 1.

Definition 3.3.  The algebraic curve C over K is non-degenerate if its subsur-
faces are irreducible and of genus 0.

§3.3. Lattice integral

The lattice integral is a linear form over a tropical curve, which is defined by the
metric over rational graph [6].

Let E be an edge of Trop C. The point x € E satisfies E : x = vy + tv, (0 <t < £).
The vector vy is the starting point of F and v is the primitive tangent vector for F.
Now we define the tropical length of E by ¢(E) := £.

Let B1,...,08y be a basis of H;(TropC,Z). We can define a natural bi-linear form
(+,+) over the space of paths on H;(TropC,Z). For this, we define (r,r) := £(r) for
non-self-intersecting path, and extend it to any pairs of paths bilinearly.

This bilinear form is called lattice integral because (f3;, -) can be regarded as an
element Hq(Z)" = H°(Q'). (2! is the cotangent sheaf of Trop C).

A period matriz of Trop C is a g X g matrix Bryep o i= ((ﬁi, ﬁj)> .
i\j
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Figure 2. An example of metric graph. It follows that (81,51) = £1 + €3 + {5 + s,
(B2, B2) = ba+ L+ Lo + L, (Br, B2) = (B2, B1) = —Lo.

§3.4. Complex integrals

Now we study the relation between the lattice integrals and the usual complex
integrals. For this, we consider the simplest case here.

Definition 3.4.  Let C be a curve given by the zeros of ® € Klx,y]. When C
satisfies the following conditions, we said that C' has a good tropicalization.
1) C is non-degenerate, 2) TropC is reqular, 3) generic condition.

Generic condition is an assumption for the coefficients of ® € Klz,y]. It may
happens that C becomes singular or has some strange property when these coefficients
take special values. We assume the generic condition to avoid these situations. See
[4],83, for details.

Next we proceed to the complex integrals. Let C' be a Riemann surface of genus g,
and aq,...,a4;01,...,0, € Hi(C,Z) be a canonical basis. When choosing (3;, we make
them have the same position and orientation as 1, ..., 8, € Hi(Trop,Z) on Trop C (see
the figure below). Define the holomorphic differentials wy, ..., w, on C s.t. fa,- wj = 0; 5,
and the g x g matrix Be = ([, wj)i;-

The following is the main result of [4].

Theorem 3.1. When C has a good tropicalization, it follows that

-1
27ie

B ~ Byop© (e —07T).

Corollary 3.2.  Let vy be an oriented path on C. When we define a path vy (abuse
of symbol) on Trop C' such that it has the same position and orientation as Yonc, then

/ win —E(1,8) (e —0M).

27ie
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§4. Application for pBBSs

In this section, we study the method to solve the problems about pBBSs by applying
the results of theorem 2.1 and theorem 3.1.

§4.1. Abel-Jacobi mapping

Let QY, Qnﬁ e ,Q% , W9 be an initial condition of pBBS. Using this, we define
the initial condition of hpd Toda equation by 7? = Kn,k eQﬁ/M, V9= )\, eWn (k =
0,1,...,M — 1), where Kk, and \,, are arbitrary elements of R*.

Let C be the spectral curve defined by the initial data. According to section 2,
the eigenvector mapping ¢ sends the matrix X (y) (2.2) into Pic?C. We can have the
general effective divisor D such that pco(X(y)) =D+ (N — 1)Q.

Fix a point Py € C. Let DivY (C) be the set of effective divisors of degree g on C.
Define the Abel-Jacobi mapping A : Div¥ (C) — C9/(Z9 + BcZ9) by

P; P; P;
AD):=>9_, (fPo wl’fPo wg,...,fpo wg> )

The image of A does not depend on the choice of integral paths. By the classical result,
if D is a general divisor, it is possible to determine the original divisor D uniquely from
the vector A(D). Therefore, to analyze the divisor D + (N — 1)@ and to analyze the
vector A(D) is equivalent.

Let D(X (y)) be the general effective divisor expressed by ¢c(X(y)) — (N — 1)Q.
By the statements of theorem 2.1 and corollary 2.2, the actions of o and 7 are expressed
by the following equation:

41)  A{D(" 0T (X(1)} = A{D(X())} + rvn +sv, € CI/(Z9 + BoZf),
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where v,, = (fgwl,...,fgwg>, vy :Zij\ial (flfiwl,...,flfiwg).

§4.2. Fundamental and relative period of pBBS

Definition 4.1.  The fundamental period of pBBS is the number of minimal time
steps until the state of pBBS returns to the same state as the initial condition.

Although it is possible to calculate the fundamental periods of pBBSs, we consider
another “period” here for simplicity.

Definition 4.2.  The relative period of pBBS is the minimal positive integer T" >

0 such that 3q €7 = Q?ﬁ; = Q! and Wﬁig = W_.

Remark 4.1.  The fundamental period can be calculated from the relative period
by combinatorial methods [9)].

Equation (4.1) shows us

wo(clom (X)) = pc(X(y)) < qua+Tv, =0 (mod (Z9+ BcZ9)).

§4.3. How to calculate the relative period

In this section, we study the method to calculate the relative periods. As a concrete
example, consider the state of pBBS below:

0 11...1112. . ..111. . 11111 ...
1 S 1112...111..... 11111.
2 11..1111..... 1112111, ... 1
3 SR P s R 0 2 I s s

Then we have

( 0 1/2 Q27 1/2 QB: 1/2 Q4, 1/2) (27 Oa 37 19 37 07 57 O),

(W]_7W27W37W4) - (3,4,3,6).
(Note that we can define the “leftmost” soliton arbitrarily). Define I = k19 e?, I 12
k11€%; I = ko€ VP = Med, VP = e, ... ete. (Kn.,0s Kn,1, An € R¥).
Therefore, the determlnant O(z,y) = det(X ( ) — xF) can be expanded:

P =y? — 2(902 + rg,leox + rzﬁoel)y

14y _ pgB0y~1

4 2.3 5.2 9
+ (2® +ri3e“x’ +ri0e°z” + 1€’z + 1y ge re’y



168 SHINSUKE IwAO

(ri; € R*, Vi,j).
Because the field K is algebraically closed, we can rewrite ® into:
® =y? - 2(x + uge’)(z + uz ety
(4.2) + (2 +uy0€®)(z + ur1€%)(x + uy 2e*) (@ + uy 3e°) — rely !

(uj,; € R*). Denote the algebraic curve {& =0 } by C. Hereafter we consider the
tropical curve Trop C. See the figure in the previous page.

Q Y

N\

30

22

19

17
16

13
12

10

P

n=1

(val (0), val (H4 19)) = (+00,13) on Trop C. We will abuse the symbol Ay to mean

n=1"n

The point Ag : (z,y) = (O, s Ig) € C is associated with the point (X,Y) =

the point on the tropical curve. Similarly, we use (abuse) the symbol A, P and @ as
A (X)Y) = (4o0,1), P: (X,Y) = (—00,—0), @ : (X,Y) = (—00,+00) € TropC.
(val (00) = —val (0) = —00).
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Fix oriented paths yg—p,7P—A,,7P—A4,, C Trop C which connect two points () —
P, P— Ay, P— A; respectively.
Then we obtain the following data from the figure of Trop C.

26 -9 00
-916 —50
0 —5100 |’
0 0 04
Un,TropC ‘= ((ﬁia’YQ—J:‘))i = (15a0a0a 1) (IIlOd BTI‘OPCZ4)7
Vi 1rop 0 = ((Bi: YP—a0 +7P—4,)), = (1,1,1,0) (mod Bryopc Z*).

BTrop C =

The vectors
4
Un,Trop C» V¢, Trop C (mOd B’I‘rop C 7 )

do not depend on the choice of yo_.p,vp—24,-
Here we note the relation:

N'vn,TropC = 4'vn,TropC = (607 O, O, 4)
— 3(26,-9,0,0) +2(—9,16,—5,0) + (0, —5,10,0) + (0,0,0,4)
= (0,0,0,0) (mod Bryopc Z*),

that reflects the fact that the action o : n — n + 1 satisfies o = id.
Assume C' has a good tropicalization. Theorem 3.1 and corollary 3.2 imply
-1

B (ad B
c 27 Trop C'»
-1

Un ~ %vn,T‘ropC (mOd BTropC Z4),

-1

2mie

Substituting this relation into the last equation qv,, + Tvy =0 (mod (Z9 + BcZ9)), we
obtain

4
Vg ~ V¢, Trop C (mOd BTropC'Z )

qu, +Tv, =0 (mod (Z* 4+ BcZ%))
s ' rezZ* st qu, +Tv, =7+ Ber
= JrcZ st _—1(1) +Tw )—_—13 r
- L. Imie qUn, Trop C t,TropC) — e Trop C

(43) & qUpTropC + TV Tropc =0 (mOd B’I‘rop CZ4).

(The second arrow is ‘=". See section 5.)
Equation (4.3) is equivalent to:

4 (Biyopc - Vntropc) + T (Bryop o - Ve ropc) =0 (mod Z7).
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Therefore,
q(3/4,1/2,1/4,1/4) + T (1/10, 8/45, 17/90, 0) =0 (mod Z*).

From this, we can conclude that the minimal positive integer T > 0 which satisfies
equation (4.3) is 90. In fact, the relative period of given state of pBBS is 90 (see
Appendix A).

8§5. Concluding remark

We have studied the algebraic geometrical and tropical geometrical method to
analyze the pBBSs in the previous section. Through this technique, we can obtain
automatically some of important results, for example, the fundamental period formula
of the pBBS with one kind of balls [9].

However, we have admitted some assumptions in this article. To justify our theory,
we must deal with the following subjects.

(1) Regularity of TropC.

To apply theorem 3.1, Trop C' must be regular. However, some special initial condition
makes Trop C' non-regular. Because regularity is essential for the proof of theorem 3.1,
this theorem fails in this situation.

(2) Generic condition.

Theorem 3.1 also requires that the coefficients of ®(z,y) (4.2) must satisfy some generic
condition. We do not describe in detail about this condition here, but it is sufficient to
prove:

Conjecture 5.1.  The coefficients of ®(x,y) = det (X (y) — xE) are functionally
M-—1

independent as the functions of I®,... I, , V0.

This conjecture should be true if we want to claim “pBBS is a completely integrable
system”, but the author does not know the proof.

(3) Does the torus RY/Bryop ¢Z9 have enough information of pBBS?
Fix a spectral curve C. Let 7¢ be the iso-spectral set (section 2.1). Denote the set of
initial conditions of pBBSs which give the tropical curve Trop C' by Tryop ¢

Let us consider the composite:

kk %k

L Trop C ;) To £ Pic?C i CI/NZ9 + BcZ9) — Rg/BTrOpng

k%

* . . . . kK, . . o ey o .
‘" is ultradiscretization, ‘—’ is an operation to define an initial condition of hpd Toda

eq. from an initial condition of pBBS (section 4.1), ‘=57 is an operation to pick up the
coefficient of —1/(2xie). Note that ‘>’ depends on the choice of elements R*.

The questions are:
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Q.1. Is X : Trvopc — RYI/Bryop ¢ Z9 well-defined?

Q.2. What is the image of x? Is x injective?

If these are true, all arrow in (4.3) (section 4.3) become “&”.

Remark 5.1. For M =1, R. Inoue and T. Takenawa answered these questions

in [2]. In fact, they proved that x is an isomorphism.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
(8]
[9]

References

Inoue, R. and Takenawa, T., Tropical spectral curves and integrable cellular automata,
Int. Math. Res. Not. 19 (2008), 19

Inoue, R. and Takenawa, T., Tropical Jacobian and the generic fiber of the ultra-discrete
periodic Toda lattice are isomorphic, arXiv/nlin.SI1/09020448.

Iwao, S., Solution of the generalized periodic discrete Toda equation, J. Phys. A: Math.
Theor. 41 (2008), 115201

Iwao, S., The integration theory over tropical curves as ultradiscretization, arXiv/
math.AG/08121873.

Kimijima, T. and Tokihiro, T., Initial-value problem of the discrete periodic Toda equation
and its ultradiscretization, Inverse Problems 18 (2002), 1705-32

Mikhalkin, G. and Zharkov, I., Tropical curves, their Jacobians and theta functions,
arXiv/math.AG/0612267.

van Moerbeke, P. and Mumford, D., The spectrum of difference operators and algebraic
curves, Acta. Math. 143 (1-2) (1980), 93-154

Tokihiro, T., Nagai, A. and Satsuma, J., Proof of solitonical nature of box and ball systems
by means of inverse ultra-discretization, Inverse Problems 15 (1999), 1639-62
Yoshihara, D., Yura, F and Tokihiro, T., Fundamental cycle of a periodic box-ball system,
J. Phys. A. Math. Gen. 36 (2003), 99-121

§ Appendix A.

t=0 11,1112, .01 11111 ...

1...11....... 1111...112...1111
B e P s A 111...1112. ..
2...11.0 00011111 111....111
J112.011.0.. .0 11111, .111. ...
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LoG1120 001100 11111 1111.
111...112..11...... 11111..... 1

J11. 001120111 11111,
111...111. .12, 11111 ... L L 1

t=20 oot 011100112000 11111
1..... 111...11...1112. .. .. 1111

1112..... 111..11..... 1111....1

t=30  ....... 1111....11...112. . 11111
11111...... 1111..11....112. ...

..... 11111.....11. 1111, .. 112,
112....... 11111..11....111...1
1112000000 11..1111...111.

111..... 11112....11....111. . .1

SR e s s I I s A 12....111.



t=60

t=70

t=80

THE PERIODIC BOX-BALL SYSTEM AND TROPICAL CURVES

B T P I s AP 11112..11....
..... 1111, .111. 00000 112,111

1...0.11111. ..., 112....1111. .1

11..112...... 1111..... 111...11

1...11...... 11112....1111...11
B e T s A 11112...111..
P e I 5 e 1112. .11
Ji11 0111 11111, 112.
120,11, 1111, ... 11111..... 1
112011, 1111....... 11111,

111,001, 01110 ... L 11112...1
e s P I s 1112
1112, ..11.. . 111, 11111 ...

173



174 SHINSUKE IwAO

1112, .. 11111, .11, ... .. 111.....
Soel1120 000110 011111 11T



