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Heat‐flow monotonicity underlying some sharp
inequalities in geometric and harmonic analysis
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Abstract

The intention of this article is to provide a summary of recent collaborative work of
the author on heat‐flow monotonicity underlying certain fundamental inequalities in euclidean

geometric and harmonic analysis. The paradigm is to allow the input function (or functions)
to evolve according to certain nonlinear heat‐flow and ask whether the induced quantity is

monotone for all positive time.

§1. Introduction

For  d\in \mathbb{N} and t>0 let H. denote the heat kernel on \mathbb{R}^{d} given by

H_{t}(x):=\displaystyle \frac{1}{t^{\'{a}/2}}e^{- $\pi$|x|^{2}/t}
Certain inequalities which are intrinsically geometric are known to be underpinned
by an associated monotone quantity which arises by allowing the (nonnegative) input
functions to evolve under nonlinear heat‐flow of the form

(1.1) f\mapsto(H_{t}*f^{p})^{1/p}

for some p> O. We illustrate this with the celebrated geometric Brascamp‐Lieb in‐

equality of Ball [3] and Barthe [5]; a powerful inequality which counts the multilinear

Hölder and Loomis‐Whitney inequalities as special cases. For j=1 ,
. . .

,
m let d_{j}\in \mathbb{N},

p_{j}\geq 1 and let B_{j} : \mathbb{R}^{d}\rightarrow \mathbb{R}^{d_{j}} be a linear mapping such that B_{j}^{*}B_{j} is a projection and

\displaystyle \sum\frac{1}{p_{J}\prime}B_{j}^{*}B_{j}7n=I_{d},j=1
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where I_{d} is the identity mapping on \mathbb{R}^{d} . Then the geometric Brascamp‐Lieb inequality,

(1.2) \displaystyle \int_{\mathbb{R}^{d}}\prod_{j=1}^{m}f_{j}(B_{j}x)dx\leq\prod_{j=1}^{m}\Vert f_{j}\Vert_{L^{p_{j}}(\mathbb{R}^{d_{j}})}
for nonnegative functions f_{j}\in L^{p_{j}}(\mathbb{R}^{d_{j}}) ,

is a consequence of the nondecreasingness of

Q : (0, \infty)\rightarrow(0, \infty) given by

Q(t)=\displaystyle \int_{\mathbb{R}^{d}}\prod_{j=1}^{7 $\gamma \iota$}u_{j}(t, B_{j}x)^{1/p_{j}}dx.
Here, u_{j} : (0, \infty)\times \mathbb{R}^{d_{j}}\rightarrow(0, \infty) is given by

(1.3) u_{j}(t, \cdot)=H_{t}*f_{j}^{p_{j}}
and thus solves the heat equation \displaystyle \partial_{t}u_{j}=\frac{1}{4 $\pi$}\triangle u_{j} on \mathbb{R}^{d_{j}} with initial data f_{j}^{p_{j}} In

particular, if each function f_{j} is sufficiently well‐behaved (such as bounded with compact

support) then

\displaystyle \int_{\mathbb{R}^{d}}\prod_{j=1}^{7n}f_{j} (Bjx) dx=\displaystyle \lim_{t\rightarrow 0}Q(t)\leq\lim_{t\rightarrow\infty}Q(t)=\prod_{j=1}^{m}\Vert f_{j}\Vert_{L^{p_{j}}(\mathbb{R}^{d_{j}})}.
This type of heat‐flow proof of the geometric Brascamp‐Lieb inequality is due to Carlen,

Lieb and Loss [19] in the case of rank one mappings and Bennett, Carbery, Christ and

Tao [16] in the general rank case. We remark that a closely related argument shows

that the geometric Brascamp‐Lieb inequality is recoverable from a monotone quantity

in which the input functions evolve according to the �Mehler‐flow�� \overline{u}_{j} : (0, \infty)\times \mathbb{R}^{d_{j}}\rightarrow
(0, \infty) which satisfies

\displaystyle \partial_{t}\overline{u}_{j}=\frac{1}{2 $\pi$}\triangle\overline{u}_{j}+\langle x, \overline{u}_{j}\rangle+d_{j}\overline{u}_{j}.
See [8] for a proof of this observation in the rank one case; the general rank case follows

by a straightforward modification of the argument.

A somewhat different use of heat‐flow as a tool for proving (1.2) can be found in

[10]. The approach in [10], inspired by work of Borell, simultaneously provides a proof

of the reverse geometric Brascamp‐Lieb inequality due to Barthe [4], [5]. The survey

article [7] contains further discussion of this alternative type of heat‐flow approach to

geometric inequalities.
Another significant instance of the fruitfulness of the heat‐flow monotonicity ap‐

proach outlined here is the proof of the multilinear Kakeya maximal inequalities in [17].
The technique has also proved successful outside the euclidean realm. In [19] and [20]

respectively, Carlen, Lieb and Loss adapted the technique to prove certain multilin‐

ear inequalities in the spirit of (1.2) via heat‐flows on the sphere \mathrm{S}^{d-1} in \mathbb{R}^{d} and the

permutation group S_{d} on d letters (see also [9] for an extension in the spherical case).
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Heuristically, the flow u_{j}(t, x) in (1.3) asymptotically behaves like \Vert f_{j}\Vert_{L^{p_{j}}}^{p_{j}}H_{t}(x)
for large time t and consequently it is well‐suited to inequalities which are sharp when

evaluated on centred gaussians. Classical examples of which are �interior cases�� of the

Young convolution inequality on \mathbb{R}^{d} ; that is, (by duality) the inequality

(1.4) \displaystyle \int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}f_{1}(x)f_{2}(y)f_{3}(x-y)dxdy\leq C\prod_{j=1}^{3}\Vert f_{j}\Vert_{L^{p_{j}}(\mathbb{R}^{d})}
for nonnegative functions f_{j}\in L^{p_{j}}(\mathbb{R}^{d}) and p_{j}\in(1, \infty) such that \displaystyle \sum_{j=1}^{3}\frac{1}{p_{j}}=2 . In this

case, (\displaystyle \frac{1}{p_{1}},\frac{1}{p_{2}}, \frac{1}{p_{3}}) lies on interior of the triangle, T
,

whose vertices lie at (0,1,0) , (1, 0,0)
and (1, 1, 1) and it is known that the sharp constant in (1.4) may be expressed as

C=\Vert H_{$\sigma$_{1}}^{1/p_{1}}*H_{$\sigma$_{2}}^{1/p_{2}}\Vert_{L^{p_{3}'}(\mathbb{R}^{d})}
(due to Beckner [11], [12] and Brascamp and Lieb [18]). Here, $\sigma$_{1}, $\sigma$_{2}>0 satisfy \displaystyle \frac{1}{p_{1}}(1-
\displaystyle \frac{1}{p_{1}})$\sigma$_{2}=\frac{1}{p_{2}}(1-\frac{1}{p_{2}})$\sigma$_{1} and p_{3}^{\ovalbox{\tt\small REJECT}} is the conjugate exponent to p_{3} . For such exponents, via

a change of variables the inequality in (1.4) sits under the umbrella of the geometric

Brascamp‐Lieb inequality and is therefore recoverable from a monotone quantity which

arises from a modification of the heat‐flow in (1.3). See [19] and [16] for further details.

In Section 2 of this article we give a unified and direct heat‐flow monotonicity treat‐

ment of the Young convolution inequality on \mathbb{R}^{d} and its reverse form. With nonsharp
constant the reverse form was first noticed by Leindler [25] and the sharp form was

proved by Brascamp and Lieb [18]. For sufficiently well‐behaved functions f_{j}\in L^{p_{j}}(\mathbb{R}^{d})
we show that the norm

\Vert fi*f_{2}\Vert_{L^{p}(\mathbb{R}^{d})}

exhibits monotonicity as each f_{j} evolves according to heat‐flow of form (1.1). In par‐

ticular, provided \displaystyle \frac{1}{p_{1}}+\frac{1}{p_{2}}=1+\frac{1}{p} the induced quantity is nondecreasing for p_{1}, p_{2}\geq 1
and nonincreasing for p_{1}, p_{2}\leq 1.

In Section 3 we pursue the applicability of the paradigm in the context of the

Strichartz space‐time estimates for the homogeneous Schrödinger equation. When the

Lebesgue space exponents for which such estimates hold conspire to allow us to (�multiply
out�� the Strichartz norm we observe a rather dramatic monotonicity under the flow (1.1)
with p=2.

Finally, in Section 4 we consider the classical Hausdorff‐Young inequality on \mathbb{R}^{d}.

Whenever the conjugate exponent p^{\ovalbox{\tt\small REJECT}} is an even integer the L^{p'}(\mathbb{R}^{d}) norm of the Fourier

transform of f is nondecreasing as the function f evolves under the flow in (1.1). This

follows from [16] since the multiplied out expression for the norm coincides with a geo‐

metric Brascamp‐Lieb inequality via a change of variables. However, we produce explicit

counterexamples to show that this monotonicity property fails substantially whenever
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p'>2 is not an even integer. We remark that such considerations are reasonable given
Beckner�s famous theorem on the gaussian extremisability of the Hausdorff‐Young in‐

equality [11], [12].

§2. Convolution inequalities

Let d\in \mathbb{N} . Suppose 0<p_{1}, p_{2},  p<\infty satisfy the scaling condition

(2.1) \displaystyle \frac{1}{p_{1}}+\frac{1}{p_{2}}=1+\frac{1}{p}
and $\sigma$_{1}, $\sigma$_{2}\geq 0 satisfy the relation

(2.2) \displaystyle \frac{1}{p_{1}}(1-\frac{1}{p_{1}})$\sigma$_{2}=\frac{1}{p_{2}}(1-\frac{1}{p_{2}})$\sigma$_{1}.
Let Q:(0, \infty)\rightarrow(0, \infty) be given by

Q(t)=\Vert u_{1}(t, \cdot)^{1/p_{1}}*u_{2}(t, \cdot)^{1/p_{2}}\Vert_{L^{p}(\mathbb{R}^{d})},
where u_{j} : (0, \infty)\times \mathbb{R}^{d}\rightarrow(0, \infty) is given by

(2.3) u_{j}(t, \cdot)=H_{$\sigma$_{j}t}*f_{j}^{p_{j}}
for some nonnegative f_{j}\in L^{p_{j}}(\mathbb{R}^{d}) . Thus, u_{j} satisfies the heat equation

\displaystyle \partial_{t}u_{j}=\frac{$\sigma$_{j}}{4 $\pi$}\triangle u_{j}.
Theorem 2.1 (Bennett, B. [13]). If p_{1}, p_{2}\geq 1 then Q(t) is nondecreasing for

each t>0 and if p_{1},p_{2}\leq 1 then Q(t) is nonincreasing for each t>0.

Notice that Theorem 2.1 contains certain �boundary cases�� In particular, we are

including the exponents corresponding to the boundary of the triangle T
,

defined in the

Introduction, with the exception of the vertices (0,1,0) , (1, 0,0) and their connecting

edge.
One can show that

\displaystyle \lim_{t\rightarrow 0}Q(t)=\Vert f_{1}*f_{2}\Vert_{L^{p}(\mathbb{R}^{d})} and \displaystyle \lim_{t\rightarrow\infty}Q(t)=C\Vert f_{1}\Vert_{L^{p_{1}}(\mathbb{R}^{d})}\Vert f_{2}\Vert_{L^{p_{2}}(\mathbb{R}^{d})},
at least for bounded and compactly supported f_{j} ,

and the constant C is given by

C=\Vert H_{$\sigma$_{1}}^{1/p_{1}}*H_{$\sigma$_{2}}^{1/p_{2}}\Vert_{L^{p}(\mathbb{R}^{d})}

Consequently, from Theorem 2.1 we recover the sharp Young convolution inequality and

its reverse form which state that, for nonnegative functions f_{j}\in L^{p_{j}}(\mathbb{R}^{d}) ,
the difference

(2.4) C\Vert f_{1}\Vert_{L^{p_{1}}(\mathbb{R}^{d})}\Vert f_{2}\Vert_{L^{p_{2}}(\mathbb{R}^{d})}-\Vert f_{1}*f_{2}\Vert_{L^{p}(\mathbb{R}^{d})}
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is nonnegative if p_{1}, p_{2}\geq 1 and nonpositive if p_{1}, p_{2}\leq 1.
In the admitted boundary cases where exactly one of p_{1} and p_{2} is equal to 1, say

p_{j} , (2.2) implies that $\sigma$_{j} vanishes and thus the flow u_{j} is constant in time. Formally

substituting the Dirac delta distribution supported at the origin for the heat kernel

H. at time zero, we see that C=1 in this case. Moreover, for such exponents the

monotonicity in Theorem 2.1 is strict (this agrees with the known fact that extremisers

do not exist in the corresponding Young convolution inequality) and directly follows

from the following explicit formula, a by‐product of our proof of Theorem 2.1.

 Q^{\ovalbox{\tt\small REJECT}}(t)=\displaystyle \frac{ $\epsilon$}{8 $\pi$ Q(t)^{p-1}}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}(u_{1}^{1/p_{1}}*u_{2}^{1/p_{2}})(x)^{p-2}u_{1}(x-y)^{1/p_{1}}u_{2}(y)^{1/p_{2}}\times
 u_{1}(x-z)^{1/p_{1}}u_{2}(z)^{1/p_{2}}(\displaystyle \frac{$\sigma$_{1}}{p_{1}}|\frac{1}{p_{1}}-1|)^{1/2}\frac{\nabla u_{1}}{u_{1}}(x-y)+(\frac{$\sigma$_{2}}{p_{2}}|\frac{1}{p_{2}}-1|)^{1/2}\frac{\nabla u_{2}}{u_{2}}(y)

-(\displaystyle \frac{$\sigma$_{1}}{p_{1}}|\frac{1}{p_{1}}-1|)^{1/2}\frac{\nabla u_{1}}{u_{1}}(x-z)-(\frac{$\sigma$_{2}}{p_{2}}|\frac{1}{p_{2}}-1|)^{1/2}\frac{\nabla u_{2}}{u_{2}}(z)2 dxdydz

for each t>0 . Here  $\epsilon$ is defined to be 1 if  p_{1}, p_{2}\geq 1 and -1 if p_{1}, p_{2}\leq 1 , and we have

suppressed the t‐variable in the integrand. Furthermore, the known characterisation

of extremals for which the quantity in (2.4) is zero is fully recoverable from the above

expression for Q^{\ovalbox{\tt\small REJECT}}(t) .

Proof of Theorem 2.1. For j=1 ,
2 let v_{j} denote the time dependent vector field

on \mathbb{R}^{d} given by v_{j}=\nabla\log u_{j} . Let u :(0
, oo) \times \mathbb{R}^{d}\rightarrow(0, \infty) be given by

(2.5) u^{1/p}=u_{1}^{1/p_{1}}*u_{2}^{1/p_{2}}

and let  $\sigma$ be given by

(2.6)  $\sigma$ p=$\sigma$_{1}p_{1}+$\sigma$_{2}p_{2}.

We claim that \displaystyle \partial_{t}u-\frac{ $\sigma$}{4 $\pi$} Au is nonnegative when p_{1}, p_{2}\geq 1 and nonpositive when

p_{1}, p_{2}\leq 1 . Since Q(t)^{p}=\displaystyle \int u(t, \cdot) the claimed monotonicity in Theorem 2.1 follows

by differentiating through the integral and an application of the divergence theorem.

To see the claim, first observe that

\displaystyle \frac{1}{u^{(p-2)/p}}[4 $\pi$\partial_{t}u-\frac{1}{p}($\sigma$_{1}p_{1}+$\sigma$_{2}p_{2})\triangle u]
=\displaystyle \frac{p$\sigma$_{1}}{p_{1}}(1-\frac{1}{p_{1}})u^{1/p}(u_{1}^{1/p_{1}}|v_{1}|^{2}*u_{2}^{1/p_{2}})+\frac{p$\sigma$_{2}}{p_{2}}(1-\frac{1}{p_{2}})u^{1/p}(u_{1}^{1/p_{1}}*u_{2}^{1/p_{2}}\ovalbox{\tt\small REJECT}|v_{2}|^{2})+

\displaystyle \frac{1}{p_{1}p_{2}}($\sigma$_{1}(p-p_{1})+$\sigma$_{2}(p-p_{2}))u^{1/p}(u_{1}^{1/p_{1}}v_{1}*u_{2}^{1/p_{2}}v_{2})-(p-1)($\sigma$_{1}p_{1}+$\sigma$_{2}p_{2})|\nabla(u^{1/p})|^{2},
where we have used a freedom afforded by the fact that the derivative of a convolution

of two (suitable) functions may equally well land on either. The proof completes by
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noticing that the right‐hand side of the above expression evaluated at (t, x)\in(0, \infty)\times \mathbb{R}^{d}
coincides with

\displaystyle \frac{ $\epsilon$}{2}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}u_{1}(t, x-y)^{1/p_{1}}u_{2}(t, y)^{1/p_{2}}u_{1}(t, x-z)^{1/p_{1}}u_{2}(t, z)^{1/p_{2}}\times
|$\Lambda$_{1}^{1/2}v_{1}(t, x-y)+$\Lambda$_{2}^{1/2}v_{2}(t, y)-$\Lambda$_{1}^{1/2}v_{1}(t, x-z)-$\Lambda$_{2}^{1/2}v_{2}(t, z)|^{2}dydz,

where ($\Lambda$_{1}, $\Lambda$_{2}) := (\displaystyle \frac{p$\sigma$_{1}}{p_{1}}|1-\frac{1}{p_{1}}|,\frac{p$\sigma$_{2}}{p_{2}}|1-\frac{1}{p_{2}}|) and  $\epsilon$ is defined to be 1 if  p_{1},p_{2}\geq 1 and -1

if p_{1},p_{2}\leq 1 . This follows by expanding the square in the integrand and the hypotheses

(2.1) and (2.2). This completes the proof of Theorem 2.1. \square 

At the heart of our proof of Theorem 2.1 is a closure property for solutions of

heat inequalities. Essentially, we have shown that if, for j=1 , 2, we have p_{j}\geq 1 and

u_{j} : (0, \infty)\times \mathbb{R}^{d}\rightarrow(0, \infty) satisfies

\displaystyle \partial_{t}u_{j}\geq\frac{$\sigma$_{j}}{4 $\pi$}\triangle u_{j}
then

\displaystyle \partial_{t}u\geq\frac{ $\sigma$}{4 $\pi$}\triangle u,
where u and  $\sigma$ are given by (2.5) and (2.6), respectively. Similarly, if  p_{j}\leq 1 and

\displaystyle \partial_{t}u_{j}\leq\frac{$\sigma$_{J}}{4 $\pi$}\triangle u_{j}
for j=1 ,

2 then

\displaystyle \partial_{t}u\leq\frac{ $\sigma$}{4 $\pi$}\triangle u.
Here we have ignored some technical details which relate to the finiteness of various

Lebesgue integrals arising in the argument. In [13] we identify a natural list of further

(technical) ingredients which guarantee the existence of such integrals and are also closed

under the operation (p_{1},p_{2}, $\sigma$_{1}, $\sigma$_{2}, u_{1}, u_{2})\rightarrow(p,  $\sigma$, u) .

We note that the heat‐flow monotonicity associated to the geometric Brascamp‐

Lieb inequality discussed in the Introduction here also rests on a similar closure property

of heat inequalities under the operation (ul, . . .

, u_{rn} ) \mapsto u where u is the �geometric
mean�� given by

u(t, \displaystyle \cdot)=\prod_{j=1}^{m}u_{j}(t, B_{j}\cdot)^{1/p_{j}}.
This observation is implicit in the work [19] and [16]. In [13] we also note that a similar

closure property holds for harmonic addition; that is (u_{1}, u_{2})\mapsto u where

\displaystyle \frac{1}{u}=\frac{1}{u_{1}}+\frac{1}{u_{2}}.
This closure property is easily seen to imply a �harmonic triangle inequality��
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An advantage of the perspective of closure is that one may iterate and this allows

us to deduce the following generalisation of Theorem 2.1 in a rather cheap way. Suppose

0<p_{1} ,
. . .

,  p_{\mathcal{T}b},p<\infty satisfy

(2.7) \displaystyle \sum_{j=1}^{n}\frac{1}{p_{j}}=n-1+\frac{1}{p}
and let 0\leq$\sigma$_{1} ,

. . .

, $\sigma$_{n}<\infty satisfy

\displaystyle \frac{1}{p_{j}}(1-\frac{1}{p_{j}})$\sigma$_{k}=\frac{1}{p_{k}}(1-\frac{1}{p_{k}})$\sigma$_{j}
for each j, k=1 ,

. . .

,
n . Let Q : (0, \infty)\rightarrow(0, \infty) be given by

Q(t)=\Vert u_{1}(t_{f}\cdot)^{1/p_{1}}*\cdots*u_{n}(t, \cdot)^{1/p_{n}}\Vert_{L^{p}(\mathbb{R}^{d})}

where u_{j} : (0 , oo) \times \mathbb{R}^{d}\rightarrow(0, \infty) is given by (2.3) for some nonnegative f_{j}\in L^{p_{j}}(\mathbb{R}^{d}) .

Theorem 2.2 (Bennett, B. [13]). If p_{1} ,
. . .

, p_{n}\geq 1 then Q(t) is nondecreasing

for each t>0 and if p_{1} ,
. . .

, p_{n}\leq 1 then Q(t) is nonincreasing for each t>0.

As one may expect, from Theorem 2.2 (and its proof) we recover the sharp n‐

fold Young convolution inequality, its reverse form and a complete characterisation of

extremals.

We conclude this section by describing an extension of our results when the scaling
condition (2.7) is relaxed. Let 1\leq p_{1} ,

. . .

, p_{n},  p<\infty be such that

(2.8) \displaystyle \sum_{j=1}^{n}\frac{1}{p_{j}}\geq n-1+\frac{1}{p}
and suppose that 0\leq$\alpha$_{1} ,

. . .

, $\alpha$_{n}\leq 1 satisfy

\displaystyle \sum_{j=1}^{n}\frac{$\alpha$_{j}}{p_{j}}=n-1+\frac{1}{p}.
Let 0\leq$\sigma$_{1} ,

. . .

, $\sigma$_{n}<\infty satisfy

\displaystyle \frac{1}{p_{j}}(1-\frac{$\alpha$_{j}}{p_{j}})$\sigma$_{k}=\frac{1}{p_{k}}(1-\frac{$\alpha$_{k}}{p_{k}}) $\sigma$
for each  j, k=1 ,

. . .

,
n . Finally, let Q : (0, \infty)\rightarrow(0, \infty) be given by

Q(t)=t^{d($\Sigma$_{j=1}^{n}1/p_{j}-(n-1)-1/p)/2}\Vert u_{1}(t, \cdot)^{1/p_{1}}*\cdots\vec{$\tau$^{ $\dagger$}}u_{n}(t, \cdot)^{1/p_{n}}\Vert_{L^{p}(\mathbb{R}^{d})}

where u_{j} : (0 , oo) \times \mathbb{R}^{d}\rightarrow(0, \infty) is given by (2.3) for some nonnegative f_{j}\in L^{p_{j}}(\mathbb{R}^{d}) .
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Theorem 2.3 (Bennett, B. [13]). For each t>0, Q(t) is nondecreasing.

The idea behind this extension originates in [16]. As was the case with Theorems

2.1 and 2.2, one can view Theorem 2.3 as a corollary to a closure property associated

to heat inequalities. The additional ingredient under the relaxed scaling condition (2.8)
is that the differential inequalities

(2.9) $\sigma$_{j}\displaystyle \mathrm{d}\mathrm{i}\mathrm{v}(\nabla\log u_{j})(t, \cdot)\geq-\frac{2d $\pi$}{t}
for u_{j} : (0, \infty)\times \mathbb{R}^{d}\rightarrow(0, \infty) and j=1 ,

. . .

,
n imply

 $\sigma$ \displaystyle \mathrm{d}\mathrm{i}\mathrm{v}(\nabla\log u)(t, \cdot)\geq-\frac{2d $\pi$}{t},
where u is given by

u^{1/1/p_{1_{*_{1\ovalbox{\tt\small REJECT}}}}}p_{=u_{1}\cdots\times^{1}u_{n}^{1/p_{n}}}
and  $\sigma$ is given by

 $\sigma$ p=\displaystyle \sum_{\prime,J^{=1}}^{n}$\sigma$_{j}p_{j}.
We remark that if u_{j} satisfies the heat equation \displaystyle \partial_{t}u_{j}=\frac{$\sigma$_{j}}{4 $\pi$}\triangle u_{j} with nonnegative ini‐

tial data then (2.9) follows from a certain \log‐convexity property of solutions to heat

equations; see Corollary 8.7 of [16].

§3. Strichartz estimates for the homogeneous Schrödinger equation

For  d\in \mathbb{N} let the Fourier transform \hat{f}:\mathbb{R}^{d}\rightarrow \mathbb{C} of a Lebesgue integrable function

f on \mathbb{R}^{d} be given by

(3.1) \displaystyle \hat{f}( $\xi$)=\frac{1}{(2 $\pi$)^{d/2}}\int_{\mathbb{R}^{d}}e^{-ix\cdot $\xi$}f(x)dx.
For each s\in \mathbb{R} let e^{is\triangle} denote the Fourier multiplier operator given by

\overline{e^{is\triangle}f}( $\xi$)=e^{-is| $\xi$|^{2}}\hat{f}( $\xi$) ,

for all f belonging to the Schwartz class S(\mathbb{R}^{d}) and  $\xi$\in \mathbb{R}^{d} . Thus for each f\in S(\mathbb{R}^{d})
and x\in \mathbb{R}^{d},

 e^{is\triangle}f(x)=\displaystyle \frac{1}{(2 $\pi$)^{d/2}}\int_{\mathbb{R}^{d}}e^{i(x $\xi$-s| $\xi$|^{2})}\hat{f}( $\xi$)d $\xi$
and we have that  e^{is\triangle}f solves the homogeneous Schrödinger equation

i\displaystyle \frac{\partial u}{\partial s}=-\triangle u
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on \mathbb{R}^{d} with initial data f . It is now well‐known that the solution operator e^{is\triangle} satisfies

the Strichartz space‐time estimate

(3.2) \Vert e^{is\triangle}f\Vert_{L^{p}(\mathbb{R},L^{q}(\mathbb{R}^{d}))}\leq C\Vert f\Vert_{L^{2}(\mathbb{R}^{d})}
for some finite constant C if and only if (p, q, d) is Schrödinger admissible; i.e. p, q\geq 2,

(p, q, d)\neq(2, \infty, 2) and \displaystyle \frac{2}{p}+\frac{d}{q}=\frac{d}{2} . See [24] for the endpoint case (2, 2d/(d-2), d) and

references therein for earlier contributions.

From the orientation of euclidean harmonic analysis, we recall the familiar fact that

e^{is\triangle}\hat{f} coincides with the adjoint restriction operator (the extension operator) associated

to a paraboloid applied to f . The estimate in (3.2) for p=q=2+4/d is classical and

is due to Strichartz [26] who followed arguments of Stein and Tomas [27].
In [15] we observe the following monotonicity property of space‐time norms as‐

sociated to propagator e^{is\triangle} for certain special exponents. For aesthetic reasons and

consistency with [15], we adopt the notation

e^{t\triangle}f:=\overline{H}_{t}*f

at this point for the solution to the heat equation \partial_{t}u=\triangle u with initial data f . Here,

\displaystyle \overline{H}_{t}(x):=\frac{1}{(4 $\pi$ t)^{d/2}}e^{-|x|^{2}/4t}
Theorem 3.1 (Bennett, B., Carbery, Hundertmark [15]). Let (p, q, d) be a Schrödinger

admissible triple such that q is an even integer which divides p . If f is a nonnegative

integrable function on \mathbb{R}^{d} and  $\alpha$\in[1/2, 1] then Q_{ $\alpha$} : (0, \infty)\rightarrow(0, \infty) given by

Q_{ $\alpha$}(t)=t^{d( $\alpha$-1/2)/2}\Vert e^{is\triangle}(e^{t\triangle}f)^{ $\alpha$}\Vert_{L^{p}(\mathbb{R},L^{q}(\mathbb{R}^{d}))}.
is nondecreasing for each t>0.

Triples (p, q, d) satisfying the hypothesis in Theorem 3.1 are (6, 6, 1), (8, 4, 1) and

(4, 4, 2). For such exponents, it follows from Theorem 3.1 when  $\alpha$=1/2 and f=|g|^{2}
for some bounded and compactly supported function g on \mathbb{R}^{d} that

\displaystyle \Vert e^{is\triangle}|g|\Vert_{L^{p}(\mathbb{R},L^{q}(\mathbb{R}^{d}))}=\lim_{t\rightarrow 0}Q_{1/2}(t)\leq\lim_{t\rightarrow\infty}Q_{1/2}(t)=C\Vert g\Vert_{L^{2}(\mathbb{R}^{d})},
where C=\Vert e^{is\triangle}\overline{H}_{1}^{1/2}\Vert_{L^{p}(\mathbb{R},L^{q}(\mathbb{R}^{d}))} . Moreover,

\Vert e^{is\triangle}g\Vert_{L^{p}(\mathbb{R},L^{q}(\mathbb{R}^{d}))}\leq\Vert e^{is\triangle}|g|\Vert_{L^{p}(\mathbb{R},L^{q}(\mathbb{R}^{d}))}

since q is an even integer which divides p . For the (6, 6, 1) and (4, 4, 2) cases, we recover

the sharp Strichartz estimates for the homogeneous Schrödinger equation due to Foschi
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[21] and independently Hundertmark and Zharnitsky [23]. In the (8, 4, 1) case, the heat‐

flow monotonicity (and hence sharp inequality) follows cheaply from the (4, 4, 2) case

via the observation

\Vert e^{is\triangle}(e^{t\triangle}f)^{ $\alpha$}\Vert_{L^{8}(\mathbb{R},L^{4}(\mathbb{R}))}^{2}=\Vert e^{is\triangle}(e^{t\triangle}f\otimes f)^{ $\alpha$}\Vert_{L^{4}(\mathbb{R},L^{4}(\mathbb{R}^{2}))}.
We shall see in the proof of Theorem 3.1 below that the nondecreasingness of Q_{ $\alpha$}

follows by bringing together Strichartz‐norm representation formulae of Hundertmark

and Zharnitsky [23] and a monotonicity property associated to the Cauchy‐Schwarz

inequality contained in Lemma 3.2 below. One can view the fact that we consider

the exponents which allow us to mulitply out the norm as avoiding �bad� oscillatory

behaviour. We add some strength to this philosophy in the next section in the context

of the Fourier transform and the Hausdorff‐Young inequality.

Lemma 3.2. Suppose n\in \mathbb{N},  $\alpha$\in[1/2, 1] and f_{1}, f_{2} are nonnegative integrable

functions on \mathbb{R}^{n} Then \overline{Q}_{ $\alpha$} : (0, \infty)\rightarrow(0, \infty) given by

\displaystyle \overline{Q}_{ $\alpha$}(t)=t^{n( $\alpha$-1/2)}\int_{\mathbb{R}^{n}}(e^{t\triangle}f_{1})^{ $\alpha$}(e^{t\triangle}f_{2})^{ $\alpha$}dx
is nondecreasing for all t>0.

For a proof of the above lemma, we refer the reader to [16]. When  $\alpha$=1/2,
matters are reduced to a special case of the monotonicity inherent in the geometric

Brascamp‐Lieb inequality considered in the Introduction here. In this case, the proof

is particularly straightforward and produces the explicit formula

(3.3) \displaystyle \overline{Q}_{1/2}^{\ovalbox{\tt\small REJECT}}(t)=\frac{1}{4}\int_{\mathbb{R}^{n}}|\nabla(\log e^{t\triangle}f_{1})-\nabla(\log e^{t\triangle}f_{2})|^{2}(e^{t\triangle}f_{1})^{1/2}(e^{t\triangle}f_{2})^{1/2}dx
for each t>0.

Proof of Theorem 3.1. We begin with the (6, 6, 1) case. The (4, 4, 2) case follows

by a similar argument and we omit the details.

For Schwartz functions f on \mathbb{R},

\displaystyle \Vert e^{is\triangle}f\Vert_{L^{6}(\mathbb{R}\times \mathbb{R})}^{6}=\frac{1}{2\sqrt{3}}\int_{\mathbb{R}^{3}}F(x)PF(x)dx
where P is the projection onto functions on \mathbb{R}^{3} which are invariant under the rotations

about the direction (1, 1, 1) and F is the three‐fold tensor product of f . The identi‐

fication of P as a particularly simple projection operator is due to Hundertmark and

Zharnitsky [23]. For our goal of monotonicity it is important that we may write

PF(x)=\displaystyle \int_{O}F( $\rho$ x)d\mathcal{H}( $\rho$)
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where O is the group of isometries on \mathbb{R}^{3} which coincide with the identity on the span

of (1, 1, 1) and d\mathcal{H} denotes the right‐invariant Haar probability measure on O.

Notice that

e^{t\triangle}f\otimes e^{t\triangle}f\otimes e^{t\triangle}f=e^{t\triangle}F

and, for each isometry  $\rho$ on \mathbb{R}^{3},

(e^{t\triangle}f\otimes e^{t\triangle}f\otimes e^{t\triangle}f)( $\rho$\cdot)=e^{t\triangle}F_{ $\rho$}

where F_{ $\rho$} :=F( $\rho$ Therefore,

 Q_{ $\alpha$}(t)^{6}=\displaystyle \frac{1}{2\sqrt{3}}\int_{0}t^{3( $\alpha$-1/2)}\int_{\mathbb{R}^{3}}(e^{t\triangle}F)^{ $\alpha$}(x)(e^{t\triangle}F_{ $\rho$})^{ $\alpha$}(x)dxd\mathcal{H}( $\rho$)
and, by Lemma 3.2 and the nonnegativity of the measure d\mathcal{H} ,

it follows that Q_{ $\alpha$}(t) is

nondecreasing for each t>0. \square 

The proof of Theorem 3.1 combined with (3.3) produces an explicit formula the

derivative of Q_{1/2} at each time t>0 from which it is possible to recover the complete
characterisation of extremals as gaussians in the corresponding Strichartz estimates.

This characterisation is due to Foschi [21] and Hundertmark and Zharnitsky [23].

§4. The Hausdorff‐Young inequality

Let f be a nonnegative integrable function on \mathbb{R}^{d} and for  2\leq q\leq p'\leq\infty let

 Q_{p,q}:(0, \infty)\rightarrow(0, \infty) be given by

Q_{p,q}(t)=t^{d(1/q-1/p')/2}\Vert u\overline{(t,\cdot)^{1/p}}\Vert_{L^{q}(\mathbb{R}^{d})},
where u(t, \cdot)=H_{t}*f and

\sim

is the Fourier transform given by (3.1). By taking  q=p'
and f=|g|^{p} for a bounded and compactly supported function g on \mathbb{R}^{d}

,
if Q_{p,q} were

nondecreasing for each t>0 then

\displaystyle \Vert\hat{|g|}\Vert_{L^{p'}(\mathbb{R}^{d})}=\lim_{t\rightarrow 0}Q_{p,q}(t)\leq\lim_{t\rightarrow\infty}Q_{p,q}(t)=\Vert\overline{H_{1}^{1/p}}\Vert_{L^{p'}(\mathbb{R}^{d})}\Vert g\Vert_{L^{p}(\mathbb{R}^{d})}.
If q=p^{\ovalbox{\tt\small REJECT}} is an even integer then by Plancherel�s theorem one may write Q_{p,q} in

terms of a q/2‐fold convolution

Q_{p,q}(t)=t^{d(1/q-1/p')/2}\Vert u(t, \cdot)^{1/p}*\cdots*u(t, \cdot)^{1/p}\Vert_{L^{2}(\mathbb{R}^{d})}^{2/q}.
By expanding the above L^{2}(\mathbb{R}^{d}) norm it follows from [16] that Q_{p,q} is nondecreasing for

each t>0 ; see [14] for a verification of this fact. Alternatively, one can appeal directly
to Theorem 2.3. Since p^{\ovalbox{\tt\small REJECT}} is an even integer we have

\Vert\hat{g}\Vert_{L^{p'}(\mathbb{R}^{d})}\leq\Vert\hat{|g|}\Vert_{L^{p'}(\mathbb{R}^{d})}
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and thus one recovers the sharp form of the Hausdorff‐Young inequality on \mathbb{R}^{d}

\Vert\hat{g}\Vert_{L^{p}(\mathbb{R}^{d})}\leq\Vert\overline{H_{1}^{1/p}\ovalbox{\tt\small REJECT}}\Vert_{L^{p'}(\mathbb{R}^{d})}\Vert g\Vert_{L^{p}(\mathbb{R}^{d})}
for p^{\ovalbox{\tt\small REJECT}} an even integer due to Babenko [1], [2].

However, the monotonicity of Q_{p,q} fails dramatically if q is not an even integer, as

our next result shows.

Theorem 4.1 (Bennett, B., Carbery [14]). Let d\in \mathbb{N},  2\leq q\leq p^{\ovalbox{\tt\small REJECT}}\leq\infty and

suppose  q is not an even integer. Then there exists a nonnegative integrable function f

on \mathbb{R}^{d} such that Q_{p,q}(t) is strictly decreasing for suficiently small t>0.

Theorem 4.1 is of course a significant obstacle to finding a proof based on heat‐flow

of the sharp Hausdorff‐Young inequality due to Beckner [11], [12]; i.e. for all  p^{\ovalbox{\tt\small REJECT}}\in[2, \infty ).

Proof of Theorem 4.1. It suffices to handle  d=1 , since if f is a one‐dimensional

counterexample to the monotonicity of Q_{p,q} ,
then \otimes_{j=1}^{d}f is a d‐dimensional counterex‐

ample. Given the special relationship that convolution and the Fourier transform enjoy,

it is natural to consider the case p=1 first of all.

Using the semigroup property of the heat kernel H., it is sufficient to find a coun‐

terexample in the form of a finite Borel measure  $\mu$ on \mathbb{R} . To this end, let m and n be

coprime integers to be chosen later, r\in(0,1/2) and

 $\mu$=$\delta$_{0}+r$\delta$_{m}+r$\delta$_{n},

where $\delta$_{j} denotes the Dirac delta measure supported at the integer j . Thus, \hat{ $\mu$}( $\xi$)=
1+re^{-2 $\pi$ \mathrm{z}m $\xi$}+re^{-2 $\pi$ in $\xi$} and if c_{n} denotes the nth Fourier coefficient of |\hat{ $\mu$}|^{q} then it

follows that we can express Q_{1,q}(t) as the following power series in e^{- $\pi$/qt} :

Q_{1,q}(t)^{q}=q^{-1/2}\displaystyle \sum_{r $\iota$\in \mathbb{Z}}c_{n}e^{- $\pi$ n^{2}/qt}
By differentiating the above expression for Q_{1,q}(t)^{q} term by term it follows that the sign

of Q_{1,q}(t) as t>0 approaches zero coincides with the sign of c_{1}+c_{-1} . Now,

|\displaystyle \hat{ $\mu$}( $\xi$)|^{q}=\sum_{k=0}^{\infty}a_{k}r^{k}(e^{-2 $\pi$ i?\mathrm{n} $\xi$}+e^{-2 $\pi$ in $\xi$})^{k}\sum_{k=0}^{\infty}a_{k'}r^{k'}(e^{2 $\pi$ im $\xi$}+e^{2 $\pi$ in $\xi$})^{k'}
where a_{k} is the kth binomial coefficient in the expansion of (1+x)^{q/2} . It is only here

where we use the size restriction on the parameter r . Observe that if k<q/2+1 then
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a_{k}>0 ,
and thereafter a_{k} is strictly alternating in sign. Now,

 c_{1}+c_{-1}=2\displaystyle \sum_{k,k=0}^{\infty}a_{k}a_{k'}r^{k+k'}\int_{0}^{1}(e^{-2 $\pi$ im $\xi$}+e^{-2 $\pi$ in $\xi$})^{k}(e^{2 $\pi$ irn $\xi$}+e^{2 $\pi$ in $\xi$})^{k'}e^{-2 $\pi$ i $\xi$}d $\xi$
=2\displaystyle \sum_{k,k=0}^{\infty}a_{k}a_{k'}r^{k+k'}\sum_{(\mathrm{j},\mathrm{j}')\in$\Lambda$_{k,k'}}\left(\begin{array}{l}
k\\
j_{1}
\end{array}\right)\left(\begin{array}{l}
k^{\ovalbox{\tt\small REJECT}}\\
j_{1}^{\ovalbox{\tt\small REJECT}}
\end{array}\right),

where

$\Lambda$_{k,k'}=\{(\mathrm{j},\mathrm{j}^{\ovalbox{\tt\small REJECT}})=((j_{1}, j_{2}), (j_{1}^{\ovalbox{\tt\small REJECT}}, j_{2}'))\in(\mathbb{N}_{0}^{2})^{2} : j_{1}+j_{2}=k, j_{1}^{\ovalbox{\tt\small REJECT}}+j_{2}^{\ovalbox{\tt\small REJECT}}=k^{\ovalbox{\tt\small REJECT}} and

m(j_{1}-j_{1}^{\ovalbox{\tt\small REJECT}})+n(j_{2}-j_{2}^{\ovalbox{\tt\small REJECT}})=1\}

and \mathbb{N}_{0} :=\mathbb{N}\cup\{0\}.
We claim that by choosing m and n appropriately (depending on q) we can ensure

that $\Lambda$_{k,k'} is empty whenever a_{k}a_{k'}> O. Remarkably, it is not difficult to show that

if m and n have the same parity the sets $\Lambda$_{k,k'} are empty whenever k and k' have the

same parity. Moreover, if one chooses m and n to be �sufficiently coprime�� in the sense

that whenever  $\alpha$ m+ $\beta$ n=1 the vector ( $\alpha$,  $\beta$) is sufficiently distant from the origin, then

one can show that $\Lambda$_{k,k'} is empty whenever one of k and k^{\ovalbox{\tt\small REJECT}} is less than q/2+1 . This

leaves a contribution from summands with k and k �

greater than q/2+1 and, as long
as one summand is nonzero, it follows that c_{1}+c_{-1}<0 as required. For further details

of these arguments we refer the reader to [14].
The manner in which the oscillation is exploited in the above argument via an

infinite binomial expansion involving negative coefficients is in the spirit of the Hardy‐
Littlewood majorant counterexample in [22].

The idea behind our argument for p>1 is the following. For large m and n which

are suffciently far apart and small t>0,  H_{t}* $\mu$ is a finite sum of (well‐separated�
gaussians and consequently (H_{t}* $\mu$)^{1/p} is very close�� to H_{t}^{1/p}*\overline{ $\mu$} , where

\overline{ $\mu$}:=$\delta$_{0}+r^{1/p}$\delta$_{7n}+r^{1/p}$\delta$_{n}.

Combined with the correcting power of t from the definition of Q, H_{t} raised to the

power 1/p is essentially the same heat kernel at a rescaled time. Furthermore, it is not

difficult to locate a suitable pair of large and well‐separated integers (m, n) for which our

argument for p=1 works. Therefore, our analysis for the measure  $\mu$ above is suffcient,
modulo an error term, to produce a counterexample for all  p>1 . This argument is

made rigorous in [14]. \square 
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