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Let  $\Omega$ be an open set in \mathbb{R}^{3} . It is well‐known that if u_{j}\rightarrow u, v_{j}-v weakly in L^{2}( $\Omega$) and if

\{\mathrm{d}\mathrm{i}\mathrm{v}u_{j}\}_{j=1}^{\infty} and \{rot v_{j}\}_{j=1}^{\infty} are bounded in L^{2}( $\Omega$) ,
then it holds that u_{j}\cdot v_{j}\rightarrow u\cdot v in the sense

of distributions in  $\Omega$ . This is the original Div‐Curl lemma. For instance, we refer to Tartar

[5]. The purpose of this article is to deal with a similar lemma to bounded domains where the

convergence  u_{j}\cdot v_{j}\rightarrow u\cdot v holds in the sense that

(1.1) \displaystyle \int_{ $\Omega$}u_{j}\cdot v_{j}dx\rightarrow\int_{ $\Omega$}u . vdx as j\rightarrow\infty.

Our result may be regarded as a global version of the Div‐Curl lemma, which includes the

previous one. To obtain such a global version, we need to pay an attention to the behaviour of

\{u_{j}\}_{j=1}^{\infty} and \{v_{j}\}_{j=1}^{\infty} on the boundary \partial $\Omega$ of  $\Omega$ . Indeed, an additional bound of \{u_{j}\cdot $\nu$|_{\partial $\Omega$}\}_{j=1}^{\infty} ,
or

that of \{v_{j}\times $\nu$|_{\partial $\Omega$}\}_{j=1}^{\infty} in H^{\frac{1}{2}}(\partial $\Omega$) on the boundary \partial $\Omega$ plays an essential role for our convergence,

where  $\nu$ denotes the unit outward normal to \partial $\Omega$.

In what follows, we impose the following assumption on the domain  $\Omega$ :

Assumption.  $\Omega$ is a bounded domain in \mathbb{R}^{3} with C^{\infty}‐boundary \partial $\Omega$.

Before stating our result, we first recall the generalized trace theorem for  u\cdot $\nu$ and u \times lﾉ on

\partial $\Omega$ defined on the Banach spaces  E_{d\mathrm{i}v}^{q}( $\Omega$) and E_{rot}^{q}( $\Omega$) for  1<q<\infty ,
where

 E_{div}^{q}( $\Omega$) \equiv \{u\in L^{q}( $\Omega$);\mathrm{d}\mathrm{i}\mathrm{v}u\in L^{q}( $\Omega$)\} with the norm \Vert u\Vert_{E_{div}^{q}}=\Vert u\Vert_{q}+\Vert \mathrm{d}\mathrm{i}\mathrm{v}u\Vert_{q},
E_{rot}^{q}( $\Omega$) \equiv {  u\in L^{q}( $\Omega$) ; rot u\in L^{q}( $\Omega$) } with the norm \Vert u\Vert_{E_{rot}^{q}}=\Vert u\Vert_{q}+\Vert \mathrm{r}\mathrm{o}\mathrm{t}u\Vert_{q}.

Here and in what follows, \Vert\cdot\Vert_{q} denotes the usual L^{q}‐norm over  $\Omega$ . It is known that there are

bounded operators  $\gamma$_{ $\nu$} and $\tau$_{ $\nu$} on E_{div}^{q}( $\Omega$) and E_{rot}^{q}( $\Omega$) with properties that

$\gamma$_{ $\nu$} : u\in E_{div}^{q}( $\Omega$)\mapsto$\gamma$_{ $\nu$}u\in W^{1-1/q',q'}(\partial $\Omega$)^{*}, $\gamma$_{ $\nu$}u=u\cdot $\nu$|_{\partial $\Omega$} if u\in C^{1}(\overline{ $\Omega$}) ,

$\tau$_{ $\nu$} : u\in E_{rot}^{q}( $\Omega$)\mapsto$\tau$_{I}ﾉ u\in W^{1-1/q',q'}(\partial $\Omega$)^{*}, $\tau$_{ $\nu$}u=u\times $\nu$|_{\partial $\Omega$} if u\in C^{1}(\overline{ $\Omega$}) ,
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respectively, where 1/q+1/q'=1 . The range W^{1-1/q',q'}(\partial $\Omega$)^{*} of $\gamma$_{ $\nu$} and $\tau$_{ $\nu$} is the dual space

of W^{1-1/q',q'}(\partial $\Omega$) which is the image of the trace on \partial $\Omega$ of functions in  W^{1,q'}( $\Omega$) . Indeed, the

following generalized Stokes formula holds

(1.2) (u, \nabla p)+(\mathrm{d}\mathrm{i}\mathrm{v}u,p)=\langle$\gamma$_{ $\nu$}u,  $\gamma$ 0p\rangle_{\partial $\Omega$} for all u\in E_{dx}^{q} and all p\in W^{1,q'}( $\Omega$) ,

(1.3) (u ,
rot  $\phi$ ) = (rot u,  $\phi$ ) +\langle$\tau$_{ $\nu$}u,  $\gamma$ 0 $\phi$\rangle_{\partial $\Omega$} for all u\in E_{rot}^{q}( $\Omega$) and all  $\phi$\in W^{1,q'}( $\Omega$) ,

where $\gamma$_{0} denotes the usual trace operator from W^{1,q'}( $\Omega$) onto W^{1-1/q',q'}(\partial $\Omega$) ,
and \rangle_{\partial $\Omega$} is

the duality paring between W^{1-1/q',q'}(\partial $\Omega$)^{*} and W^{1-1/q',q'}(\partial $\Omega$) . Here and in what follows, )
denotes the duality paring between L^{q}( $\Omega$) and L^{q'}( $\Omega$) . For a detail of (1.2) and (1.3), we refer

to Borchers‐Sohr [1], [2], Simader‐Sohr [3] and Temam [6].

Our result now reads:

Theorem 1 Let  $\Omega$ be as in the Assumption. Let  1<r<\infty with  1/r+1/r'=1 . Suppose that

\{u_{j}\}_{j=1}^{\infty}\subset L^{r}( $\Omega$) and \{v_{j}\}_{j=1}^{\infty}\subset L^{r'}( $\Omega$) satisfy

(1.4) u_{j}-u weakly in L^{r}( $\Omega$) , v_{j}\rightarrow v weakly in L^{r'}( $\Omega$)

for some u\in L^{r}( $\Omega$) and v\in L^{r'}( $\Omega$) , respectively. Assume also that

(1.5) \{\mathrm{d}\mathrm{i}\mathrm{v}u_{j}\}_{j=1}^{\infty} is bounded in L^{q}( $\Omega$) for some q>\displaystyle \max\{1, 3r/(3+r)\}
and that

(1.6) \{rot v_{j}\}_{j=1}^{\infty} is bounded in L^{S}( $\Omega$) for some s>\displaystyle \max\{1, 3r'/(3+r

respectively. If either

(i) \{$\gamma$_{ $\nu$}u_{j}\}_{j=1}^{\infty} is bounded in W^{1-1/q,q}(\partial $\Omega$) ,

or

(ii) \{$\tau$_{ $\nu$}v_{j}\}_{j=1}^{\infty} is bounded in W^{1-1/s,s}(\partial $\Omega$) ,

then it holds that

(1.7) \displaystyle \int_{ $\Omega$}u_{j}\cdot v_{j}dx\rightarrow\int_{ $\Omega$}u . vdx as j\rightarrow\infty.

In particular, if either $\gamma$_{ $\nu$}u_{j} =0 ,
or $\tau$_{ $\nu$}v_{j}=0 for all j=1 , 2, \cdots is satisfied, then we have also

(1. 7).

As an immediate consequence of our theorem, we have the following Div‐Curl lemma in an

arbitrary open set in \mathbb{R}^{3}.

Corollary 1.1 (Tartar [5]) Let D be an arbitrary open set in \mathbb{R}^{3} . Let  1<r<\infty . Suppose
that \{u_{j}\}_{j=1}^{\infty}\subset L^{r}(D) and \{v_{j}\}_{j=1}^{\infty}\subset L^{r'}(D) satisfy

(1.8) u_{j}\rightarrow u weakly in L^{r}(D) , v_{j}\rightarrow v weakly in L^{r'}(D)

for some u\in L^{r}(D) and v\in L^{r'}(D) , respectively. Assume also that

(1.9) \{\mathrm{d}\mathrm{i}\mathrm{v}u_{j}\}_{j=1}^{\infty} and \{rot v_{j}\}_{j=1}^{\infty} are bounded in L^{r}(D) and L^{r'}(D) ,

respectively. Then it holds that

(1.10) u_{j}\cdot v_{j}\rightarrow u\cdot v in the sense of distributions in D.
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Remarks. (i) Since  $\Omega$ is a bounded domain, we may assume that  3r/(3+r)<q\leqq r and

3r'/(3+r')<s\leqq r' , and hence it holds that \{u_{j}\}_{j=1}^{\infty}\subset E_{d\mathrm{z}v}^{q}( $\Omega$) and that \{v_{j}\}_{j=1}^{\infty}\subset E_{rot}^{s}( $\Omega$) .

Then we have that \{$\gamma$_{ $\nu$}u_{j}\}_{j=1}^{\infty}\subset W^{1-1/q',q'}(\partial $\Omega$)^{*} and \{$\tau$_{ $\nu$}v_{j}\}_{j=1}^{\infty}\subset W^{1-1/s',s'}(\partial $\Omega$)^{*}.
(ii) In Theorem 1, it is unnecessary to assume both bounds of \{$\gamma$_{ $\nu$}u_{j}\}_{j=1}^{\infty} in W^{1-1/r,r}(\partial $\Omega$)

and \{$\tau$_{ $\nu$}v_{j}\}_{j=1}^{\infty} in W^{1-1/r_{)}'r'}(\partial $\Omega$) . Indeed, what we need is only one of these bounds.

2 Lr‐Helmholtz‐Weyl decomposition.

In this section, we recall the Helmholtz‐Weyl decomposition for vector fields in L^{r}( $\Omega$) . For a

detail, we refer [2]. According to the two types u\cdot $\nu$=0 and u\times lJ=0 of boundary conditions

on \partial $\Omega$
,

we first define harmonic vector spaces  X_{har}( $\Omega$) and V_{har}( $\Omega$) as

X_{har}( $\Omega$) = { h\in C^{\infty}(\overline{ $\Omega$});\mathrm{d}\mathrm{i}\mathrm{v}h=0 ,
rot h=0 in  $\Omega$ with  h\cdot $\nu$=0 on \partial $\Omega$ },

 V_{har}( $\Omega$) = { h\in C^{\infty}(\overline{ $\Omega$});\mathrm{d}\mathrm{i}\mathrm{v}h=0 ,
rot h=0 in  $\Omega$ with  h\times $\nu$=0 on \partial $\Omega$ }.

Moreover, for  1<r<\infty let us define divergence‐free vector fields  X_{ $\sigma$}^{r}( $\Omega$) and V_{ $\sigma$}^{r}( $\Omega$) by

X_{ $\sigma$}^{r}( $\Omega$) \equiv \{u\in W^{1,r}( $\Omega$);\mathrm{d}\mathrm{i}\mathrm{v}u=0, $\gamma$_{ $\nu$}u=0\},
V_{ $\sigma$}^{r}( $\Omega$) \equiv \{u\in W^{1,r}( $\Omega$);\mathrm{d}\mathrm{i}\mathrm{v}u=0, $\tau$_{ $\nu$}u=0\}.

Then we have the following decomposition theorem. For a detail, we refer Kozono‐Yanagisawa
[2]

Proposition 2.1 ([2]) Let  $\Omega$ be as in the Assumption. Let  1<r<\infty.

(1) Both X_{har}( $\Omega$) and V_{har}( $\Omega$) are finite dimensional vector spaces.

(2) For every u\in L^{r}( $\Omega$) , there are p\in W^{1,r}( $\Omega$) , w\in V_{ $\sigma$}^{r}( $\Omega$) and h\in X_{har}( $\Omega$) such that u

can be represented as

(2.1) u=h+ rot w+\nabla p.

Such a triplet \{p, w, h\} is subordinate to the estimate

(2.2) \Vert p\Vert_{W^{1r}}+\Vert w\Vert_{W^{1,r}}+\Vert h\Vert_{r}\leqq C\Vert u\Vert_{r}

with the constant C=C( $\Omega$, r) independent of u . The above decomposition (2.1) is unique. In

fact, if u has another expression
u=\tilde{h}+ rot \overline{w}+\nabla\tilde{p}

for \overline{p}\in W^{1,r}( $\Omega$) , \tilde{w}\in V_{ $\sigma$}^{r}( $\Omega$) and \tilde{h}\in X_{har}( $\Omega$) ,
then we have

(2.3) h=\tilde{h}
,

rot w= rot \tilde{w}, \nabla p=\nabla\overline{p}.

(3) For every u\in L^{r}( $\Omega$) ,
there are p\in W_{0}^{1,r}( $\Omega$) , w\in X_{ $\sigma$}^{r}( $\Omega$) and h\in V_{ha7}.( $\Omega$) such that u

can be represented as

(2.4) u=h+ rot w+\nabla p.

Such a triplet \{p, w, h\} is subordinate to the estimate

(2.5) \Vert p\Vert_{W^{1,r}}+\Vert w\Vert_{W^{1,r}}+\Vert h\Vert_{r}\leqq C\Vert u\Vert_{ $\gamma$}
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with the constant C=C( $\Omega$, r) independent of u . The above decomposition (2.4) is unique. In

fact, if u has another expression
u=\tilde{h}+ rot \tilde{w}+\nabla\overline{p}

for \tilde{p}\in W_{0}^{1,r}( $\Omega$)_{2}\tilde{w}\in X_{ $\sigma$}^{r}( $\Omega$) and \tilde{h}\in V_{har}( $\Omega$) ,
then we have

(2.6) h=\overline{h} ,
rot w= rot \tilde{w}, p=\tilde{p}.

An immediate consequence of the above theorem is

Corollary 2.1 Let  $\Omega$ be as in the Assumption.

(1) By the unique decompositions (2.1) and (2.4) we have two kinds of direct sums in algebraic
and topological sense

(2.7)  L^{r}( $\Omega$) =  X_{har}( $\Omega$)\oplus rot  V_{ $\sigma$}^{r}( $\Omega$)\oplus\nabla W^{1,r}( $\Omega$) ,

(2.8) L^{r}( $\Omega$) =  V_{har}( $\Omega$)\oplus rot  X_{ $\sigma$}^{r}( $\Omega$)\oplus\nabla W_{0}^{1,r}( $\Omega$)

for 1<r<\infty.

(2) Let S_{r}, R_{r} and Q_{r} be projection operators associated with both (2.1) and (2.4) from

L^{r}( $\Omega$) onto X_{har}( $\Omega$) ,
rot V_{ $\sigma$}^{r}( $\Omega$) and \nabla W^{1,r}( $\Omega$) ,

and from L^{r}( $\Omega$) onto V_{har}( $\Omega$) ,
rot X_{ $\sigma$}^{r}( $\Omega$) and

\nabla W_{0}^{1,r}( $\Omega$) , respectively, i. e.,

(2.9) S_{r}u\equiv h, R_{r}u\equiv \mathrm{r}\mathrm{o}\mathrm{t}w, Q_{r}u\equiv\nabla p.

Then we have

(2.10) \Vert S_{r}u\Vert_{r}\leqq C\Vert u\Vert_{r}, \Vert R_{r}u\Vert_{r}\leqq C\Vert u\Vert_{r}, \Vert Q_{r}u\Vert_{r}\leqq C\Vert u\Vert_{r}
for all u\in L^{r}( $\Omega$) ,

where C=C(r) is the constant depending only on  1<r<\infty . Moreover,

there holds

(2.11) \left\{\begin{array}{ll}
S_{r}^{2}=S_{r}, & S_{r}^{*}=S_{r'},\\
R_{r}^{2}=R_{r}, & R_{r}^{*}=R_{r'}\\
Q_{r}^{2}=Q_{T}, & Q_{r}^{*}=Q_{r'},
\end{array}\right.
where S_{r}^{*}, R_{r}^{*} and Q_{r}^{*} denote the adjoint operators on L^{r'}( $\Omega$) of S_{r}, R_{r} and Q_{r} , respectively.

If u has an additional regularity such as \mathrm{d}\mathrm{i}\mathrm{v}u\in L^{q}( $\Omega$) and rot u\in L^{q}( $\Omega$) for some 1<q\leqq r,
then we may choose the scalar and the vector potentials p and w in (2.1) and (2.4) in the class

W^{2,q}( $\Omega$) . More precisely, we have

Proposition 2.2 Let  $\Omega$ be as in the Assumption and let  1<r<\infty . Suppose that  u\in L^{r}( $\Omega$) .

(1) Let us consider the decomposition (2.1).
(i) If, in addition, rot u\in L^{q}( $\Omega$) for some 1<q\leqq r ,

then the vector potential w of u in

(2.1) can be chosen as w\in W^{2,q}( $\Omega$)\cap V_{ $\sigma$}^{r}( $\Omega$) with the estimate

(2.12) \Vert w\Vert_{W^{2q}}\leqq C(\Vert \mathrm{r}\mathrm{o}\mathrm{t}u\Vert_{q}+\Vert u\Vert_{r}) .

(ii) If, in addition, \mathrm{d}\mathrm{i}\mathrm{v}u\in L^{q}( $\Omega$) with $\gamma$_{ $\nu$}u\in W^{1-1/q,q}(\partial $\Omega$) for some 1<q\leqq r ,
then the

scalar potential p of u in (2.1) can be chosen as p\in W^{2,q}( $\Omega$)\cap W^{1,r}( $\Omega$) with the estimate

(2.13) \Vert p\Vert_{W^{2q}}\leqq C(\Vert \mathrm{d}\mathrm{i}\mathrm{v}u\Vert_{q}+\Vert u\Vert_{r}+\Vert$\gamma$_{ $\nu$}u\Vert_{W^{1-1/q,q}(\partial $\Omega$)}) .
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(2) Let us consider the decomposition (2.4).
(i) If, in addition, \mathrm{d}\mathrm{i}\mathrm{v}u\in L^{q}( $\Omega$) for some 1<q\leqq r , then the scalar potential p of u in

(2.4) can be chosen as p\in W^{2,q}( $\Omega$)\cap W_{0}^{1,r}( $\Omega$) with the estimate

(2.14) \Vert p\Vert_{W^{2_{:}q}}\leqq C\Vert \mathrm{d}\mathrm{i}\mathrm{v}u\Vert_{q}.

(ii) If, in addition, rot u\in L^{q}( $\Omega$) with $\tau$_{ $\nu$}u\in W^{1-1/q,q}(\partial $\Omega$) for some 1<q\leqq r , then the

vector potential w of u in (2.4) can be chosen as w\in W^{2,q}( $\Omega$)\cap X_{ $\sigma$}^{r}( $\Omega$) with the estimate.

(2.15) \Vert w\Vert_{W^{2,q}}\leqq C(\Vert \mathrm{r}\mathrm{o}\mathrm{t}u\Vert_{q}+\Vert u\Vert_{r}+\Vert$\tau$_{ $\nu$}u\Vert_{W^{1-1/q,q}(\partial $\Omega$)}) .

Here C=C( $\Omega$, r, q) is the constant depending only on  $\Omega$, r and q.

3 Proof of Theorem 1.

(i) Let us first consider the case when \{$\gamma$_{ $\nu$}u_{j}\}_{j=1}^{\infty} is bounded in W^{1-1/q,q}(\partial $\Omega$) . In such a case,
we make use of the decomposition (2.1). Let S_{r}, R_{r} and Q_{r} be the projection operators from

L^{r}( $\Omega$) onto X_{har}( $\Omega$) ,
rot V_{ $\sigma$}^{r}( $\Omega$) and \nabla W^{1,r}( $\Omega$) defined by (2.9), respectively. Notice that the

identity
(3.1) (u, v)=(S_{r}u, S_{r'}v)+(R_{r}u, R_{r'}v)+(Q_{r}u, Q_{r'}v)
holds for all u\in L^{r}( $\Omega$) and all v\in L^{r'}( $\Omega$) . Indeed, by the generalized Stokes formula (1.2) and

(1.3), we have

(\nabla p, h)=-(p, \mathrm{d}\mathrm{i}\mathrm{v}h)+\langle$\gamma$_{ $\nu$}h, $\gamma$_{0}p\rangle_{\partial $\Omega$}=0,
(rot w, h ) = (w ,

rot h ) +\langle$\tau$_{ $\nu$}w, $\gamma$_{0}h\}_{\partial $\Omega$}=0

for all p\in W^{1,r}( $\Omega$) , w\in V_{ $\sigma$}^{r}( $\Omega$) and h\in X_{har}( $\Omega$) , Similarly, we have

(rot w, \nabla p ) =\langle$\gamma$_{ $\nu$} (rot w ), $\gamma$_{0}p\}_{\partial $\Omega$}=0 for all w\in V_{ $\sigma$}^{r}( $\Omega$) , p\in W^{1,r'}( $\Omega$) .

Thus we obtain (3.1).
Now, by (3.1), we see that the convergence (1.7) can be reduced to

(3.2) (S_{r}u_{j}, S_{r'}v_{j}) \rightarrow (Sru,  S_{r'}v ),
(3.3) (R_{ $\Gamma$}u_{j}, R_{r'}v_{j}) \rightarrow (Rru,  R_{r'}v ),
(3.4) (Q_{r}u_{j}, Q_{r'}v_{j}) \rightarrow (Q_{r}u, Q_{r'}v) .

By Proposition 2.1 (1), the ranges of S_{r} and S_{$\gamma$'} are of finite dimension, which means that both

S_{r} and S_{r}/ are finite rank operators, therefore compact. Hence, we have by (1.4) that

S_{r}u_{j}\rightarrow S_{r}u strongly in L^{r}( $\Omega$) , S_{r'}v_{j}\rightarrow S_{r'}v strongly in L^{r'}( $\Omega$) ,

from which it follows (3.2).
Next, we apply Proposition 2.2 (1) to (3.3) and (3.4). Since  $\Omega$ is bounded, we may assume

that

\displaystyle \max\{1, \frac{3r}{3+r}\}<q\leqq r, \max\{1, \frac{3r'}{3+r}\}<s\leqq r'.
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By (1.6) and (2.12) with q and r replaced by s and r'
, respectively, we see that  R_{r'}v_{j}\equiv rot \tilde{w}_{j}

with \tilde{w}_{j}\in V_{ $\sigma$}^{r'}( $\Omega$) satisfies \overline{w}_{j}\in W^{2,s}( $\Omega$)\cap V_{ $\sigma$}^{r'}( $\Omega$) with the estimate

\Vert\tilde{W}_{j}\Vert_{W^{2s}}\leqq C(\Vert \mathrm{r}\mathrm{o}\mathrm{t}v_{j}\Vert_{s}+\Vert v_{j}\Vert_{r'})\leqq M ,
for all j=1 , 2, \cdots

with a constant  M independent of j . Since 1/r'>1/s-1/3 ,
the embedding  W^{2,s}( $\Omega$)\subset

 W^{1,r'}( $\Omega$) is compact, and hence we see that \{\tilde{w}_{j}\}_{j=1}^{\infty} has a strongly convergent subsequence in

W^{1,r'}( $\Omega$) ,
and hence \{R_{r'}v_{j}\}_{j=1}^{\infty} has a strongly convergent subsequence in L^{r'}( $\Omega$) . Since (1.4)

yields rot \tilde{w}_{j}=R_{r'}v_{j}\rightarrow R_{r'}v weakly in L^{r'}( $\Omega$) ,
it holds, in fact, that

(3.5) R_{r'}v_{j}\rightarrow R_{r'}v strongly in L^{r'}( $\Omega$) .

Obviously by (1.4), R_{ $\gamma$}u_{j}\rightarrow R_{r}u weakly in L^{r}( $\Omega$) ,
and hence (3.3) follows.

Since \{$\gamma$_{U}u_{j}\}_{j=1}^{\infty} is bounded in W^{1-1/q,q}(\partial $\Omega$) ,
we see from (1.5) and (2.13) that Q_{r}u_{j}=\nabla p_{j}

satisfies that p_{j}\in W^{2,q}( $\Omega$) with the estimate

\Vert p_{j}\Vert_{W^{2q}}\leqq C(\Vert \mathrm{d}\mathrm{i}\mathrm{v}u_{j}\Vert_{q}+\Vert u_{j}\Vert_{7}+\Vert$\gamma$_{U}u_{j}\Vert_{W^{1-1/q,q}(\partial $\Omega$)})\leqq M for all j=1 , 2, \cdots

with a constant  M independent of j . Since 1/r>1/q-1/3 , again by the compact embedding

W^{2,q}( $\Omega$)\subset W^{1,r}( $\Omega$) and by the weak convergence \nabla p_{j}=Q_{r}u_{j}\rightarrow Q_{r}u in L^{r}( $\Omega$) , implied by

(1.4), it holds that

(3.6) Q_{r}u_{j}\rightarrow Q_{r}u strongly in L^{r}( $\Omega$) .

Since (1.4) yields Q_{r'}v_{j}\rightarrow Q_{r'}v weakly in L^{r'}( $\Omega$) ,
we see that (3.4) follows.

(ii) We next consider the case when \{$\tau$_{ $\nu$}v_{j}\}_{j=1}^{\infty} is bounded in W^{1-1/s,s}(\partial $\Omega$) . In this case, we

make use of the decomposition (2.4). Then the argument is quite similar to the former case (i)
above. So, we may omit the proof. This proves Theorem 1.

Proof of Corollary 1.1. We may prove that for every  $\varphi$\in C_{0}^{\infty}(D)

\displaystyle \int_{D} $\varphi$ u_{j}\cdot v_{j}dx\rightarrow\int_{D} $\varphi$ u . vdx.

Let us take a bounded domain  $\Omega$\subset \mathbb{R}^{3} with the smooth boundary \partial $\Omega$ so that supp  $\varphi$\subset $\Omega$\subset D.
Then it suffices to prove that

(3.7) \displaystyle \int_{ $\Omega$} $\varphi$ u_{j}\cdot v_{j}dx\rightarrow\int_{ $\Omega$} $\varphi$ u . vdx.

Obviously by (1.8), it holds that

(3.8)  $\varphi$ u_{j}\rightarrow $\varphi$ u weakly L^{r}( $\Omega$) , v_{j}\rightarrow v weakly L^{r'}( $\Omega$) .

Since \mathrm{d}\mathrm{i}\mathrm{v}( $\varphi$ u_{j})= $\varphi$ \mathrm{d}\mathrm{i}\mathrm{v}u_{j}+u_{j}\cdot\nabla $\varphi$ ,
we see by (1.8) and (1.9) that \{\mathrm{d}\mathrm{i}\mathrm{v}( $\varphi$ u_{j})\}_{j=1}^{\infty} is bounded

in L^{r}( $\Omega$) with

(3.9) $\gamma$_{ $\nu$}( $\varphi$ u_{j})=0, j=1, 2, \cdots.
Since (1.9) states that \{rot v_{j}\}_{j=1}^{\infty} is also bounded in L^{r'}( $\Omega$) , by taking q=r and s=r' in (1.5)
and (1.6), respectively, we see that the convergence (3.7) follows from (3.8), (3.9) and Theorem

1 (i). This proves Corollary 1.1.
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