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ON THE SMOOTHING PROPERTIES OF DISPERSIVE PARTIAL

DIFFERENTIAL EQUATIONS

MICHAEL RUZHANSKY AND MITSURU SUGIMOTO

ABSTRACT. The paper gives an overview of a new approach to global smoothing
problems for dispersive and non‐dispersive evolution equations based on the global
canonical transforms and the underlying global microlocal analysis. The paper

discusses the equivalence of known smoothing estimates for different equations, gives
new estimates for equations with homogeneous and non‐homogeneous symbols, and

gives an overview of global L^{2} ‐boundedness properties of Fourier integral operators.
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1. INTRODUCTION

The analysis of nonlinear evolution partial differential equations usually relies on

the global analysis for linearised equations. For this purpose, one tries to construct

and analyse global solutions for corresponding linear equations. In general, partial
differential equations of different types lead to representation of solutions in different

forms. For example, elliptic partial differential equations lead to parametrices in the

form of pseudo‐differential operators. On the other hand, propagators for hyperbolic
equations can be constructed in the form of Fourier integral operators. Other equa‐

tions, like Schödinger equation or linearised Korteweg‐de Vries equation lead to more

general oscillatory integrals. Solutions to Schrödinger equations can be viewed in the
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form of Legendrian oscillatory integrals while more general evolution partial differ‐

ential equations give rise to oscillatory integrals of more general types. Elements of

the required analysis usually include methods of representation of solutions, calculus

of solution operators and of propagators, global weighted L^{2} and other estimates,
spectral properties, functional analytic properties, etc.

In this paper we briefly overview several approaches to linearisations of nonlinear

evolution equations as well as approaches to smoothing estimates. We give several

examples of equations and corresponding problems. The main issue discussed here

are the smoothing estimates for linear evolution equations. We are mainly inter‐

ested in evolution equations of dispersive and non‐dispersive types. For this purpose,

we will discuss their normal forms and canonical transforms which can be used for

the reduction of general equations to these normal forms, and introduce comparison
principles which can be used to obtain further information about equations in their

normal form.

We will also give an overview of related problems such as necessary estimates for

Fourier integral and pseudo‐differential operators, estimates in weighted L^{2}‐spaces for

pseudo‐differential and Fourier integral operators under minimal conditions, global
calculus of these operators and other aspects and applications.

2. EVOLUTION EQUATIONS

Main approaches to nonlinear evolution equations can be summarised as

Nonlinear evolution equations

\nearrow \nwarrow
\leftarrow+\ovalbox{\tt\small REJECT} Strichartz‐smoothing estimates \leftrightarrow

In both of these approaches one looks for global estimates for linearised equations.
Strichartz estimates here are essentially  L^{p}L^{q} space‐time estimates while smoothing
estimates are essentially Sobolev L^{2} space‐time estimates. Since 1980 �s different

spectral methods were developed to establish smoothing estimates for a variety of

equations, starting perhaps from Kato [Ka2], and since 1990 �s methods of harmonic

analysis were also used. The purpose of this paper is to describe also methods of

the microlocal analysis, namely those of �(canonical transforms�� and (�comparison
principles��

For real‐valued function a( $\xi$)\in \mathbb{R} and D_{x}=-i\partial_{x} ,
consider evolution equation

\left\{\begin{array}{l}
(i\partial_{t}+a(D_{x}))u(t, x)=0,\\
u(0, x)= $\varphi$(x) .
\end{array}\right.
2
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The basic question for smoothing estimates is when its solution u(t, x)=e^{ita(D_{x})} $\varphi$(x)
has the space‐time estimate

(2.1) \Vert Au(t, x)\Vert_{L^{2}(\mathbb{R}_{t}\times \mathbb{R}_{x}^{n})}\leq C\Vert $\varphi$\Vert_{L^{2}(\mathbb{R}_{x}^{n})},
where t\in \mathbb{R}, x\in \mathbb{R}^{n} ,

and for what operators A=A(X, D_{x}) . We note that this gives
also the estimate for the equation

\left\{\begin{array}{l}
(\partial_{t}^{2}+a(D_{x})^{2})u(t, x)=0,\\
u(0, x)=$\varphi$_{0}(x) , \partial_{t}u(0, x) =$\varphi$_{1}(x) ,
\end{array}\right.
since its solution u(t, x) can be expressed as a linear combination of terms

e^{\pm ita(D_{x})}$\varphi$_{0}, \displaystyle \frac{e^{\pm ita(D_{x})}}{a(D_{x})}$\varphi$_{1}.
The space‐time estimate (2.1) is one of the �(fundamental estimates� for (nonlinear)

equations that arise in various problems in different sciences, e.g.

\ovalbox{\tt\small REJECT} a( $\xi$)=| $\xi$|^{2}\Rightarrow Schrödinger equation  i\partial_{t}u-\triangle_{x}u=0,
\ovalbox{\tt\small REJECT} a( $\xi$)=| $\xi$|\Rightarrow Wave equation \partial_{t}^{2}u-\triangle_{x}u=0 ;

\ovalbox{\tt\small REJECT} a( $\xi$)=\sqrt{| $\xi$|^{2}+1}\Rightarrow Relativistic Schrödinger equation

 i\partial_{ $\iota$}\perp u+\sqrt{1-\triangle_{x}}u=0 ;

\ovalbox{\tt\small REJECT} a( $\xi$)=\sqrt{| $\xi$|^{2}+1}\Rightarrow Klein‐Gordon equation \partial_{t}^{2}u-\triangle_{x}u+u=0 ;

\ovalbox{\tt\small REJECT} a( $\xi$)=$\xi$^{3}(n=1)\Rightarrow Korteweg‐de Vries (shallow water waves)

\partial_{t}u+\partial_{x}^{3}u+u\partial_{x}u=0 ;

\ovalbox{\tt\small REJECT} a( $\xi$)=| $\xi$| $\xi$(n=1)\Rightarrow Benjamin‐Ono equation (deep water waves)

\partial_{t}u-\partial_{x}|D_{x}|u+u\partial_{x}u=0 ;

\ovalbox{\tt\small REJECT} a( $\xi$)=$\xi$_{1}^{2}-$\xi$_{2}^{2}(n=2)\Rightarrow Davey‐Stewartson system

\left\{\begin{array}{l}
i\partial_{t}u-\partial_{x}^{2}u+\partial_{y}^{2}u=c_{1}|u|^{2}u+c_{2}u\partial_{x}v,\\
\partial_{x}^{2}v-\partial_{y}^{2}v=\partial_{x}|u|^{2};
\end{array}\right.
(shallow water wave in 2\mathrm{D} )

Some other higher order/dimensional cases are also of interest, e.g.

\ovalbox{\tt\small REJECT} a( $\xi$)= polynomial of order 3 (n=2) , e.g. Shrira equation where a( $\xi$) has

normal form

$\xi$_{1}^{3}+$\xi$_{2}^{3}, $\xi$_{1}^{3}+3$\xi$_{2}^{2}, $\xi$_{1}^{2}+$\xi$_{1}$\xi$_{2}^{2}
(gravitational waves in 2\mathrm{D} );

\ovalbox{\tt\small REJECT} a( $\xi$)= quadratic form (n\geq 3)\Rightarrow Zakharov‐Schulman equation describing
the interaction of small amplitude high frequency wave and acoustic wave.

3
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The main idea of our approach is that instead of looking at particular equations,
we would like to look at relations between different equations. Thus, our plan can be

summarised as

Estimate for Eql+
where Eq2 is a general equation for which we want to have an estimate. For this, to

have an estimate for Eq2, we need to find equation Eql which is a model equation in

a normal form, and a corresponding estimate for it. The relation between equations
Eql and Eq2 is then realised as a canonical transform which we can view as a Fourier

integral operator on \mathbb{R}^{n}.

Thus, among other things, we need

\ovalbox{\tt\small REJECT} to find normal forms and operators to reduce equations to normal forms;
\ovalbox{\tt\small REJECT} to find operators transforming equations into each other.

Both things are done by using Fourier integral operators in \mathbb{R}^{n} for which we need

to develop global calculus and global weighted estimates in \mathbb{R}^{\mathrm{n}} . However, Fourier

integral operators of the form

Tu (x)=\displaystyle \int_{\mathbb{R}^{n}}e^{i $\phi$(x, $\xi$)}a(x,  $\xi$) û (  $\xi$ ) d  $\xi$

work best if the phase  $\phi$(x,  $\xi$) is essentially of order one in  $\xi$ (e.g. homogeneous, or

SG‐order one, etc.) Thus, we can reduce equation of order  m to a normal form of

the same order m
,

and the subsequent question becomes of how to relate equations
of different orders. For this, in introduce comparison principles for normal forms, so

that we have

Estimate for Eqlmod+ Estimate for Eql

0i (comparison principles)

+ Estimate for Eq2

Comparison principles allow to relate model equations Eqlmod and \mathrm{E}\mathrm{q}2\mathrm{m}\mathrm{o}\mathrm{d} , thus

relating equations Eql and Eq2 of different orders. For example, we can relate

estimates for wave, Schrödinger, and \mathrm{K}\mathrm{d}\mathrm{V} equations, in particular showing that they
are in fact equivalent.

3. SMOOTHING ESTIMATES

As one model, let us first consider the following Schrödinger equation:

(3.1) \left\{\begin{array}{l}
(i\partial_{t}+\triangle_{x})u(t, x)=0,\\
u(0, x)= $\varphi$(x)\in L^{2}(\mathbb{R}^{n}) .
\end{array}\right.
4
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By Plancherel�s theorem, we know that the solution u(t, x)=e^{it\triangle} $\varphi$(x) preserves the

L^{2}‐norm of initial data  $\varphi$ ,
that is, for any fixed time  t\in \mathbb{R} ,

we have

\Vert u(t, \cdot)\Vert_{L^{2}(\mathbb{R}_{x}^{n})}=\Vert $\varphi$\Vert_{L^{2}(\mathrm{P}^{n})}.
However, integration in both (t, x) gives smoothing by |D_{x}|^{1/2} in x

,
i.e. we have

|| $\chi$(t, x)|D_{x}|^{1/2}u||_{L^{2}(\mathbb{R}_{t}\times \mathrm{R}_{x}^{n})}\leq C|| $\varphi$||_{L^{2}(\mathbb{R}^{n})},
for all  $\chi$\in C_{0}^{\infty}(\mathbb{R}_{t}\times \mathbb{R}_{x}^{n}) . Thus, integration in t gives an extra gain of regularity of

order 1/2 in x . One of our subsequent objectives is to relate this smoothing effect for

Schrödinger equation to that of other evolution equations. It turns out that in fact

it implies smoothing estimates for other a‐priori completely unrelated equations. For

example, we will show that it implies the gain of one derivative for solutions to the

\mathrm{K}\mathrm{d}\mathrm{V} equation.
For the Schrödinger equation (3.1), for dimensions n\geq 2 ,

we have smoothing
estimates

\Vert  Au \Vert_{L^{2}(\mathbb{R}_{t}\times \mathrm{R}_{x}^{\mathrm{n}})}\leq C\Vert g\Vert_{L^{2}(\mathbb{R}_{x}^{n})},
where A is one of the following operators:

[1] A=\langle x\rangle^{-s}|D_{x}|^{1/2}
[2] A=|x|^{ $\alpha$-1}|D_{x}|^{ $\alpha$}

[3]A=\langle x\rangle^{-1}\{D_{x}\rangle^{1/2}

(s>1/2)

(1-n/2< $\alpha$<1/2)

(n>2)

The type [1] was given by Ben‐Artzi and Klainerman [BK] for n\geq 3 ,
and by Chihara

[Ch] for n\geq 2 . The type [2] was given by Kato and Yajima [KY] for n\geq 3 and

0\leq $\alpha$<1/2 ,
and by Sugimoto [Sul, Su2] for n\geq 2 and 1-n/2< $\alpha$<1/2 . It is

known that it is not true for  $\alpha$=1/2 (see e.g. Watanabe [W]). The type [3] was

given by Kato and Yajima [KY]. Walther [Wal, Wa2] also gave another approach to

this estimate using spherical harmonics.

Each proof was carried out by proving one of the following estimates (or their

variants):

||\overline{A^{*}f}|_{ $\rho$ S^{n-1}}||_{L^{2}( $\rho$ S^{n-1})}\leq C\sqrt{ $\rho$}||f||_{L^{2}(\mathbb{R}^{n})} ( \underline{{\rm Res} \mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}theorem)

\displaystyle \sup_{{\rm Im} z>0}|(R(z)A^{*}f, A^{*}f)|\leq C||f||_{L^{2}(\mathbb{R}^{n})}^{2} (Resolvent estimate)

where R(z)=(-\triangle-z)^{-1} . In fact, we have equality

{\rm Im}(R($\rho$^{2}+i0)f, f)=\displaystyle \frac{1}{4(2 $\pi$)^{r $\iota$-1} $\rho$}||\hat{f}|_{ $\rho$ S^{n-1}}||_{L^{2}( $\rho$ S^{\mathrm{n}-1})}^{2}.
By duality, both of these estimates easily imply the smoothing estimate

\Vert Au\Vert_{L^{2}(\mathbb{R}_{\mathrm{t}}\times \mathbb{R}_{x}^{n})}\leq C\Vert g\Vert_{L^{2}(\mathbb{R}}\mathfrak{X}) .

5



108 MICHAEL RUZHANSKY AND MITSURU SUGIMOTO

In comparison to these methods, our approach will be instead based on the geo‐

metric analysis, relying on the development of the global analysis of Fourier integral
operators in \mathbb{R}^{n}

,
and weighted estimates for these operators in Sobolev spaces.

We note that the smoothing effect of evolution partial differential equations has

been studied for more than 20 years. Kato [Ka2] showed a local gain of one de‐

rivative for the \mathrm{K}\mathrm{d}\mathrm{V} equation. A gain of half derivative for Schrödinger equation
and related problems were analysed by Ben‐Artzi and Devinatz [BD1, BD2], Con‐

stantin and Saut [CS], Sjölin [Sj], Vega [V], Kato and Yajima [KY], Ben‐Artzi and

Klainerman [KY], etc. The smoothing effect for different dispersive equations was

studied by Kenig, Ponce and Vega [\mathrm{K}\mathrm{P}\mathrm{V}1]-[\mathrm{K}\mathrm{P}\mathrm{V}6] , Walther [Wal, Wa2], Ben‐Artzi

and Devinatz [BD1, BD2], Ben‐Artzi and Nemirovsky [BN], Linares and Ponce [LP],
Watanabe [W], Hoshiro [Hol, Ho2], Chihara [Ch], Sugimoto [Sul, Su2], Ben‐Artzi,
Koch and Saut [BKS], etc. Smoothing properties of equations on manifolds were also

analysed, see e.g. Doi [Dol], Burq, Gerard and Tzvetkov [BGT], etc.

For simplicity, let us first consider general equations with homogeneous symbols:

(3.2) \left\{\begin{array}{l}
(i\partial_{t}+a(D_{x}))u(t, x)=0,\\
u(0, x)= $\varphi$(x)\in L^{2}(\mathbb{R}^{n}) ,
\end{array}\right.
where a( $\xi$) consists of only principal part a_{m}( $\xi$) and is dispersive in the following
sense

(H) a( $\xi$)=a_{m}( $\xi$) , \nabla a_{m}( $\xi$)\neq 0 ( $\xi$\neq 0) ,

where

\ovalbox{\tt\small REJECT}$\alpha$_{m}( $\xi$)\in C^{\infty}(\mathbb{R}^{n}\backslash 0) real‐valued;
\ovalbox{\tt\small REJECT} a_{m}( $\lambda \xi$)=$\lambda$^{m}a_{m}( $\xi$)( $\lambda$>0,  $\xi$\neq 0) .

The dispersiveness assumption (H) means that the classical orbit, that is, the solution

curve to

\left\{\begin{array}{l}
\dot{x}(t)=(\nabla a)( $\xi$(t)) , \dot{ $\xi$}(t)=0\\
x(0)=0,  $\xi$(0)=$\xi$_{0},
\end{array}\right.
escapes to infinity as  t\rightarrow\infty . We will also consider more general dispersive equations.
Let  a_{m}( $\xi$)\in C^{\infty}(\mathbb{R}^{n}\backslash 0):a_{m}( $\lambda \xi$)=$\lambda$^{m}a_{m}( $\xi$) ,  $\lambda$>0,  $\xi$\neq 0 ,

be as before. We will

consider operators a(D) having a_{m} as the homogeneous principal part. Thus, we can

introduce another assumption:

(L) a( $\xi$)\in C^{\infty}(\mathbb{R}^{n}) , \nabla a( $\xi$)\neq 0 for all  $\xi$ ,
and  a-a_{m}\in S^{m-1}

For example, function a( $\xi$)=$\xi$_{1}^{3}+\cdots+$\xi$_{n}^{3}+$\xi$_{1} satisfies (L) with m=3.

There are ways to generalise these conditions further, including classes of non‐

dispersive equations. In fact, the dispersiveness condition sometimes breaks down

( \mathrm{e}.\mathrm{g} . often for systems), but our methods give some (quite sharp) smoothing estimates

in these cases as well, see [RS6] for details.

6
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4. IDEA OF THE APPROACH

The main idea of our approach is that if we have a relation a( $\xi$)=( $\sigma$\circ $\psi$)( $\xi$) for

some  $\psi$ : \mathbb{R}^{n}\rightarrow \mathbb{R}^{n} to be specified later, then the Fourier integral operator T with

phase function x\cdot $\xi$-y\cdot $\psi$( $\xi$) gives

a(D)=T\mathrm{o} $\sigma$(D)\circ T^{-1}
Consequently, suppose that we have estimate

\Vert\langle x\}^{- $\kappa$} $\rho$(D_{x})e^{it $\sigma$(D_{x})}g(x)\Vert_{L_{t,x}^{2}}\leq C\Vert g\Vert_{L_{x}^{2}}.
Then we can rewrite it as

\Vert\{x\rangle^{- $\kappa$}T^{-1}(T $\rho$(D_{x})T^{-1})(Te^{it $\sigma$(D_{x})}T^{-1})Tg(x)\Vert_{L_{t,x}^{2}}\leq\Vert g\Vert_{L_{x}^{2}},
which implies

\Vert\langle x\}^{- $\kappa$}T^{-1}( $\rho$\circ $\psi$)(D_{x})e^{ita(D_{x})}\overline{g}(x)\Vert_{L_{t,x}^{2}}\leq C\Vert T^{-1}\overline{g}\Vert_{L_{x}^{2}},
with \overline{g}=Tg . If we combine this with weighted estimates for T and T^{-1} in Sobolev

spaces with weight \langle x\rangle^{- $\kappa$} ,
we obtain the corresponding smoothing estimate for e^{ita(D_{x})},

namely that

\Vert\langle x\rangle^{- $\kappa$}( $\rho$\circ $\psi$)(D_{x})e^{ita(D_{x})}\overline{g}(x)\Vert_{L_{t,x}^{2}}\leq C\Vert\overline{g}\Vert_{L_{ $\lambda$}^{2}}.
Thus, canonical transforms allow us to reduce general estimates to estimates in the

following normal forms (of a(D_{x}) ). Such transformations may be microlocal in  $\xi$ ,
but

they are global in  x . Without going much into detail, we have:

\ovalbox{\tt\small REJECT} elliptic: a( $\xi$)\neq 0 . In this case we can transform a(D) to |D_{1}|^{m} ;
\ovalbox{\tt\small REJECT} principal type: \nabla a( $\xi$)\neq 0 . Here we can transform a(D) to |D_{1}|^{m-1}D_{2} ;

\ovalbox{\tt\small REJECT} \mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{p}\mathrm{r}| ncipa l type: \nabla a($\xi$_{0})=0 . In this case we can transform a(D) to

some normal forms determined by the Hessian D_{ $\xi$}^{2}a($\xi$_{0}) .

We note that in general these normal forms are different from those of Duistermaat

and Hörmander [DH], and that in general, a( $\xi$) does not have to be homogeneous (as
under assumption (L)). The non‐homogeneous behaviour is absorbed in the phase
function‐ this is a difference with usual Fourier integral operators.

In order to pursue this, we first have to establish estimates for model cases and

to relate them to each other. Consequently, we need to develop a global theory of

Fourier integral operators including operators with phases coming from these canon‐

ical transformations.

The argument above shows that if we have weighted estimates for Fourier integral
operators, we can freely insert and take them out of smoothing estimates. More‐

over, one can use Fourier integral operators to reduce general smoothing estimates

to smoothing estimates for operators in normal forms in one and two dimensions.

The next question is whether we can further relate estimates for equations in

normal. If we could, we would obtain comprehensive relations between smoothing

7
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estimates for very different equations. The answer is that indeed, we can. For this, we

will introduce several comparison principles for evolution partial differential equations
that can be used for this purpose. Altogether, this allows us to relate smoothing esti‐

mates for a‐priori unrelated equations and to show that a variety of known smoothing
estimates are in fact equivalent to each other.

5. COMPARISON PRINCIPLES

For solutions u(t, x)=e^{itf(D_{x})} $\varphi$(x) and v(t, x)=e^{xtg(D_{x})} $\varphi$(x) to two equations

\left\{\begin{array}{l}
(i\partial_{t}+f(Dx)) u(t, x)=0,\\
u(0, x)= $\varphi$(x) ,
\end{array}\right. and \left\{\begin{array}{l}
(i\partial_{t}+g(D_{x}))v(t, x)=0,\\
v(0, x)= $\varphi$(x) ,
\end{array}\right.
the comparison principle is the general rule to derive time‐space estimate for u

(5.1)

from time‐space estimate for v

(5.2)

Thus, if we know estimate (5.2) for v(t, x) ,
how can we get estimate (5.1) for u(t, x) ?

Let us start with the one‐dimensional situation.

Theorem 5.1. Let f, g\in C^{1}(\mathbb{R}) be real‐valued and strictly monotone. If  $\sigma$,  $\tau$\in C^{0}(\mathbb{R})
satisfy

(5.3) \displaystyle \frac{| $\sigma$( $\xi$)|}{|f'( $\xi$)|^{1/2}}\leq A\frac{| $\tau$( $\xi$)|}{|g( $\xi$)|^{1/2}},
then we have

(5.4) \Vert $\sigma$(D_{x})e^{itf(D_{x})} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t})}\leq A\Vert $\tau$(D_{x})e^{itg(D_{x})} $\varphi$(\tilde{x})\Vert_{L^{2}(\mathbb{R}_{t})}
for all x, \tilde{x}\in \mathbb{R} . Consequently, for any measurable weight w(x) ,

we have

(5.5) \Vert w(x) $\sigma$(D_{x})e^{itf(D_{x})} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t}\times \mathrm{R}_{x})}\leq A\Vert w(x) $\tau$(D_{x})e^{xtg(D_{x})} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t}\times \mathbb{R}_{x})}.
We note that since the value of the constant A in this theorem is the same, one

can also keep track of constants. For example, for n\geq 3 and m>0 ,
we get that

\displaystyle \Vert|x|^{-1}|D_{x}|^{m/2-1}e^{it|D_{ $\lambda$}|^{m}} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t}\times \mathbb{R}_{ $\lambda$}^{n})}\leq\ulcorner\frac{2 $\pi$}{m(n-2)}\Vert $\varphi$\Vert_{L^{2}(\mathbb{R}_{x}^{n})},
8
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where the constant \sqrt{\frac{2 $\pi$}{m(n-2)}} is sharp. Indeed, for m=2 this was calculated by Simon

[Si] using Kato�s theory, and we can use Theorem 5.1 to deduce it for all m>0 from

this.

Moreover, the use of this comparison principle simplifies proofs of many smoothing
estimates. For example, the comparison principle immediately yields the equality

\sqrt{m}\Vert|D_{x}|^{(m-1)/2}e^{it|D_{x}|^{m}} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t})}={\$} $\Gamma$ l\Vert|D_{x}|^{(l-1)/2}e^{it|D_{x}|^{ $\iota$}} $\varphi$(\overline{x})\Vert_{L^{2}(\mathrm{R}_{t})}
for all l, m>0

,
all x, \tilde{x}\in \mathbb{R} , and all  $\varphi$ such that supp \hat{ $\varphi$}\subset[0, +\infty ) or (‐00,  0]. Using

this with l=1
,

we get

\sqrt{m}\Vert|D_{x}|^{(m-1)/2}e^{it|D_{x}|^{m}} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t})}=\Vert e^{it|D_{x}|} $\varphi$(\tilde{x})\Vert_{L^{2}(\mathbb{R}_{t})}
=\Vert $\varphi$(\tilde{x}+t)\Vert_{L^{2}(\mathbb{R}_{t})}=\Vert $\varphi$\Vert_{L^{2}(\mathbb{R}_{x})}.

Hence, multiplying by \langle x\rangle^{-s} with s>1/2 and integrating, we get

\Vert\{x\rangle^{-s}|D_{x}|^{(m-1)/2}e^{it|D_{x}|^{m}} $\varphi$(x)\Vert_{L^{2}(]\mathrm{P}_{-\mathrm{t}}\times \mathbb{R}_{x})}\leq C\Vert $\varphi$\Vert_{L^{2}(\mathbb{R}_{x})}
which is the smoothing estimate in the 1\mathrm{D} model case.

We have the full range of such estimates in 1\mathrm{D}, 2\mathrm{D}
,

and radially symmetric model

cases, and comprehensive relations among them, for details of which we refer to [RS5].
Here, let us only give the statement in the radially symmetric case:

Theorem 5.2. Let f, g\in C^{1}(\mathbb{R}_{+}) be real‐valued and strictly monotone. If  $\sigma$,  $\tau$\in

 C^{0}(\mathbb{R}_{+}) satisfy

\displaystyle \frac{| $\sigma$( $\rho$)|}{|f'( $\rho$)|^{1/2}}\leq A\frac{| $\tau$( $\rho$)|}{|g'( $\rho$)|^{1/2}},
then we have estimate

\Vert $\sigma$(|D_{x}|)e^{xtf(|D_{ $\lambda$}|)} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t})}\leq A\Vert $\tau$(|D_{x}|)e^{itg(|D_{x}|)} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{\mathrm{t}})}
for all x\in \mathbb{R}^{n} . Especially, for any measurable weight w(x) ,

we have

\Vert w(x) $\sigma$(|D_{x}|)e^{itf(|D_{x}|)} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t}\times \mathbb{R}_{x}^{n})}\leq A\Vert w(x) $\tau$(|D_{x}|)e^{itg(|D_{x}|)} $\varphi$(x)\Vert_{L^{2}(\mathrm{R}_{t}\times \mathbb{R}_{x}^{n})}.
Since our normal forms in Section 4 are in 1\mathrm{D} (elliptic case) and in 2\mathrm{D} (dispersive

case), and some estimates reduce to the radially symmetric case, these comparison
principles cover all normal forms and all types that we need, which we will show

later. There are also extensions of these principles to equations with time‐dependent
coefficients, for which we refer to [RS6].

We note also that the comparison principle works in both ways, namely if we have

reverse the inequality in (5.3), we must also reverse inequalities in (5.4) and (5.5).
This follows simply by relabeling pairs  $\sigma$, f and  $\tau$, g . From this it follows, in particular,
that the smoothing estimates for the wave (m=1) , Schrödinger (m=2) and \mathrm{K}\mathrm{d}\mathrm{V}

(m=3) equations are all equivalent to each other.

9
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As another example, we can relate Klein Gordon, relativistic Schrödinger, standard

Schrödinger, and wave equations among each other by the comparison principle that

yields

\Vert e^{-it\sqrt{1-\triangle_{x}}} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t})}=\sqrt{2}\Vert\langle D_{x}\rangle^{1/2}e^{it\triangle_{x}} $\varphi$(\tilde{x})\Vert_{L^{2}(\mathbb{R}_{t})}
=\Vert|D_{x}|^{-1/2}\langle D_{x}\rangle^{1/2}e^{\pm it\sqrt{-\triangle_{x}}} $\varphi$(\tilde{x})\Vert_{L^{2}(\mathbb{R}_{t})}.

This implies the equivalence of the corresponding smoothing estimates.

In comparison principle we can take any further norm with respect to x.

Corollary 5.3. Let functions f, g,  $\sigma$,  $\tau$ be as in the comparison principle Theorem

5.1. Let  0<p\leq\infty . Then, for any measurable function  w on \mathbb{R}^{n}
,

we have

\Vert w(x) $\chi$(|D_{x}|) $\sigma$(|D_{x}|)e^{xtf(|D_{x}|)} $\varphi$(x)\Vert_{L^{p}(\mathbb{R}_{x}^{n},L^{2}(\mathbb{R}_{t}))}
\leq A\Vert w(x) $\chi$(|D_{x}|) $\tau$(|D_{x}|)e^{itg(|D_{x}|)} $\varphi$(x)\Vert_{L^{p}(\mathbb{R}_{x}^{n},L^{2}(\mathbb{R}_{t}))}.

From this it follows, in particular, that for all -\infty<p\leq\infty , quantities

||e^{it\ovalbox{\tt\small REJECT}-\triangle} $\varphi$||_{L^{p}(\mathbb{R}_{x}^{n},L^{2}(\mathbb{R}_{t}))},

|||D_{x}|^{1/2}e^{-it\triangle} $\varphi$||_{L^{p}(\mathbb{R}_{x}^{n},L^{2}(\mathbb{R}_{t}))},
and

|||D_{x}|e^{it(-\triangle)^{3/2}} $\varphi$||_{L^{p}(\mathbb{R}_{x)}^{n}L^{2}(\mathbb{R}_{b}))}\perp
for propagators of the the wave, Schrödinger, and linearised \mathrm{K}\mathrm{d}\mathrm{V} type equations,

respectively, are equivalent. We also note that Minkowski�s inequality implies that

for p_{1}\leq 2\leq p_{2} we have

||f||_{L^{2}(\mathbb{R}_{\mathrm{t})}L^{p_{1}}(\mathbb{R}_{x}^{ $\tau$ \mathrm{z}}))}\leq C||f||_{L^{p_{1}}(\mathbb{R}_{x}^{n},L^{2}(\mathrm{R}_{t}))}, ||f||_{L^{p_{2}}(\mathbb{R}_{x}^{n},L^{2}(\mathbb{R}_{t}))}\leq C||f||_{L^{2}(\mathbb{R}_{t},L^{p_{2}}(\mathbb{R}_{x}^{n}))}.
The L^{2}(\mathbb{R}_{t}) ‐norm in time is often critical and, also, Strichartz estimates with  p=\infty

may fail, so the smaller  L^{\infty}(\mathbb{R}_{x}^{n}, L^{2}(\mathbb{R}_{t})) ‐norms may be a good substitute in some

situations.

6. FURTHER ESTIMATES

We can not only relate estimates, but also get new ones for new and old equations.
Results of this section are proved in [RS1, RS5].

Let u(t, x) be the solution of equation (3.2), that is of

(6.1) \left\{\begin{array}{l}
(i\partial_{t}+a(D_{x}))u(t, x)=0,\\
u(0, x)= $\varphi$(x)\in L^{2}(\mathbb{R}^{n}) ,
\end{array}\right.
Theorem 6.1. Condition (H) with n\geq 1, m>0, s>1/2 ,

or condition (L) with

n\geq 1, m\geq 1, s>1/2 , imply the estimate

(6.2) \Vert\langle x\rangle^{-s}|D_{x}|^{(m-1)/2}u(t, x)\Vert_{L^{2}(\mathbb{R}_{t}\times \mathbb{R}_{x}^{n})}\leq C\Vert $\varphi$\Vert_{L^{2}(\mathbb{R}_{x}^{n})}.

10
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Estimate (6.2) was previously obtained by Ben‐Artzi and Klainerman [BK] in the

case a( $\xi$)=| $\xi$|^{2} and n\geq 3 ,
and by Chihara [Ch] under condition (H) and m>1.

We note that in particular Theorem 6.1 also covers the case m=1 of hyperbolic
equations.

Theorem 6.2. Assume condition (H) and m>1 . Assume n>m+1 or assume

n>m>1 for elliptic a . Then we have estimate

\Vert\langle x\rangle^{-m/2}\langle D_{x}\rangle^{(m-1)/2}u(t, x)\Vert_{L^{2}(\mathbb{R}_{t}\times \mathbb{R}_{x}^{n})}\leq C\Vert $\varphi$\Vert_{L^{2}(\mathbb{R}}\mathfrak{X}) .

Alternatively, assume condition (L), m>0 and s>1/2 . Then we have

\Vert\langle x\rangle^{-8}\langle D_{x}\rangle^{(m-1)/2}u(t, x)\Vert_{L^{2}(\mathbb{R}_{t}\times \mathbb{R}_{x}^{n})}\leq C\Vert $\varphi$\Vert_{L^{2}(\mathrm{R}_{x}^{n})}.
These estimates were previously obtained by Kato and Yajima [KY] in the case

a( $\xi$)=| $\xi$|^{2} and n\geq 3 ,
and later by Walther [Wal, Wa2] in the case a( $\xi$)=| $\xi$|^{m} and

n>m>1.

We can get similar results for equations with time dependent coefficients, for op‐
erators c(t)a(D_{x}) ,

where c(t)>0 a.e. and continuous, see [RS6].
By using canonical transforms, we can also get the critical case of derivatives and

weights in the Agmon‐Hörmander�s limiting absorption principle, see [RS3]. Conse‐

quently, we get the critical case of the Kato‐Yajima�s smoothing estimate, and we

get the critical case s=\displaystyle \frac{1}{2} of restriction/trace theorems for

||\hat{f|}_{ $\rho \Sigma$}||_{L^{2}( $\rho \Sigma$)}\leq C( $\rho$)||f||_{H^{\mathrm{s}}},
with corresponding formulae for C( $\rho$) ,

see [RS3].
Indeed, for any operator A=A(X, D_{x}) acting on the variable x

,
the smoothing

estimate

\Vert Ae^{ita(D_{x})} $\varphi$\Vert_{L^{2}(\mathbb{R}_{t}\times \mathbb{R}_{x}^{n})}\leq C\Vert $\varphi$\Vert_{L^{2}(\mathbb{R}_{x}^{n})}
is equivalent to the restriction estimate

\Vert\overline{A^{*}f}_{| $\rho \Sigma$_{a}}\Vert_{L^{2}( $\rho \Sigma$_{a},$\rho$^{n-1}d $\omega$/|\nabla a|)}\leq C\sqrt{}\overline{ $\rho$}\Vert f\Vert_{L^{2}(\mathbb{R}_{x}^{n})},
where  $\rho$>0,  $\rho \Sigma$_{a}=\{ $\rho \omega$ :  $\omega$\in$\Sigma$_{a}\} ,

and $\Sigma$_{a}=\{ $\xi$\in \mathbb{R}^{n}:a( $\xi$)=1\}.
Let a( $\xi$)\in C^{\infty}(\mathbb{R}^{n}\backslash 0) be real‐valued and satisfy a( $\xi$)>0 and a( $\lambda \xi$)=$\lambda$^{2}a( $\xi$) for

 $\lambda$>0 and  $\xi$\neq 0 . Then using different weights in smoothing estimates we get

\Vert f_{| $\rho \Sigma$_{a}}\Vert_{L^{2}( $\rho \rho$^{n-1}d $\omega$)}$\Sigma$_{a},\leq C\Vert f\Vert_{H^{s}(\mathrm{j}1R^{n})} (s>1/2) ,

\Vert f_{| $\rho \Sigma$_{a}}\Vert_{L^{2}( $\rho \Sigma$_{a},$\rho$^{n-1}d $\omega$)}\leq C$\rho$^{s-1/2}\Vert f\Vert_{H^{\mathrm{s}}(\mathbb{R}^{n})} (n/2>s>1/2) .

For  $\rho$=1 this gives a trace theorem, and for all  $\rho$ , the global smoothing estimate

yields a growth order of norms in trace theorems. If we in addition assume that the

11
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Gaussian curvature of  $\Sigma$_{a} is non‐vanishing, then we have also the the critical cases:

\displaystyle \Vert(\frac{\nabla a(x)}{|\nabla a(x)|}\wedge\frac{D_{x}}{|D_{x}|})f_{1$\rho$^{$\Sigma$_{a}}}\Vert_{L^{2}( $\rho \rho$^{n-1}d $\omega$)}$\Sigma$_{a},\leq C\Vert f\Vert_{H^{1/2}(\mathbb{R}^{n})},
\displaystyle \Vert(\frac{x}{|x|}\wedge\frac{\nabla a^{*}(D_{x})}{|\nabla a^{*}(D_{x})|})f_{1$\rho$^{$\Sigma$_{a}}}\Vert_{L^{2}( $\rho \rho$^{n-1}d $\omega$)}$\Sigma$_{a},\leq C\Vert f\Vert_{H^{1/2}(\mathbb{R}^{n})}.

Here the dual function a^{*}(x) is determined by the relation

$\Sigma$_{a^{*=}}$\Sigma$_{a}^{*}

where the dual hypersurface is defined Uy

$\Sigma$_{a}^{*}=\{\nabla a( $\xi$): $\xi$\in$\Sigma$_{a}\}.
These results can be further applied to the global in time well‐posedness for derivative

nonlinear Schrödinger equations, see [RS7].

7. INVARIANT ESTIMATES

Let us now consider equations of the form

\left\{\begin{array}{l}
(i\partial_{t}+a(t, D_{x}))u(t, x)=0 \mathrm{i}\mathrm{n}\mathbb{R}_{t}\times \mathbb{R}_{x}^{n},\\
u(0, x)= $\varphi$(x) \mathrm{i}\mathrm{n} \mathbb{R}_{x}^{n}.
\end{array}\right.
We can conjecture the following estimate (e.g. for type [1])

(7.1) \Vert\langle x\rangle^{-s}|\nabla a(t, D_{x})|^{1/2}e^{i\int_{0}^{t}a(t,D_{x})dt} $\varphi$(x)\Vert_{L^{2}(\mathbb{R}_{t}\times \mathbb{R}_{x}^{n})}\leq C\Vert $\varphi$\Vert_{L^{2}(\mathbb{R}_{x}^{n})} (s>1/2) .

First we can note that in the dispersive case it is equivalent to the usual type [1]
estimate. On the other hand, it still continues to hold for a variety of non‐dispersive

equations, where \nabla a( $\xi$) may become zero on some set and when the usual estimate

fails. In fact, it does take into account zeros of the gradient \nabla a( $\xi$) ,
which is also

responsible for the interface between dispersive and non‐dispersive zone (e.g. how

quickly the gradient vanishes). Moreover, estimate (7.1) is invariant under canonical

transforms of the equation, it is scaling invariant or
 $\zeta$ �almost�� invariant in the non‐

homogeneous case. Moreover, estimate (7.1) is sharp with respect to the order and to

the non‐degeneracy of Va. For the detailed explanation of these properties we refer

to [RS6].

8. ESTIMATES FOR FOURIER INTEGRAL OPERATORS

In this section we discuss global estimates for Fourier integral operators in  L^{2} . The

class of operators arising in the smoothing problems is not covered by Asada‐Fujiwara

[AF] and by other results which are to be mentioned later. We will also discuss the

global calculus of Fourier integral operators and pseudo‐differential operators on \mathbb{R}^{n}

under minimal assumptions on phases and amplitudes‐ this includes the SG‐calculus

of Coriasco [11] and other calculi (e.g. the one by Boggiatto, Buzano and Rodino [4],

12
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etc Moreover, we will discuss global estimates for Fourier integral operators and

pseudo‐differential operators in weighted Sobolev spaces in \mathbb{R}^{n}
,

also under minimal

assumptions on phases and amplitudes.
We consider Fourier integral operators of the form

Tu (x)=\displaystyle \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i(x $\xi$+ $\phi$(y, $\xi$))}a(x, y,  $\xi$)u(y)d $\xi$ dy,
with real‐valued phase function  $\phi$\in C^{\infty}(\mathbb{R}^{n}\times \mathbb{R}^{n}) . The case of pseudo‐differential
operators is a special case with  $\phi$(y,  $\xi$)=-y\cdot $\xi$.

Similar results will also hold for the adjoint operators. In particular, this includes

operators of the form

Su(x)=\displaystyle \int_{\mathbb{R}^{n}}e^{i $\phi$(x, $\xi$)}a(x,  $\xi$) û (  $\xi$ )  d $\xi$ ,

which appear as propagators for hyperbolic equations.
Local  L^{2} estimates for non‐degenerate Fourier integral operators are well known

since Eskin [E] and Hörmander [H]. Local L^{p} estimates for non‐degenerate Fourier

integral operators have been studied over the years, see e.g. Seeger, Sogge and Stein

[SSS] and references therein.

The global estimates for Fourier integral operators have been less studied although
global L^{2}‐boundedness of pseudo‐differential operators have been thoroughly anal‐

ysed e.g. by Calderon and Vaillancourt [5], Coifman and Meyer [8], Cordes [9], etc.

Global L^{2}‐boundedness of Fourier integral operators of zero order was analysed
by Asada [Al, A2], Asada and Fujiwara [AF], Kumano‐go [Ku], under conditions

on infinitely many derivatives of  $\phi$ . Also, they require \partial_{ $\xi$}\partial_{ $\xi$} $\phi$ to be bounded, which

fails in many important situations, in particular for operators arising in smoothing
problems.

For example, in a typical application to smoothing problem, the canonical trans‐

form has the phase of the form  x\cdot $\xi$-y\cdot $\psi$( $\xi$) ,
so  $\phi$(y,  $\xi$)=y\cdot $\psi$( $\xi$) ,

where  $\psi$ is

positively homogeneous of order one. But then

\partial_{ $\xi$}\partial_{ $\xi$} $\phi$(y,  $\xi$)=y\cdot\partial_{ $\xi$}\partial_{ $\xi$} $\psi$( $\xi$)
is unbounded on \mathbb{R}^{n}\times \mathbb{R}^{r $\iota$}.

Boulkhemair [Bol, Bo2] analysed global L^{2}‐boundedness of Fourier integral oper‐

ators under conditions on symbols in Sobolev‐Kato spaces, which relax conditions

on the differentiability of amplitudes, but made similar assumptions on \partial_{ $\xi$}\partial_{ $\xi$} $\phi$ to be

uniformly bounded, as above.

Thus, one of the aims of the following results is to remove the assumption on the

global boundedness of \partial_{ $\xi$}\partial_{ $\xi$} $\phi$ to be able to apply such results to smoothing problems.
Let us assume that on supp  a the following holds:

(C1) there is C>0 such that estimate

|\det\partial_{y}\partial_{ $\xi$} $\phi$(y,  $\xi$)|\geq C

13
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holds for all (y,  $\xi$)\in \mathbb{R}^{n}\times \mathbb{R}^{n} ;

(C2) there are constants C_{a}, C_{ $\beta$} such that estimates

|\partial_{y}^{ $\alpha$}\partial_{ $\xi$} $\phi$(y,  $\xi$)|\leq C_{ $\alpha$}, |\partial_{y}\partial_{ $\xi$}^{ $\beta$} $\phi$(y,  $\xi$)|\leq C_{ $\beta$}
hold for all (y,  $\xi$)\in \mathbb{R}^{n}\times \mathbb{R}^{n} and all 1\leq| $\alpha$|, | $\beta$|\leq 2n+2.

Note that condition (C1) is a global version of the well‐known
( (local graph condi‐

tion�, which is necessary even for local L^{2} ‐bounds for Fourier integral operators with

symbols in S_{1,0}^{0} . Microlocal versions of conditions (C1) and (C2) exist too, see [RS2]
for details.

The difference with previous results described before is that in (C2) now we take

only mixed derivatives. Thus, (C1), (C2) are satisfied in more applications. For

example, they are satisfied in our main application to the smoothing estimates, where

 $\phi$(y,  $\xi$)=y\cdot $\psi$( $\xi$) ,  $\psi$ is homogeneous of order one for large  $\xi$ and |\det D $\psi$( $\xi$)|\geq C>0.
Consider first operators of the form.

(8.1) Tu (x)=\displaystyle \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i(x $\xi$+ $\phi$(y, $\xi$))}a(x,  $\xi$)u(y)d $\xi$ dy
Theorem 8.1. Let  $\phi$(y,  $\xi$) satisfy conditions (C1), (C2). Let a(x,  $\xi$) satisfy one of
the following conditions:

(1) [Calderón‐ Vaillancourt type] \partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}a(x,  $\xi$)\in L^{\infty}(\mathbb{R}_{x}^{n}\times \mathbb{R}_{ $\xi$}^{n}) , \{0, 1\}^{n}.
(2) [Cordes type] \partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}a(x,  $\xi$)\in L^{\infty}(\mathbb{R}_{x}^{n}\times \mathbb{R}_{ $\xi$}^{n}) , | $\alpha$|, | $\beta$|\leq[n/2]+1.
(3) [Cordes type] \exists $\lambda$, $\lambda$'>n/2:(1-\triangle_{x})^{ $\lambda$/2}(1-\triangle_{ $\xi$})^{$\lambda$'/2}a(x,  $\xi$)\in L^{\infty}(\mathbb{R}_{x}^{n}\times \mathbb{R}_{ $\xi$}^{n}) .

(4) [Coifman‐Meyer type] \partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}a(x,  $\xi$)\in L^{\infty}(\mathbb{R}_{x}^{n}\times \mathbb{R}_{ $\xi$}^{n}) , | $\alpha$|\leq[n/2]+1,  $\beta$\in\{0, 1\}^{n}.
(5) [Coifman‐Meyer type] there exists  2\leq p<\infty such that \partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}a(x,  $\xi$)\in Ij^{p}(\mathbb{R}_{x}^{n}\times

\mathbb{R}_{ $\xi$}^{n}) , | $\alpha$|\leq[n(1/2-1/p)]+1, | $\beta$|\leq 2n.
Then operator T in (8.1) is L^{2}(\mathbb{R}^{n}) ‐bounded.

In brackets we put names of authors of results with similar types of assumptions
for pseudo‐differential operators, see [RS2] for details. In fact, all of these statements

follow from the result with symbols in Besov spaces that we describe now, see [RS2]
for details and proofs. Let \overline{s}= (sl, . . .

, s_{N} ), \overline{s}'= (sí, . . .

, s_{N}' \overline{n}=(n\mathrm{l}, . . . , n_{N}) ,

\overline{n}'=(n\'{i}, . . . , n_{N}',) n=n_{1}+\ldots+n_{N}=n\'{i}+. . . +n_{N}', ,
be splittings of \mathbb{R}_{x}^{n} and \mathbb{R}_{ $\xi$}^{n},

respectively. For 1<p,  q\leq\infty ,
we say that  f\in B_{p,q}^{(\overline{s},\overline{s}')} if f\in \mathcal{S}'(\mathbb{R}^{2n}) if and

\displaystyle \{\sum_{\overline{j},\overline{k}\geq 0}(\int_{\mathrm{R}^{n}}\int_{\mathrm{R}^{n}}|2^{\overline{j}\overline{s}+\overline{k}\cdot\overline{s}'}\mathcal{F}^{-1}$\Phi$_{\mathrm{j},\mathrm{k}}\mathcal{F}f(x,  $\xi$)|^{p}dxd $\xi$)^{q/p}\}^{1/q}<\infty,
where

$\Phi$_{\mathrm{j},\mathrm{k}}(y,  $\eta$)=$\Theta$_{j_{1}}(y_{1})\cdots$\Theta$_{j_{N}}(y_{N})$\Theta$_{k_{1}}($\eta$_{1})\cdots$\Theta$_{k_{N'}}($\eta$_{N'})
is such that supp $\Theta$_{i}\subset\{z : 2^{i-1}\leq|z|\leq 2^{i+1}\} is the dyadic decomposition with

\displaystyle \sum_{l=0}^{\infty}\prime$\Theta$_{i}(z)=1.
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Theorem 8.2. Let  $\phi$(y,  $\xi$) satisfy (C1), (C2), and  2\leq p\leq\infty . Then

||Tu||_{L^{2}(\mathbb{R}^{n})}\leq C||a(x,  $\xi$)||_{B_{p,1}^{(1/2-1/p)(\overline{n},\overline{\mathrm{n}}')}}||u||_{L^{2}(\mathbb{R}^{n})},
unifor nly in u\in S(\mathbb{R}^{n}) and a.

Note that we get the boundedness in the class S_{0,0}^{0} if we take  p=\infty . We also get
Theorem 8.1 by taking different appropriate choices of  p, \overline{n}, n

The results are slightly different for amplitudes independent of x
,

for operators in

the form

(8.2) Tu (x)=\displaystyle \int_{\mathrm{R}^{n}}\int_{\mathbb{R}^{n}}e^{i(x $\xi$+ $\phi$(y, $\xi$))}a(y,  $\xi$)u(y)d $\xi$ dy,
or for  $\zeta$

(adjoint� operators

Tu (x)=\displaystyle \int_{\mathrm{R}^{n}}\int_{\mathbb{R}^{n}}e^{i( $\phi$(x, $\xi$)-y $\xi$)}a(x,  $\xi$)u(y)d $\xi$ dy=\int_{\mathbb{R}^{n}}e^{x $\phi$(x, $\xi$)}a(x,  $\xi$) û (  $\xi$ ) d  $\xi$ .

Theorem 8.3. Assume that

|\partial_{y}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}a(y,  $\xi$)|\leq C_{ $\alpha \beta$},
for | $\alpha$|, | $\beta$|\leq 2n+1 . Also assume (C1), (C2), i.e . that on supp a (y,  $\xi$) ,

|\det\partial_{y}\partial_{ $\xi$} $\phi$(y,  $\xi$)|\geq C>0
and that mixed derivatives are bounded

|\partial_{y}^{ $\alpha$}\partial_{ $\xi$} $\phi$(y,  $\xi$)|\leq C_{ $\alpha$}, |\partial_{y}\partial_{ $\xi$}^{ $\beta$} $\phi$(y,  $\xi$)|\leq C_{ $\beta$}
for | $\alpha$|, | $\beta$|\leq 2n+2 . Then operator T in (8.2) is L^{2}(\mathbb{R}^{7?_{\ovalbox{\tt\small REJECT}}}) ‐bounded, and satisfies

||T||_{L^{2}\rightarrow L^{2}}\displaystyle \leq C\sup_{| $\alpha$|,| $\beta$|\leq 2n+1}||\partial_{y}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}a(y,  $\xi$)||_{L^{\infty}(\mathbb{R}_{y}^{n}\times \mathbb{R}_{ $\xi$}^{n})}.
Now we will use a slightly different, but equivalent (after taking adjoints) repre‐

sentation of T
,

and allow amplitudes to depend on all variables.

Theorem 8.4. Let T be defined by

Tu (x)=\displaystyle \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i( $\phi$(x, $\xi$)-y $\xi$)}a(x, y,  $\xi$)u(y)dyd $\xi$.
Let the phase  $\phi$(x,  $\xi$)\in C^{\infty} for some positive constants and all | $\alpha$|, | $\beta$|\geq 1 satisfy

|\det\partial_{x}\partial_{ $\xi$} $\phi$(x,  $\xi$)|\geq C_{0}>0,

\exists x_{ $\beta$}:|\partial_{ $\xi$}^{ $\beta$} $\phi$(x_{ $\beta$},  $\xi$)|\leq C_{ $\beta$}, |\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$} $\phi$(x,  $\xi$)|\leq C_{ $\alpha \beta$}.
Let amplitude a=a(x, y,  $\xi$)\in C^{\infty} for some m\in \mathbb{R} satisfy

|\partial_{x}^{ $\alpha$}\partial_{y}^{ $\beta$}\partial_{ $\xi$}^{ $\gamma$}a(x, y,  $\xi$)|\leq C_{ $\alpha \beta \gamma$}\langle x\rangle^{m}\langle y\rangle^{-m-| $\beta$|},
for all  $\alpha$,  $\beta$,  $\gamma$ and all  x, y,  $\xi$\in \mathbb{R}^{n} Then T is bounded from L^{2}(\mathbb{R}^{n}) to L^{2}(\mathbb{R}^{n}) .
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Moreover, numbers of derivatives required for this theorem are finite and precise
numbers are given in [RS2].

We also note that from the assumptions for phase functions  $\phi$ in this theorem, for

some  C_{1}, C_{2}>0 we obtain the non‐degeneracy estimates

C_{1}\{y\rangle\leq\langle\partial_{ $\xi$} $\varphi$(y,  $\xi$)\rangle\leq C_{2}\langle y\rangle, C_{1}\langle $\xi$\rangle\leq\{\partial_{y} $\varphi$(y,  $\xi$)\rangle\leq C_{2}\{ $\xi$\rangle.
Now we will discuss estimates in weighted spaces. For m\in \mathbb{R} ,

we use the notation

\langle x\rangle^{m}=(1+|x|^{2})^{m/2}
and let L_{m}^{2}(\mathbb{R}^{n}) be the set of functions f such that

||f||_{L_{m}^{2}(\mathbb{R}^{n})}=(\displaystyle \int_{\mathbb{R}^{n}}|\langle x\rangle^{m}f(x)|^{2}dx)^{1/2}<\infty.
We will say that f\in H^{s}1^{\mathcal{S}}2(\mathbb{R}^{n}) if f\in \mathcal{S}'(\mathbb{R}^{n}) and $\Pi$_{s_{1},s}2f\in L^{2}(\mathbb{R}^{7 $\tau$}) ,

where $\Pi$_{s_{1)}s_{2}}
is a pseudo‐differential operator with symbol $\pi$_{s_{1},s_{2}}(x,  $\xi$)=\{x\rangle^{s_{1}}\langle $\xi$\rangle^{s_{2}}.
Theorem 8.5. Let operator T be defined by

Tu (x)=\displaystyle \int_{\mathbb{R}^{n}}\int_{\mathrm{R}^{n}}e^{i( $\phi$(x, $\xi$)-y\cdot $\xi$)}a(x, y,  $\xi$)u(y)dyd $\xi$
Let the phase  $\phi$= $\phi$(x,  $\xi$)\in C^{\infty} for all | $\alpha$|, | $\beta$|\geq 1 satisfy

|\det\partial_{x}\partial_{ $\xi$}$\varphi$'(x,  $\xi$)|\geq C_{0}>0, |\partial_{x}^{ $\alpha$} $\phi$(x,  $\xi$)|\leq C_{ $\alpha$}\langle $\xi$\rangle, |\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$} $\phi$(x,  $\xi$)|\leq C_{ $\alpha \beta$}.
Assume also one of the following:

(1) For all  $\alpha$,  $\beta$ , and  $\gamma$,

|\partial_{x}^{ $\alpha$}\partial_{y}^{ $\beta$}\partial_{ $\xi$}^{ $\gamma$}a(x, y,  $\xi$)|\leq C_{ $\alpha \beta \gamma$}\langle x\rangle^{m_{1}}\langle y\rangle^{m_{2}-| $\beta$|}\langle $\xi$\rangle^{m_{3}},

and for all | $\beta$|\geq 1,
|\partial_{ $\xi$}^{ $\beta$} $\phi$(x,  $\xi$)|\leq C_{ $\beta$}\{x\rangle.

(2) For all  $\alpha$,  $\beta$ , and  $\gamma$ )

|\partial_{x}^{ $\alpha$}\partial_{y}^{ $\beta$}\partial_{ $\xi$}^{ $\gamma$}a(x, y,  $\xi$)|\leq C_{ $\alpha \beta \gamma$}\langle x\rangle^{m_{1}-| $\alpha$|}\langle y\rangle^{m_{2}}\langle $\xi$\rangle^{m_{3}},

and for all  $\alpha$ and | $\beta$|\geq 1,

|\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$} $\phi$(x,  $\xi$)|\leq C_{ $\alpha \beta$}\langle x\rangle^{1-| $\alpha$|}.
Then T is bounded from H^{s_{1},s_{2}}(\mathbb{R}^{n}) to H^{s_{1}-m_{1}-m_{2},s_{2}-m}3(\mathbb{R}^{n}) , for all s_{1}, s_{2}\in \mathbb{R}^{n}.

Some calculus of these operators can be constructed already under quite weak

assumptions on phase and amplitude. Let operator T be globally defined by

Tu (x)=\displaystyle \int_{\mathrm{R}^{n}}\int_{\mathbb{R}^{n}}e^{i( $\phi$(x, $\xi$)-y\cdot $\xi$)}a(x, y,  $\xi$)u(y)dyd $\xi$,
16
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with a smooth amplitude a(x, y,  $\xi$) , satisfying

|\partial_{x}^{ $\alpha$}\partial_{y}^{ $\beta$}\partial_{ $\xi$}^{ $\gamma$}a(x, y,  $\xi$)|\leq C_{ $\alpha \beta \gamma$}\{x\}^{m_{1}}\langle y\rangle^{m_{2}}\langle $\xi$\rangle^{m_{3}}
for all  $\alpha$,  $\beta$,  $\gamma$ . Pseudo‐differential operators are covered by

 Pu (x)=\displaystyle \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i(x-y) $\xi$}p(x,  $\xi$)u(y)dyd $\xi$.
Let us now give a brief summary of composition theorems, for details of which we

refer to [RSc]:
\ovalbox{\tt\small REJECT} Assume that |\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}p(x,  $\xi$)|\leq C_{ $\alpha \beta$}\{x\rangle^{t_{1}}\{ $\xi$\rangle^{t_{2}-| $\beta$|} . Then the amplitude c of To P

satisfies

|\partial_{x}^{ $\alpha$}\partial_{y}^{ $\beta$}\partial_{ $\xi$}^{ $\gamma$}c(x, y,  $\xi$)|\leq C_{ $\alpha \beta \gamma$}\{x\rangle^{m_{1}}\langle y\rangle^{rn+t_{1}}2\langle $\xi$\rangle^{m+t_{2}}3,
with no conditions on the phase.

\ovalbox{\tt\small REJECT} Same result for P\mathrm{o}T but now with some conditions on the phase:

C_{1}\{ $\xi$\rangle\leq\{\partial_{x} $\varphi$(x,  $\xi$)\rangle\leq C_{2}\langle $\xi$\rangle, |\partial_{x}^{ $\alpha$} $\phi$(x,  $\xi$)|\leq C_{ $\alpha$}\langle $\xi$\}, |\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$} $\phi$(x,  $\xi$)|\leq C_{ $\alpha \beta$}.
\ovalbox{\tt\small REJECT} We have asymptotic formulae. For example, the amplitude of To P has an

expansion improving in  $\xi$ :

 c(x, z,  $\xi$)\displaystyle \sim\sum_{ $\alpha$}\frac{i^{-| $\alpha$|}}{ $\alpha$!}\partial_{y}^{ $\alpha$}[a(x, y,  $\xi$)\partial_{ $\xi$}^{ $\alpha$}p(y,  $\xi$)]|_{y=z}.
If a and p have additional decay properties, similar property can be extracted

for c . For example, if a, p are SG‐symbols, so is c.

If the amplitude a(x, y,  $\xi$) has SG‐decay properties in y ,
the amplitude of the

composition TP can be made dependent on two variables only:

Theorem 8.6. Let operator T be defined by

Tu (x)=\displaystyle \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i( $\phi$(x, $\xi$)-y $\xi$)}a(x, y,  $\xi$)u(y)dyd $\xi$.
Let the phase  $\phi$= $\phi$(x,  $\xi$)\in C^{\infty} satisfy partial non‐degeneracy and boundedness

C_{1}\langle x\rangle\leq\langle\nabla_{ $\xi$} $\phi$(x,  $\xi$)\rangle\leq C_{2}\langle x\rangle, x,  $\xi$\in \mathbb{R}^{n})
and be such that for all | $\alpha$|, | $\beta$|\geq 1 we have

|\partial_{ $\xi$}^{ $\beta$} $\phi$(x,  $\xi$)|\leq C_{ $\beta$}\{x\rangle, |\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$} $\phi$(x,  $\xi$)|\leq C_{ $\alpha \beta$}.
Let a=a(x, y,  $\xi$)\in C^{\infty} satisfy

|\partial_{x}^{ $\alpha$}\partial_{y}^{ $\beta$}\partial_{ $\xi$}^{ $\gamma$}a(x, y,  $\xi$)|\leq C_{ $\alpha \beta \gamma$}\langle x\rangle^{m_{1}}\langle y\rangle^{m_{2}-| $\beta$|}\langle $\xi$\rangle^{m_{3}},
for all  $\alpha$,  $\beta$,  $\gamma$ , and all  x, y,  $\xi$\in \mathbb{R}^{n} . Let p=p(x,  $\xi$)\in C^{\infty} for all  $\alpha$,  $\beta$ satisfy

|\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}p(x,  $\xi$)|\leq C_{ $\alpha \beta$}\langle x\rangle^{t_{1}-| $\alpha$|}\langle $\xi$\rangle^{t_{2}}, x,  $\xi$\in \mathbb{R}^{n}
17
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Then the composition B=T\mathrm{o}P(x, D) is an operator of the form

Bu(x)=\displaystyle \int_{\mathbb{R}^{n}}e^{i $\phi$(x, $\xi$)}c(x,  $\xi$) û (  $\xi$ )  d $\xi$

with amplitude  c(x,  $\xi$) satisfying

|\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}c(x,  $\xi$)|\leq C_{ $\alpha \beta$}\langle x\rangle^{m_{1}+m_{2}+t_{1}}\langle $\xi$\rangle^{m_{3}+t_{2}},
for all  $\alpha$,  $\beta$,  $\gamma$ )

and all  x, z,  $\xi$\in \mathbb{R}^{n} . Moreover, we have the asymptotic expansion,
improving in x (due to \partial_{x}^{c\ell} ) and y (due to \partial_{y}^{ $\beta$} ):

c(x,  $\xi$)\displaystyle \sim\sum_{ $\alpha,\ \beta$}\frac{i^{-(| $\alpha$|+| $\beta$|)}}{ $\alpha$! $\beta$!}\partial_{x}^{ $\alpha$}p(\nabla_{ $\xi$} $\phi$(x,  $\xi$),  $\xi$)\partial_{ $\eta$}^{ $\alpha$+ $\beta$}[e^{i $\Psi$( $\eta,\ \xi$,x)}\partial_{y}^{ $\beta$}a(x, \nabla_{ $\xi$} $\phi$(x,  $\xi$),  $\eta$)]|_{ $\eta$= $\xi$},
where  $\Psi$( $\eta$,  $\xi$, x)= $\phi$(x,  $\xi$)- $\phi$(x,  $\eta$)+( $\eta$- $\xi$)\cdot\nabla_{ $\xi$} $\phi$(x,  $\xi$) .

If we apply this Theorem with symbol p\equiv 1 ,
we can simplify the amplitude.

Corollary 8.7. Let T be the operator as in Theorem 8.6. Then T can be written in

the form

Tu (x)=\displaystyle \int_{\mathbb{R}^{n}}e^{x $\phi$(x, $\xi$)}c(x,  $\xi$)\hat{u}( $\xi$)d $\xi$,
with amplitude c(x,  $\xi$) satisfying

|\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}c(x,  $\xi$)|\leq C_{ $\alpha \beta$}\langle x\rangle^{m_{1}+m_{2}}\langle $\xi$\rangle^{m_{3}},
for all  $\alpha$,  $\beta$,  $\gamma$ , and all  x, z,  $\xi$\in \mathbb{R}^{n} . Moreover,

c(x,  $\xi$)\displaystyle \sim\sum_{ $\beta$}\frac{i^{-| $\beta$|}}{ $\beta$!}\partial_{ $\eta$}^{ $\beta$}[e^{i $\Psi$( $\eta,\ \xi$,x)}\partial_{y}^{ $\beta$}a(x, \nabla_{ $\xi$} $\phi$(x,  $\xi$),  $\eta$)]|_{ $\eta$= $\xi$},
where  $\Psi$ is as in the previous theorem.

We can apply this corollary to pseudo‐differential operators to obtain a �normal

form�� for generalized SG pseudo‐differential operators with decay in only one of the

variables.

Corollary 8.8. Let  T be a pseudo‐differential operator of the form

Tu (x)=\displaystyle \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i(x-y) $\xi$}a(x, y,  $\xi$)u(y)dyd $\xi$
with amplitude  a=a(x, y,  $\xi$)\in C^{\infty} satisfying

|\partial_{x}^{ $\alpha$}\partial_{y}^{ $\beta$}\partial_{ $\xi$}^{ $\gamma$}a(x, y,  $\xi$)|\leq C_{ $\alpha \beta \gamma$}\langle x\rangle^{m}1\langle y\rangle^{m_{2}-| $\beta$|}\langle $\xi$\rangle^{m_{3}},
for all  $\alpha$,  $\beta$,  $\gamma$ and all  x, y,  $\xi$\in \mathbb{R}^{n} Then T can be written in the form

Tu (x)=\displaystyle \int_{\mathbb{R}^{n}}e^{ix $\xi$}c(x,  $\xi$) û (  $\xi$ ) d  $\xi$ ,

18
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with

|\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}c(x,  $\xi$)|\leq C_{ $\alpha \beta$}\langle x\rangle^{m_{1}+m_{2}}\langle $\xi$\rangle^{m_{3}}, \forall $\alpha$,  $\beta$, x,  $\xi$\in \mathbb{R}^{n}
Moreover, we have the asymptotic expansion c(x,  $\xi$)\displaystyle \sim\sum_{ $\beta$}\frac{x^{\prime-| $\beta$|}}{ $\beta$!}\partial_{ $\xi$}^{ $\beta$}\partial_{y}^{ $\beta$}a(x, y,  $\xi$)|_{y=x}.

Note that from all asymptotic expansions it is clear that if a has additional decay
with respect to some variables, so does the new amplitude. For example, if a\in SG,
so does c

,
i.e. a\in SG^{m_{1},m_{2},m_{3}} implies that c\in SG^{m_{1}+m_{2},m_{3}}.
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