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1. INTRODUCTION

This is a short review of the result obtained in the paper [6], which is joint work
with Nobu Kishimoto.

We consider the Cauchy problem of quadratic nonlinear Schrodinger equations as
follows;

(1.1) {(iat —Pu=N(u), (tz)e0,T]xR,

u(0,z) = up(z), z€R.

where unknown function u is complex valued and N(u) = u?, @2 or uti. Our aim is
to prove the time local well-posedness of (1.1) with low regularity initial data.

We first assume that ug € H® and recall the known results. Bourgain [2] intro-
duced the Fourier restriction norm X*° defined below to study the KdV equation
and the nonlinear Schrédinger equation;

lullxes = 166)*(7 = )"z,

where () = 1+ |- | and u is the Fourier transform of w with respect to ¢t and z.
Kenig, Ponce and Vega [4] developed this method and obtained the time local well-
posedness of (1.1) with N(u) = u?, 4% and u@ for s > —3/4,s > —3/4 and s > —1/4,
respectively. In the proof, the following bilinear estimate plays an important role;

IV (@)l xs0-1 < Cllullss-

Nakanishi, Takaoka and Tsutsumi [7] proved the counter examples of this estimate
with N(u) = u?,%? and ut for s < —3/4,s < —3/4 and s < —1/4, respectively. This
means that we can not improve Kenig, Ponce and Vega’s result with the standard
Fourier restriction norm method. To overcome this difficulty, Bejenaru and Tao
[1] introduced a modified Fourier restriction norm and used a support property
of solutions of (1.1), namely, the support of % is in {(,£) € R%r > 0} when
N(u) = u? and u satisfies (1.1), to obtain the time local well-posedness of (1.1) with
N(u) = u? for s > —1. When N(u) = 42, the problem is more complicated because
this property does not hold. Nevertheless, Kishimoto [5], proved the the time local
well-posedness of (1.1) with N(u) = @2 for s > —1 by using a modified Fourier
restriction norm with complicated weight functions. The case N(u) = ui is totally
different from the cases N(u) = u? or 42. For instance, the data-to-solution map
:ug € H® — C([0,T) : H®) fails to be C? when s < —1/4 and N(u) = u@. This
is caused by the Energy flow from high frequency parts to low frequency parts. To
overcome this difficulty, we introduce the following function space and we assume
ug € H*°.
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Put
H ={f € ZR)|||fllmse <00},
1l = 1€Y1l Fllz2,
where Z'(R™) denotes the dual space of
Z(R™) = {f € S(R™)|D*F f(0) = 0for every multi-index or}.

If we apply the standard Fourier restriction norm method to time local well-
posedness of (1.1) with N(u) = u@ in H**, we need the following bilinear estimate
with b > 1/2;

(1.2) |lut|| xsen-1 < C’||u||§{s,a,b
where
s—a|¢la -2\ b~
(1.3) lull xs.00 = [1€)°~*1E1% (T = €2) Ul 2 -
Put

1, |¢-N|<land|r—¢&|<1,
0, otherwise,

aN (7—) 6) = {
and let N € N be sufficiently large. Then, we have

(1.4) uny (7, 6) = Uy * Gy (7, €) ~ YRy (T, €)

where 14 denotes the characteristic function of the set A and Ry is the rectangle of
dimensions N x N~! centered at the origin with longest side pointing in the (1,2N)
direction. It follows that

R.H.S. of (1.2) < CN*,
L.H.S. of (1. — 2?7 &) arde)” > eNv1,
sora2z(f [e-e o) 2

Therefore, (1.2) fails for any ¢« € R,s < —1/4 and b > 1/2.

To overcome this difficulty, we use the weight function defined in (2.1) instead of
(€ 7E|*(r — §2)b in (1.3) and introduce modified Fourier restriction norms Z* and
Y% (see, Section 2) and prove new bilinear estimates (Proposition 3.1) to obtain
the following time local well-posedness result.

Theorem 1.1. Let s > —(2a + 1)/4 and 1/2 > a > —1/2. Then, (1.1) with
N(u) = ut is time locally well-posed in H>°.

Remark 1.2. Since H® C H%* when a > 0, we have the existence of the solution for
up € H® with s > —1/2 by Theorem 1.1. However, the solution u(t) is not in H?®
for any ¢t > 0 when —1/4 > s > —1/2.

In Section 2, we give some notations and preliminary lemmas. In Section 3,
we prove the main estimates. The proof of Theorem 1.1 follows from a standard
argument and these estimates (see, e.g. [5]). So, we omit the proof.
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2. NOTATIONS AND PRELIMINARY LEMMAS

Throughout this paper C' > 0 denotes various constants. The notation P < @
denote the estimate P < CQ. We use P ~ @ to denote P < Q < P.
Put

P ={(r,€) e R*||7 — €| < [¢]/4 and €| > 1},
Py={(r,6) e R*||r = €| > [¢]/4 or €] < 1},

and .

_ <§>S<T - €2>1 (Ta 6) € P17
(21) ’ws,a(T, 6) - {<§>1/2—a|€la<7 _ £2>1/2+s, (T, 5) € P,
Note that

Waa(r, €) ~ min{(€)°°|¢[*(7 — €, (&) Jele(r — €37}
We define function spaces Z%% and Y** as follows;
7% = {u € Z'(R?) | ||u|| zs.c < o0},
Vot = {u € Z'(R?) | ullyse < oo},

where

P e K
Put

Q1 ={(1,6) eR’| |7 + €| < |¢]/4 and |¢] > 1},

Q2 ={(1,6) e R?| |7+ & > [¢]/4 or €] <1},

/ _J@r+e), (1,6 eq,

“W“Q‘{@Wﬂwv+ﬁ“ﬁ () € Qs

and

ullzee = llwstllz2,-

Note that Pj(7,&) = Q;(—7, =) and ||@[|zse = ||| 25
The following lemmas are basic tools of the Fourier restriction norm method.

Lemma 2.1. Let 0 < p < q and p+ q > 1. Then the following estimate holds for
all a,b € R;

/ (r—a)y P — b Tdr S (a—b)~
wherer =p—[1 —ql4+. (We recall that [N+ = A ifA>0,=e>0if A=0and=0
if A <0).
For the proof of this lemma, see Lemma 4.2 in [3].

For a subset Q C R*, we define the characteristic function xq as follows;

[ 1, for(r,&m,6)eq
XQ(Tag)Tlagl) - { O, for (7',6)7-1)51) ¢ Q

165
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and put
Ba(u,0) = / Xalllr ~ 7, € — )3, &) dmds
i

Lemma 2.2. If

suép/ an1_2(7',§)w2_2(7' -1, — 51)w§2(7'1»§1) dndé S'1
T R2

or

sup /R2 xawi2(r, &) wi(r — 1, € — &)wy(n, &) drdé S 1

71,61

hold for measurable functions wy, wy and wz on R%, then we have

—_——
i Ba(uw, 0)lzz,, S lhwsilzz, lwsl e,

Lemma 2.3. If

sup / xewi (1, Qur’(r — 1, § — &)wy(m, &) dndéidr S 1
R

or

sup/ xawi (T, wy (T — 7, & — &)w; (1, &) drdédm S 1
R2

31

hold for measurable functions wy, wy and ws on R?, then we have
I [ wi Baa) drlls; S sl sz,

For the proof of Lemmas 2.2, 2.3, see Section 3 in [3].

Let 1/31? = f||5|<1 and (-, ), be the inner product in L*. The following lemma is
a variant of the Sobolev inequality.

Lemma 2.4. (1) Let by +by+b3 > 1/2,b; > 0,03 > 0,b3 > 0 and a, B,y € R. Then,
we have

(22) (F9h) iz < 1€ = @)™ Flzzllie — BYalzzllE — 1) Pllzz

where implicit constant depends only on by, by and bs.
(ii) Let s1+ s+ 83 > 1/2,81+ 83 > 0,82+ 53 > 0 and s3+ 51 > 0. Then, we have

(2.3) (Fg: )iz S 1€ Fllzzl€)*9N 211 (€) Rz

where implicit constant depends only on s1, 82 and ss.
(111)Let —1/2 < a < 1/2. Then, we have

(24) (Pf)g, bz S W11 Flz2 gl z2 2l 2,
(2.5) (Pf)(Pg), bz S W11 T2 llEl=*gN 2 iRl oz,
(26) (Pf)(Pig), Py S NlEl FllzzllIEr g zz lEl=Rllcz,

where the implicit constants depend only on a.
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Proof. By the Plancherel theorem, the Hélder inequality and the Young inequality,
we have

(fg,h>L§ ~ (f*7, h)],g S ||f||L§1||§||L§2||h g
< I = ) gz 1€ = )l llE — 1)z
x[1(€ = @)™ Fllzzll€ = 8)Fllz2(€ = 1) hlzz,
for any 1 < p; < 2 and 2 < ¢; < oo satisfying 1/p; + 1/p2 + 1/ps = 2 and
1/gj +1/2=1/p;. Since by + bo +bg > 1/2 and 1/g1 +1/g2 +1/g3 = 1/2 , we can
take g; such that g; > 1/b; for b; > 0 and g; = oo for b; = 0. Thus, we obtain (2.2).
For the proof of (2.3), we can assume s; > s3 > s3 without loss of generality.
Since the case s3 > 0 follows from (2.2), we only need to show the case s3 > 0 > s3.

By using the triangle inequality (£) < (&) + (£ — &) and the Plancherel theorem,
we have

(T, ~ [ Fie - 036 e, B,
< [ T - et ate) da, ©°HE),,
+( [ e Fle - e0ten) den, (€)R(E))

Therefore, this case also follows from (2.2).
By the Plancherel theorem, the Holder inequality and the Young inequality, we
have

((Pif)g, k) iz ~ (B #3,8) 12 S I B lla Il sz 1Bl cz-

Since [|Pifllzy < N1 Nzz-wlllE*Fllzz S N1€1°flizz, we obtain (2.4).
For the proof of (2.5), we can assume a > 0 without loss of generality. From (2.4),
we have

(Pf)(Pg), Bz S NIELFllzzl| Pegl 22 1Rl oz

Since || Bigllz3 < [[1€]Fll.z, we obtain (2.5).
For the proof of (2.6), we can assume a > 0 without loss of generality. From the
Plancherel theorem, we have

(P (Pug), Pik) g~ [ FiF(€ = 60)Fla(er) s, PIR))
Since max{|¢ — &1]%, |€1]°} 2 1€]%, (2.6) follows from (2.4). O
From this lemma, we obtain the following space time estimates.

Proposition 2.5. Let by +by+b3 > 1/2,by > 0,bo > 0,b3 > 0 and 4,5,k =1 or —1.
(i) Moreover, we assume that sy + so + s3 > 1/2,81 + 52 > 0,82 + s3 > 0 and
83+ 81 > 0. Then, we have

<fg’h>L3,z

2.7 ~ ~
B0 < e b — " Flas 1€ (7 — 369" Flsa Q)7 — b€ Blza, .
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(1i) Moreover, we assume —1/2 < a < 1/2. Then, we have
<(13lf)g> h)Lflz

29) S Mlgletr — €)™ fllze N(r = 56375z 7 — k€% Rz,
20 (R)(Pg), )z, ]
S leletr — i)™ Fllze N€l(r — 5637 gllsz 7 — k€% Rl 22,
((Pf)(Pig), Pihy s
(2.10) ’

a NNy a . bo~ —a o
< Mgle(r — €)™ Fllza Mgl (r — 362l zz NIEI=(r — k&%l 2,
Proof. Fix £,&, € R. Then, from (2.2), we have

/ Fr, 0)3(r — 1, € — E)R(r, ) dradr
S = € Fl )2l — 5 — €025, € = ezl — kDR, €)l| 2

where implicit constant does not depend on &,&;. Therefore, the left-hand side of
(2.7) is bounded by

/ 1 =€) F el 1 = 5 = €)372G(, € = el — kE)R(-, )| 2 dérde,

which is bounded by the right-hand side of (2.7) by (2.3). In the same manner,
(2.8)—(2.10) follow from (2.2), (2.4)—(2.6). O

3. BILINEAR ESTIMATES

Proposition 3.1. Let 0 > s > —(2a+ 1)/4 and 1/2 > a > —1/2. Then the
following estimates hold,

(3.1) |7 — &%)
(3:2) 17 — &%)

Moreover, the same estimates hold with uo replaced by wv or GD.

-1~
W|zea S llullzes||v]lzee,

-1~

ubllyse S [|ullzea|[v]zoe-

We prove only the case uti because the case uv and @0 are easier.
Proof. We first consider (3.1), which is equivalent to
— -1~
[FHr =€) vl zen S llullzoclv] 2o
Put
Qi,j,k = {(T,f, 71, 51)'(7—) 6) S Ba (T - leg - 51) € Pj7 (Tla€1> € Qk}
for 4,7,k = 1 or 2. Then, we have
Bra(u,v) = Z B, ,(u,v).
4,5,k
Therefore, we only need to show

(3:3) 17717 = )7 Ba(w, v)l| 700 5 [lullzel[]| 72
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with Q = Q; ;x for 4, j, k = 1 or 2. Put My = max{|7—&%|, [r—m1—(§=&)?|, |[m+&3|}-
Then, we have the following algebraic property;

My 2 (|1 =€+ |r - — (£ = &) +Im +&1)/3 2 20é6l/3,

which plays an important role in our proof.

(a-1) We prove that 1, is empty. If My = |7 — &2| and (1,€) € P, then
2|€61]/3 < My < |€]/4. Therefore, we have |&| < 3/8, which contradicts (71,&1) €
Q1. If My = |r + &2 and (11,&1) € @1, then 2|¢£,]/3 < M,y < |&]/4. Therefore,
we have |£] < 3/8, which contradicts (1,£) € Pi. If My = |1 — 1 + (€ — &)? and
(1 — 71,6 — &) € P, then 2|¢£|/3 < My < |€ —&|/4 < max{|], |€1]}/2. Therefore,
we have |€] < 3/4 or |&] < 3/4, which contradicts (7,€) € Py and (71,&1) € Q1.
Thus, we obtain (3.3) with Q = Q1.

(a-2) (3.3) with Q = Qg1 is equivalent to

€Yl (r — €)™/ Ba, ., (u,0)lz2
S 1€t — illza I + €901 .
We devide €511 into two parts;
Ap ={(1,6,m,6) € Q| €] < 1},
A2 = {(T>£771$§1) € Q?,l,ll |€| Z ]‘}
From Lemma 2.2, (3.4) with 21 replaced by A; can be reduced to
/ Xar (6) 1P — &)™
M+ - )™ (r —n - (£ - &)%)

Since (M) ~ (&) and (&) ~ (€ —&1) ~ |&], from Lemma 2.1, the left hand side
is bounded by

520.6 —4s g —4s—1 I —4s—1
/llli?s |§1|1‘)3|§1|§< ||128dp51
(€&1)

Here, we put p = ££; and used 2a > —4s — 1 and 1 — 2s > —43.
From Lemma 2.2, (3.4) with 51 replaced by A, can be reduced to

" >\Aq|§|<§1)_2s<§ §1>_2s
® p/ (T = + 1 —m — (6 - &)2)°

In the same manner as ( 1), it follows that M; = (1 — £2) ~ (££;) from (7 —71,& —
&) € Py, (11,&1) € Q1 and €| > 1. Therefore, from Lemma 2.1, the left hand side is
bounded by

—2s —2s —4s
/ <£1 93 <€ fl> |§|d§1~ / 135 > 2 gdp§1
(€&1) — €2 +2¢,)° {p) ™71 — £+ 2p)
Here, we put p = §§1 and used 1 — 2s > —4s.
(a-3) (3.3) with Q = 2 is equivalent to

(85)  1(6)" Bans, (w0)llz2, S IO Il (7 — €)'l 2 I€)* (7 + €2,

(3.4)

sup
71,81

drd¢ < 1.

dTldfl S 1

169
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We devide 91 into two parts;

Ay ={(1,¢,m,6) € D21l € =&l <1},

Ay ={(1,6,71,6) € QUpal € =&l > 1}
Since (£) ~ (&) and (£ — &) ~ 1 in Ay, (3.5) with Q5 replaced by A; can be
reduced to

IPaellzz, S NlEl*tr — €% Tlsz 7 + €372z,

which follows from the duality argument and (2.8) in Proposition 2.5. Since (1 — 71 — (£ — &)%) 2
(€ — &) in Ay, (3.5) with Q1 replaced by A, can be reduced to

I *Tlz, S IO Tl 1€ + €z,

which follows from the duality argument and (2.7) in Proposition 2.5.
(a-4) (3.3) with Q = 51 is equivalent to

() 2elr — €)™ Bay o (w,0)lz2,
S @Y lele(r — €l 2 () + €02,

We devide €29 into four parts;
A ={(7,6,71,&1) € Qopa| €] <L, [§ - &f <1},
A ={(1,§,71,&) € Qopal ] <L, 1§ - &[ = 1},
Az ={(1,&,1,6) € Q21| 16| > 1,16 — &I < 1},
Ay ={(1,6,1,6) € Q21| €] 2 1,16 = &I = 1}
Since (€) ~ (&) ~ (£ —¢&) ~ 1 in A, (3.6) with Q59 replaced by A; can be
reduced to
ligletr — €7 P{(Pa)o} 2, < llEl*r — € allzz ll(r + €332,

which follows from the duality argument and (2.9) in Proposition 2.5.
Since (£) ~ 1 and (£1) ~ (€ — &) in As, (3.6) with Q99 replaced by Az can be
reduced to

ligletr — €)™ Biun) gz , S IO (r — € s Ilir + Iz,

which follows from (2.8) in Proposition 2.5.
Since |7 — & ~ |¢] ~ |&1] 2 1, (€ — &) ~ 1 in As, (3.6) with Qg9 replaced by
As can be reduced to

—~ a 1 1/2+s~ ~
@z, S el r =€) sz Nl + €0z
T’e ‘r’€ T8
which follows from (2.8) in Proposition 2.5.

Since [¢] ~ |&] 2 1, (1 =€) 2 (€) and (1 —71 — (£ = &)%) 2 (€ — &) in Aq,
(3.6) with €221 replaced by A4 can be reduced to

16€) @0l 12, S €Yl 2 NI4E)* (T + €%z

which follows from (2.7) in Proposition 2.5.
(a-5) We can prove (3.3) with Q = 12 in the same manner as (a-3).
(a-6) We can prove (3.3) with = Q91> in the same manner as (a-4).

(3.6)
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(a-7) Since (£)° < (7 — £2)° in Qy0, (3.3) with Q = Q22 can be reduced to
“(T - §2>SBS'21,2,2 (u> ’U)”L"T”E

S G0l (r — €M 2 14620 el (r + €4 Bz -
We devide (4 25 into three parts;
Ar={(1,§,71,&) € Quoal € — &1l <1/2,16] > 1/2},
Ay ={(1,€,71,&) € Quoal 1€ = &I > 1/2,[€] < 1/2},
Az ={(1,§,71,&) € Qupal € = &I > 1/2,[€] > 1/2}.

(3.7) with 2 replaced by A; or A, follow from (2.8) in Proposition 2.5 and (3.7)
with Q2 replaced by As follows from (2.7) in Proposition 2.5.
(a-8) (3.3) with Q = Q5 is equivalent to

” (6)1/2—a|§|a<7— - §2>—1/2+SBQ;2\6, ’U)”L"‘Z_,€
S Ml r — 2 5 2 11() Y2181 r + €3 B 2

We devide €23 22 into seven parts;

Ar={(1,6,71,&) € Qopol €] < 1L, 1€ =& < 1/2,|&] < 1/2},
Ay = {(7,6,71,&1) € Qoppol €] < 1,|§ = &| 2 1/2,|&] < 1/2},
Az = {(1,6,1,&) € Qapo| €] < 1, [€ — &[ <1/2,|&] = 1/2},
Ag={(1,6,m,&) € Qopal 6l < L€ =& 2 1/2,1&] = 1/2},
As = {(1,€,m,&1) € Qopol |6l 2 1,16 — &| 2 1/2,16] < 1/2},
As = {(1,&,11,&) € Qogol €] 2 1,|€ = &| <1/2,]&] > 1/2},
Ar={(1,§,71,&) € Qoo €] 2 1,16 —&] 2 1/2,]6] = 1/2}.

(3.8) with €299 replaced by A; follows from (2.10) in Proposition 2.5, (3.8) with
Q52 replaced by As or Az follow from (2.9) in Proposition 2.5 and (3.8) with
Q22 replaced by Ay or Az or Ag follow from (2.8) in Proposition 2.5. Since
(€20 gjo(r — )7V < (7 —€2)° in Ag, (3.8) with Qp5 replaced by Ay can
be reduced to

2\S—~ 1/24s~ 2 1/24s8~
Ir = €Tz, S 1162 — €7@z 62 + €2,

which follows from (2.7) in Proposition 2.5.
We next consider (3.2), which is equivalent to

— -1~
177 = €2 wllyee S [lullzeelv]l 200

(3.7)

(3.8)

Because

|F 7 — )7 Ba(u,)|lyse S |F T — €7 Bay,, (u,0)

for Q = Q4 with j,k =1 or 2, we only need to show

|Xs,a

(3.9) 1777 = €7 Ba(u, v)llyee S llullzeellv] 0o
. for Q@ = Qy ;) with j,k=1or 2.

171
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(b-1) We devide Q11 into two parts;
Al = {(Ta §a7—1’€1) < Q?,l,l' |£I < 1})
Ap = {(1,&,71,61) € Q11| |€] > 1}

Since (£;) ~ (€ — &) ~ |&] 2 1 in Ay, from Lemma 2.3, (3.9) with Q = A; can be
reduced to

EP ]~
sup 2\ 2 212 - 2\ 2
o Ja(T=) (n+&)(r-n—-(¢-8&)°
Since (M) ~ (£&1), from Lemma 2.1, the left hand side is bounded by

Pl e o[BS T R
/ (My)? ey EeR ) g et

Here, we put p = ££; and used 2a > —4s — 1 and 2 > —4s.
From Lemma 2.3, (3.9) with 2 = A, can be reduced to

—2s 2s —2s
w [ (67" (e~ &)
& Ja (1= + &) (r—m — (- &)?)
Since (M) ~ (£&;), from Lemma 2.1, the left hand side is bounded by
—9s ')s —2s —2s —ds 2s —2s
[T ) o[BI [ )

(€&’ (€6’ (€6)’
(b-2) (3.9) with © = Q52 is equivalent to

I [ @ let e = ) Banaa ) vl
< QM2 leltr — €M 2 1 (€)%t + 0z,

which follows from Proposition 2.5 in the same manner as (a-4) because the left-hand
side is bounded by

dndrdé < 1.

3 ClTlledT 5 1.

§<

“<€>s—a|€|a<7- — €2>—1/2+€BQ;:-(;, U)“Lz'g

for any € > 0.
(b-3) For Q = Qg1 9, we can prove the estimate in the same manner as (b-2).
(b-4) For Q = Q992, we only need to show

,,,,,

I [ @ lettr - €7 Bonaa w0} dril
S M 1T — )25 all(€) >l + €2 B g,

which follows from Proposition 2.5 in the same manner as (a-8) because the left-hand
side is bounded by

a o —1/24 —_—
16€)~ lel*(r — €7 Baya(w,0) 2,

for any € > 0.
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