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Shadow system for adsorbate‐induced phase
transition model
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Abstract

Hildebrand et al. [6] proposed a kinematic model describing a structural phase transition

arising in surface chemistry. By the numerical simulations, several stationary patterns of this

model are shown in [17]. In the present paper, we introduce a shadow system in a limiting case

that a diffusion coefficient tends to infinity and show the bifurcation structure of stationary
solutions of the system in the one‐dimensional case.

§1. Introduction

Nonequilibrium chemical reactions provide many interesting phenomena as com‐

plex spatiotemporal patterns, including target, spiral waves and wave turbulence. In

contrast to this reaction, the catalytic surface reaction of CO oxidation on the platinum

display the same basic patterns and new spatiotemporal pattern of standing waves [7].
The characteristic length scales of such patterns lay in the range of tens of microme‐

ters, whereas the diffusion length of the mobile adsorbated particles. Therefore, these

patterns were effectively macroscopic and their properties could well be described by
the classical reaction‐diffusion equation [1], [8]. However, it was experimentally shown
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the evidence of a great variety of the patterns on spatiotemporal sub and nanomi‐

crometer scales [20]. Since these structures is on the scales shorter than the diffusion

length, which is the mean distance passed by adsorbated particles, such reaction dif‐

fusion equation can not explain the mechanism of these pattern formations. Then it

was introduced another mechanism leading to the formation of reactive nanostructures

which involves adsorbate‐induced structural phase transitions on the metal substrate.

There are several models resulting from the interplay between the reaction, diffusion,
and an adsorbate‐induced structural transformation of the surface [6], [5], [4], [2], [13].

In this paper, we consider the following model proposed by Hildebrand [4]:

(P) \left\{\begin{array}{ll}
u_{t}=d\triangle u+u(1-u)(u+v-1) & \mathrm{i}\mathrm{n}  $\Omega$\times(0, \infty) ,\\
v_{t}=D\triangle v+ $\gamma$\nabla\cdot\{v(1-v)\nabla $\chi$(u)\}+g(u, v) & \mathrm{i}\mathrm{n}  $\Omega$\times(0, \infty) ,\\
\partial u \partial v & \\
\overline{\partial v}^{=}\overline{\partial v}^{=0} & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, \infty) ,\\
u(\cdot, 0)=u_{0}, v(\cdot, 0)=v_{0} & \mathrm{i}\mathrm{n}  $\Omega$,
\end{array}\right.
where  $\Omega$ is a bounded domain in  R^{n}(n=1,2) with the boundary \partial $\Omega$ and  d, D,  $\gamma$

are positive constants. The unknown functions  u=u(x, t) and v=v(x, t) denote

the structural state of surface and the adsorbate coverage rate of the surface by CO

molecules at a position  x\in $\Omega$ and time  t\in[0, \infty ), respectively. The functions  $\chi$(u)
and g(u, v) are defined by

(1.1)  $\chi$(u)=u^{2}(2u-3) , g(u, v)=c(1-v)-ae^{ $\alpha \chi$(u)}v-bv,

where a, b, c and  $\alpha$ are positive constants. As shown in Tsujikawa, Yagi [19], Takei et

al. [16], [17], there exists a unique global solution of (P) for  n=2 and an exponential
attractor of the corresponding dynamical system.

From the view point of the pattern formation, it is important to consider the

existence of the stationary solutions and their stability. Hildebrand et al. [6], [5] and

Tsujikawa [18] show the existence of standing pulse solutions and their stability in R and

R^{2} as d\rightarrow 0 , by using the singular perturbation method. On the other hand, various

types of stationary patterns by numerical computations in [13], [17] are obtained. They
are stationary stripe, square and hexagonal patterns on the surface and we show the

existence of the corresponded stationary solutions by the bifurcation theory [9], which

implies the local structure near the bifurcation point. Furthermore in [10] we have

obtained the sufficient conditions on d for the existence or nonexistence of nonconstant

stationary solutions of (P).
In the present paper, we focus on the limiting profiles of stationary patterns as

 D\rightarrow\infty . Our limiting analysis is to study a shadow system by setting  D\rightarrow\infty in the

stationary problem of (P). The reason why we study the shadow system is that solutions
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of the shadow system may perturb stationary patterns of the original system (P) in a

situation when the motility  D of CO molecules is very large. Namely, any sequence of

stationary patterns of (P) with D=D_{n} approaches a positive solution of the shadow

system as  D_{n}\rightarrow\infty passing to a subsequence. Our purpose of this paper is to derive

much information on the global bifurcation structure of non‐constant solutions to the

shadow system in 1‐dimensional case.

The organization of this paper is as follows. In Section 2 we introduce the shadow

system corresponding to the stationary problem of (P) in the limiting case  D\rightarrow\infty and

show the existence of non‐constant solutions in some parameter region of (d, a, b, c,  $\alpha$) .

Finally, in Section 3 we discuss the dependency of the non‐constant solutions on these

parameters by the numerical computations.

§2. Shadow system

In 1‐dimensional case, the stationary problem of (P) is reduced to the following

boundary value problem of ordinary differential equations:

(SP) \left\{\begin{array}{ll}
du''+u(1-u)(u+v-1)=0, & 0<x<1,\\
Dv''+ $\gamma$\{v(1-v)$\chi$_{u}(u)u'\}'+g(u, v)=0, & 0<x<1,\\
u'(0)=u'(1)=0, v'(0)=v'(1)=0. & 
\end{array}\right.
Here denotes the derivative with respect to x . By the modelling aspect, we are

restricted on non‐negative solutions. Hence the maximal principle implies that for any

non‐constant solution (u, v)\geq 0 satisfies

(2.1) 0<u(x)<1 for 0\leq x\leq 1.

Furthermore, in a forthcoming paper [10] we obtain a uniform bound M>0 such that

(2.2) \Vert(u, v)\Vert_{H^{2}}\leq M

for any positive solution (u, v) of (SP).
In the present paper, we study the qualitative behaviour of solutions of (SP) in a

limiting case  D\rightarrow\infty . Let (u_{D}, v_{D}) be any positive solution of (SP). Then thanks to

(2.2), a standard compactness argument enables us to find a subsequence \{(u_{D_{j}}, v_{D_{j}})\}\subset
\{(u_{D}, v_{D})\} as  D=D_{j}\rightarrow\infty such that

(2.3) \displaystyle \lim_{j\rightarrow\infty}(u_{D_{j}}, v_{D_{j}})=(u_{\infty}, v_{\infty}) in H^{1}(0,1)\times H^{1}(0,1) .

Since (2.3) leads to v_{\infty}''=0 by letting  D_{j}\rightarrow\infty in the weak form of (SP), then one can

verify
 v_{\infty}= $\theta$
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is a constant from the boundary condition. Therefore, integrating the second equation
of (SP) on the interval, we have the following shadow system which (u_{\infty},  $\theta$) satisfies:

(SS) \left\{\begin{array}{l}
du''+u(1-u)(u+ $\theta$-1)=0, 0<x<1,\\
u'(0)=u'(1)=0,\\
\int_{0}^{1}g(u,  $\theta$)\mathrm{d}x=0.
\end{array}\right.
Our aim is to obtain the set of non‐constant positive solutions of (SS). To do so, we first

regard  $\theta$ as a given parameter and study the boundary value problem of an Allen‐Cahn

type equation:

(2.4) \left\{\begin{array}{l}
du''+u(1-u)(u+ $\theta$-1)=0, 0<x<1,\\
u'(0)=u'(1)=0.
\end{array}\right.
Our strategy of analysis for (SS) is to choose a solution (u,  $\theta$) matching the integral
condition

(2.5) \displaystyle \int_{0}^{1}g(u,  $\theta$)\mathrm{d}x=0
in the set of positive solutions of (2.4). Here we remark that (1.1) and (2.5) imply

0< $\theta$<1.

§2.1. Bifurcation structure of solutions of (2.4)

In what follows, we regard d as a bifurcation parameter. Thanks to 1‐dimensional

case, for each  $\theta$\in(0,1) ,
we have only to study the set of monotone increasing solutions

 $\Gamma$( $\theta$)=\{(u, d)\in C^{2}([0,1])\times R_{+}|u is a positive solution of (2.4) with u'>0 in (0,1)\}

because any positive solution can be constructed by suitable rescaling and reflections of

some (u, d)\in $\Gamma$( $\theta$) . For example, the set of monotone decreasing positive solutions can

be represented by \{(u_{-}, d)|(u, d)\in $\Gamma$( $\theta$)\} with u_{-}(x) :=u(1-x) ; the set of 4‐mode

positive solutions can also be represented by

\{(\~{u}, d/4^{2})|(u, d) \in $\Gamma$( $\theta$)\}\cup \{(\~{u}, d/4^{2})|(u, d)\in $\Gamma$( $\theta$)\},

where

ũ(x) :=\left\{\begin{array}{ll}
u(4x) & \mathrm{f}\mathrm{o}\mathrm{r} x\in[0, \frac{1}{4}],\\
u(4(\frac{1}{2}-x)) & \mathrm{f}\mathrm{o}\mathrm{r} x\in [\frac{1}{4}, \frac{1}{2}],\\
u(4(x-\frac{1}{2})) & \mathrm{f}\mathrm{o}\mathrm{r} x\in [\frac{1}{2}, \frac{3}{4}],\\
u(4(1-x)) & \mathrm{f}\mathrm{o}\mathrm{r} x\in [\frac{3}{4}, 1].
\end{array}\right.
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Smoller and Wasserman [15] obtained the following branch of  $\Gamma$( $\theta$) bifurcating from the

constant solution  u=1- $\theta$ at

 d^{*}=\displaystyle \frac{ $\theta$(1- $\theta$)}{$\pi$^{2}}.
Lemma 2.1 ([15]). The set  $\Gamma$( $\theta$) bifurcates from the constant solution  u=1- $\theta$

at  d=d^{*} and forms a bounded smooth curve with respect to d\in(0, d^{*}) . Then for each

d\in(0, d^{*}) ,  $\Gamma$( $\theta$) possesses a unique element u(\cdot, d) and

d\rightarrow u(\cdot, d) : (0, d^{*})\rightarrow C^{2}([0,1])

is a continuous mapping with

\displaystyle \lim_{d\rightarrow d^{*}}u(\cdot, d)=1- $\theta$  in C^{2}([0,1]) .

Furthermore, the following behaviours of (u(\cdot, d), d)\in $\Gamma$( $\theta$) as d\rightarrow 0 are satisfied

according to two cases (i) 0< $\theta$<1/2 and (ii) 1/2< $\theta$<1.

(i) In case 0< $\theta$<1/2 , define  $\zeta$>0 by

\displaystyle \int_{ $\zeta$}^{1}u(1-u)(u+ $\theta$-1)\mathrm{d}u=0.
In this case, u(\cdot, d)\in $\Gamma$( $\theta$) satisfies

\displaystyle \lim_{d\rightarrow 0}u(x, d)=\left\{\begin{array}{l}
 $\zeta$ for x=0,\\
1 for x\in(0,1],
\end{array}\right.
and moreover,

\displaystyle \lim_{d\rightarrow 0}u(\cdot, d)=1 uniformly on any compact subset of (0,1) .

(ii) In case 1/2< $\theta$<1 , define  $\eta$>0 by

\displaystyle \int_{0}^{ $\eta$}u(1-u)(u+ $\theta$-1)\mathrm{d}u=0.
In this case, u(\cdot, d)\in $\Gamma$( $\theta$) satisfies

\displaystyle \lim_{d\rightarrow 0}u(x, d)=\left\{\begin{array}{l}
0 for x\in[0, 1),\\
 $\eta$ for x=1,
\end{array}\right.
and moreover,

\displaystyle \lim_{d\rightarrow 0}u(\cdot, d)=0 uniformly on any compact subset of (0,1) .
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We will obtain the set of monotone increasing solutions of (SS). In order to find

positive solutions of (SS) in  $\Gamma$( $\theta$) ,
we regard  $\theta$ as a parameter and denote monotone

increasing functions in  $\Gamma$( $\theta$) by

(2.6) u(x, d,  $\theta$) .

By virtue of Lemma 2.1, we set the domain of the mapping (d,  $\theta$)\mapsto u(\cdot, d,  $\theta$) by the

union of

\displaystyle \mathcal{A}:=\{(d,  $\theta$):0<d<\frac{ $\theta$(1- $\theta$)}{$\pi$^{2}}=:d^{*}( $\theta$) , 0< $\theta$<\frac{1}{2}\}
and

B:=\{(d,  $\theta$) : 0<d<\displaystyle \frac{ $\theta$(1- $\theta$)}{$\pi$^{2}}=:d^{*}( $\theta$) , \displaystyle \frac{1}{2}< $\theta$<1\}
Then Lemma 2.1 implies the mapping

(2.7) (d,  $\theta$)\mapsto u(\cdot, d,  $\theta$) : \mathcal{A}\cup \mathcal{B}\rightarrow C^{2}([0,1])

is continuous.

Our aim is to construct the set of (d,  $\theta$) such that u(x, d,  $\theta$) satisfies the integral
condition (2.5). It follows from (1.1) that (2.5) is reduced to

(2.8) (a\displaystyle \int_{0}^{1}e^{ $\alpha \chi$(u)}\mathrm{d}x+b+c) $\theta$=c.
By virtue of (2.8), we define a mapping

(2.9)  $\Phi$(d,  $\theta$)=(a\displaystyle \int_{0}^{1}e^{ $\alpha \chi$(u(x,d, $\theta$))}\mathrm{d}x+b+c) $\theta$
for every  u(\cdot, d,  $\theta$)\in $\Gamma$( $\theta$) . It follows from (2.7) and (2.9) that

(d,  $\theta$)\mapsto $\Phi$(d,  $\theta$):\mathcal{A}\cup B\rightarrow R

yields a continuous mapping. We will find (d,  $\theta$)\in \mathcal{A}\cup \mathcal{B} with

(2.10)  $\Phi$(d,  $\theta$)=c

to obtain the set of monotone increasing solutions of (SS).

§2.2. Matching the integral condition : Case of 0< $\theta$<1/2

We will design the solution set of (2.10) in \mathcal{A} . From (2.9) and (i) of Lemma 2.1,
we immediately obtain the following profile of  $\Phi$(d,  $\theta$) as d\rightarrow 0 and d\rightarrow d^{*}( $\theta$) :
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Lemma 2.2. For any  $\theta$\in(0,1/2) ,

 $\Phi$(0,  $\theta$) :=\displaystyle \lim_{d\rightarrow 0} $\Phi$(d,  $\theta$)=(ae^{- $\alpha$}+b+c) $\theta$
and

 $\Phi$(d^{*}( $\theta$),  $\theta$) := \displaystyle \lim  $\Phi$(d,  $\theta$)=(ae^{ $\alpha \chi$(1- $\theta$)}+b+c) $\theta$.
d\rightarrow d^{*}( $\theta$)

Then by (1.1),

(2.11)  $\Phi$(0,  $\theta$)< $\Phi$(d^{*}( $\theta$),  $\theta$) for  $\theta$\displaystyle \in(0, \frac{1}{2})
With use of Lemma 2.2, we solve  $\Phi$(d,  $\theta$)=c in \mathcal{A} to get the solution set of (SS)

when 0< $\theta$<1/2.

Theorem 2.3. Suppose that c<ae^{- $\alpha$/2}+b . There exist 0<\underline{ $\theta$}<\overline{ $\theta$}\leq 1/2 such

that for any  $\theta$\in(\underline{ $\theta$}, \overline{ $\theta$}) , (SS) has a monotone increasing positive solution  u(x, d( $\theta$),  $\theta$)\in
 $\Gamma$( $\theta$) for some positive number d=d( $\theta$) . More precisely, d( $\theta$) is a lower semi‐continuous

function in (\underline{ $\theta$}, \overline{ $\theta$}) with d(\underline{ $\theta$})=d^{*}(\underline{ $\theta$}) and the following properties:

(i) If c<ae^{- $\alpha$}+b ,
then \overline{ $\theta$}<1/2, d(\overline{ $\theta$})=0,

\displaystyle \lim_{ $\theta$\rightarrow\overline{ $\theta$}}u(x, d( $\theta$),  $\theta$)=1 for x\in(0,1 ]

and

u(\cdot, d( $\theta$),  $\theta$)=1- $\theta$.

(ii) If ae^{- $\alpha$}+b<c<ae^{- $\alpha$/2}+b ,
then \overline{ $\theta$}=1/2 and u(\cdot, d(\underline{ $\theta$}), \underline{ $\theta$})=1-\underline{ $\theta$}.

(ae 2 + \mathrm{b} + \mathrm{c}) (ae 2 + \mathrm{b} + \mathrm{c})

 $\Phi$(0, $\theta$)
(ae + \mathrm{b} + \mathrm{c}) + \mathrm{b} + \mathrm{c})(ae

 $\Phi$(0, $\theta$)

(i) (ii)

Figure 1
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Proof. To construct the level set of  $\Phi$(d,  $\theta$)=c ,
we study the family of continuous

curves

\{ $\Phi$(d,  $\theta$):(d,  $\theta$)\in \mathcal{A}\}.

In view of (1.1) and Lemma 2.2, we know that both

 $\Phi$(0,  $\theta$)=(ae^{- $\alpha$}+b+c) $\theta$ and  $\Phi$(d^{*}( $\theta$),  $\theta$)=(ae^{ $\alpha \chi$(1- $\theta$)}+b+c) $\theta$

are monotone increasing for  $\theta$\in(0,1/2) and satisfy (2.11). Furthermore Lemma 2.2

yields the liming behaviours of  $\Phi$(0,  $\theta$) and  $\Phi$(d^{*}( $\theta$),  $\theta$) as  $\theta$\rightarrow 1/2 and  $\theta$\rightarrow 0 ;

(2.12) \displaystyle \lim_{ $\theta$\rightarrow 1/2} $\Phi$(0,  $\theta$)=\frac{ae^{- $\alpha$}+b+c}{2}<\lim_{ $\theta$\rightarrow 1/2} $\Phi$(d^{*}( $\theta$),  $\theta$)=\frac{ae^{- $\alpha$/2}+b+c}{2}
and

(2.13) \displaystyle \lim_{ $\theta$\rightarrow 0} $\Phi$(0,  $\theta$)=\lim_{ $\theta$\rightarrow 0} $\Phi$(d^{*}( $\theta$),  $\theta$)=0.
We first discuss the case when

(2.14) c<\displaystyle \lim_{ $\theta$\rightarrow 1/2} $\Phi$(0,  $\theta$)=\frac{ae^{- $\alpha$}+b+c}{2},
that is, c<ae^{ $\alpha$/2}+b . In this case, it follows from (2.13) and (2.14) that the intermediate

theorem ensures 0<\overline{ $\theta$}<1/2 such that

 $\Phi$(0, \overline{ $\theta$})=c.

Here we remark that such a number \overline{ $\theta$} is uniquely determined by the monotonicity
of  $\theta$\mapsto $\Phi$(0,  $\theta$) . Since c<\displaystyle \lim_{ $\theta$\rightarrow 1/2} $\Phi$(d^{*}( $\theta$),  $\theta$) by (2.12) and (2.14), one can use the

intermediate theorem again for the monotone function  $\theta$\mapsto $\Phi$(d^{*}( $\theta$),  $\theta$) to find a unique
number 0<\underline{ $\theta$}<1/2 such that

 $\Phi$(d^{*}(\underline{ $\theta$}), \underline{ $\theta$})=c.

Consequently, by virtue of (2.11), we have obtained 0<\underline{ $\theta$}<\overline{ $\theta$}<1/2 such that

(2.15)  $\Phi$(d^{*}(\underline{ $\theta$}), \underline{ $\theta$})=c and  $\Phi$(0, \overline{ $\theta$})=c

when c<ae^{ $\alpha$/2}+b . Then in this case, (2.15) and the monotone increasing properties
of  $\theta$\mapsto $\Phi$(0,  $\theta$) and  $\theta$\mapsto $\Phi$(d^{*}( $\theta$),  $\theta$) yield

 $\Phi$(0,  $\theta$)<c< $\Phi$(d^{*}( $\theta$),  $\theta$) for  $\theta$\in(\underline{ $\theta$}, \overline{ $\theta$}) .

Therefore, for any fixed $\theta$_{0}\in(\underline{ $\theta$}, \overline{ $\theta$}) ,
the intermediate theorem for the continuous function

 $\Phi$(d,  $\theta$) ensures at least one positive number d_{0} such that  $\Phi$(d_{0}, $\theta$_{0})=c . Then for

 $\theta$\in(\underline{ $\theta$}, \overline{ $\theta$}) ,
we can define a positive function d( $\theta$) by

d( $\theta$) := infd >0 :  $\Phi$(d,  $\theta$)=c}.
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Hence d( $\theta$) forms a lower semi‐continuous function in (\underline{ $\theta$}, \overline{ $\theta$}) . Additionally in view of

(2.15), we set

(2.16) d( $\theta$)=d^{*}(\underline{ $\theta$}) and d(\overline{ $\theta$})=0.

Obviously u(x, d( $\theta$),  $\theta$)\in $\Gamma$( $\theta$) satisfies the integral condition (2.5) and becomes a mono‐

tone increasing solution of (SS). Owing to Lemma 2.1 and the continuity of (2.7), we

can use (2.16) to derive the limiting behaviours in (i) of Theorem 2.3 by letting  $\theta$\rightarrow\underline{ $\theta$}
and  $\theta$\rightarrow\overline{ $\theta$} in u(\cdot, d( $\theta$),  $\theta$) .

By virtue of (2.11), we study the case

\displaystyle \lim_{ $\theta$\rightarrow 1/2} $\Phi$(0,  $\theta$)=\frac{ae^{- $\alpha$}+b+c}{2}<c<\lim_{ $\theta$\rightarrow 1/2} $\Phi$(d^{*}( $\theta$),  $\theta$)=\frac{ae^{- $\alpha$/2}+b+c}{2},
that is,

ae^{- $\alpha$}+b<c<ae^{- $\alpha$/2}+b.

Hence the intermediate theorem for the monotone function  $\theta$\mapsto $\Phi$(d^{*}( $\theta$),  $\theta$) gives a

unique \underline{ $\theta$}\in(0,1/2) such that

 $\Phi$(d^{*}(\underline{ $\theta$}), \underline{ $\theta$})=c.

Along a similar argument to the above case, the continuity of  $\Phi$(d,  $\theta$) enables us to find

a lower semi‐continuous function d=d( $\theta$) for  $\theta$\in(\underline{ $\theta$}, 1/2) such that

(2.17)  $\Phi$(d( $\theta$),  $\theta$)=c for  $\theta$\displaystyle \in( $\theta$, \frac{1}{2}) with d(\underline{ $\theta$})=d^{*}( $\theta$) .

It follows from Lemma 2.1 and the continuity of (2.7) that (2.17) ensures the assertion

(ii) of Theorem 2.3. \square 

Remark 2.4. Through the analysis for the balanced case  $\theta$=1/2 ,
it is possible

to prove \displaystyle \lim_{ $\theta$\rightarrow 1/2}d( $\theta$)=0 when ae^{- $\alpha$}+b<c<ae^{- $\alpha$/2}+b . We omit the proof because

a similar argument is appeared in [11]. However it leaves an interesting open problem
to reveal the singular limiting behaviour of u(\cdot, d( $\theta$),  $\theta$) as d( $\theta$)\rightarrow 0( $\theta$\rightarrow 1/2) .

§2.3. Matching the integral condition: Case of 1/2< $\theta$<1

For the case of 1/2< $\theta$<1 , (2.9) and (ii) of Lemma 2.1 give the following profile
of  $\Phi$(d,  $\theta$) in B :

Lemma 2.5. For any  $\theta$\in(1/2,1) ,

 $\Phi$(0,  $\theta$) :=\displaystyle \lim_{d\rightarrow 0} $\Phi$(d,  $\theta$)=(a+b+c) $\theta$
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and

 $\Phi$(d^{*}( $\theta$),  $\theta$) := \displaystyle \lim  $\Phi$(d,  $\theta$)=(ae^{ $\alpha \chi$(1- $\theta$)}+b+c) $\theta$.
d\rightarrow d^{*}( $\theta$)

Then by (1.1),

(2.18)  $\Phi$(0,  $\theta$)> $\Phi$(d^{*}( $\theta$),  $\theta$) for  $\theta$\displaystyle \in(\frac{1}{2},1)
In case of 1/2< $\theta$<1 ,

we obtain monotone increasing solutions of (SS) if c>

e^{- $\alpha$/2}+b . This existence range gives a complement of that in the previous case 0<

 $\theta$<1/2.

Theorem 2.6. Suppose that c>ae^{- $\alpha$/2}+b . There exist 1/2\leq\underline{ $\theta$}<\overline{ $\theta$}<1 such

that for any  $\theta$\in(\underline{ $\theta$}, \overline{ $\theta$}) , (SS) has a monotone increasing positive solution  u(x, d( $\theta$),  $\theta$)\in
 $\Gamma$( $\theta$) for some positive number d=d( $\theta$) . More precisely, d( $\theta$) is a lower semi‐continuous

function in (\underline{ $\theta$}, \overline{ $\theta$}) with d(\overline{ $\theta$})=d^{*}(\overline{ $\theta$}) and the following properties:

(i) If ae^{- $\alpha$/2}+b<c<a+b ,
then \underline{ $\theta$}=1/2 and

u(\cdot, d(\overline{ $\theta$}), \overline{ $\theta$})=1-\overline{ $\theta$}.

(ii) If a+b<c ,
then 1/2<\underline{ $\theta$}, d(\underline{ $\theta$})=0,

\displaystyle \lim_{ $\theta$\rightarrow\underline{ $\theta$}}u(x, d( $\theta$),  $\theta$)=0 for x\in[0 , 1)

and u(\cdot, d(\overline{ $\theta$}), \overline{ $\theta$})=1-\overline{ $\theta$}.

\mathrm{a} + \mathrm{b} + \mathrm{c} \mathrm{a} + \mathrm{b} + \mathrm{c}

 $\Phi$(0, $\theta$) $\Phi$(0, $\theta$)

(\mathrm{a} + \mathrm{b} + \mathrm{c})(\mathrm{a} + \mathrm{b} + \mathrm{c})

2 + \mathrm{b} + \mathrm{c})(ae 2 + \mathrm{b} + \mathrm{c})(ae

(i) (ii)

Figure 2
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Proof. Suppose that  $\theta$\in(1/2,1) . As the proof of Theorem 2.3, we study the

profiles of continuous curves

\{ $\Phi$(d,  $\theta$):(d,  $\theta$)\in \mathcal{B}\}

to construct the level set of (d,  $\theta$)\in B with  $\Phi$(d,  $\theta$)=c . We remark that for any fixed

 $\theta$\in(1/2,1) ,

d\mapsto $\Phi$(d,  $\theta$):(0, d^{*}( $\theta$))\rightarrow R

forms a smooth function with (2.18). In view of Lemma 2.5, we know that

 $\Phi$(0,  $\theta$)=(a+b+c) $\theta$ and  $\Phi$(d^{*}( $\theta$),  $\theta$)=(ae^{ $\alpha \chi$(1- $\theta$)}+b+c) $\theta$

are monotone increasing functions with respect to  $\theta$\in(1/2,1) . Furthermore Lemma

2.5 yields the liming behaviours of  $\Phi$(0,  $\theta$) and  $\Phi$(d^{*}( $\theta$),  $\theta$) as  $\theta$\rightarrow 1/2 and  $\theta$\rightarrow 1 ;

\displaystyle \lim_{ $\theta$\rightarrow 1/2} $\Phi$(0,  $\theta$)=\frac{a+b+c}{2}>\lim_{ $\theta$\rightarrow 1/2} $\Phi$(d^{*}( $\theta$),  $\theta$)=\frac{ae^{- $\alpha$/2}+b+c}{2}
and

\displaystyle \lim_{ $\theta$\rightarrow 1} $\Phi$(0,  $\theta$)=\lim_{ $\theta$\rightarrow 1} $\Phi$(d^{*}( $\theta$),  $\theta$)=a+b+c>c.
Therefore, if

c>\displaystyle \frac{a+b+c}{2} , namely, c>a+b,

then there exist

\displaystyle \frac{1}{2}< $\theta$<\overline{ $\theta$}<1
such that

(2.19)  $\Phi$(0, \underline{ $\theta$})=c and  $\Phi$(d^{*}(\overline{ $\theta$}), \overline{ $\theta$})=c.

By the continuity of  $\Phi$(d,  $\theta$) ,
we can find a lower semi‐continuous function d=d( $\theta$) for

 $\theta$\in(\underline{ $\theta$}, \overline{ $\theta$}) such that

 $\Phi$(d( $\theta$),  $\theta$)=c.

Additionally, (2. 19) implies

(2.20) d(\underline{ $\theta$})=0 and d(\overline{ $\theta$})=d^{*}(\overline{ $\theta$}) .

Therefore, we can show the assertion (ii) of Theorem 2.6 along the same argument in

the proof of Theorem 2.3.

If c satisfies

\displaystyle \lim_{ $\theta$\rightarrow 1/2} $\Phi$(0,  $\theta$)=\frac{a+b+c}{2}>c>\lim_{ $\theta$\rightarrow 1/2} $\Phi$(d^{*}( $\theta$),  $\theta$)=\frac{ae^{- $\alpha$/2}+b+c}{2}
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that is,

ae^{- $\alpha$/2}+b<c<a+b,

then there exists \overline{ $\theta$}\in(1/2,1) such that

 $\Phi$(d^{*}(\overline{ $\theta$}), \overline{ $\theta$})=c.

Hence we obtain a lower semi‐continuous function d=d( $\theta$) for  $\theta$\in(1/2, \overline{ $\theta$}) such that

 $\Phi$(d( $\theta$),  $\theta$)=c for  $\theta$\displaystyle \in(\frac{1}{2}, \overline{ $\theta$}) with d(\overline{ $\theta$})=d^{*}(\overline{ $\theta$}) .

As the proof of Theorem 2.3, we get the assertion (i) of Theorem 2.6. \square 

Remark 2.7. As mentioned in Remark 2.4, with the aid of the analysis for the

balanced case  $\theta$=1/2 ,
we can prove that \displaystyle \lim_{ $\theta$\rightarrow 1/2}d( $\theta$)=0 when ae^{- $\alpha$/2}+b<c<a+b.

§3. Concluding Remarks

Summarizing Theorems 2.3 and 2.6, we have sufficient conditions for the existence

of positive solutions as Table. In the model, c and  $\theta$ represent the partial pressure

of the molecules in the gas phase and the coverage rate of the surface by molecules,

respectively. Then it may be said that our result in Table is reasonable, because the low

(resp. high) coverage rate  $\theta$ can be obtained for the low (resp. high) pressure  c . However,
our method does not give any information on existence or non‐existence of non‐constant

positive solutions in the blank cases on Table.

\mathrm{a} + \mathrm{b} < \mathrm{c}

ae < \mathrm{c} < \mathrm{a} + \mathrm{b}

+ \mathrm{b} < \mathrm{c} < aeae

\mathrm{c} < ae

Table

By numerical computations, we obtain the bifurcation branches from the constant

solution  u=1- $\theta$
,

which corresponds to Theorems 2.3 and 2.6. Figures 3 and 4 imply
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that a monotone increasing solution is uniquely obtained for each  d>0 if it exists. Here,
horizontal and vertical axes mean  $\theta$ and  d

, respectively. When the branches arrive at

the horizontal axis, the solution has a boundary layer for small d>0.

Figure 3 Figure 4

Figure 3: a=0.25, b=0.2,  $\alpha$=1.0 . Left curve Figure 4: a=0.25, b=0.1,  $\alpha$=1.0 . Left curve

corresponds to the case (i) of Theorem 2.3, corresponds to the case (i) of Theorem 2.6,

that is, c=0.1 , right curve corresponds to the that is, c=0.3 , right curve corresponds to the

case (ii), that is, c=0.32 . case (ii), that is, c=1.0.

Figures 5 and 6 show the profiles of the function c- $\Phi$(d,  $\theta$) with respect to d in

the cases corresponding to Figure 3 (ii) and Figure 4 (ii). From Figures 3, 4 and 5, we

can find a non‐monotone relationship (d,  $\theta$) of positive solutions u d,  $\theta$ ) of (SS). This

result implies that there are two monotone increasing solutions with different diffusion

coefficients for same  $\theta$.

Figure 5 Figure 6

Figure 5: Parameters are same as the case of Figure 6: Parameters are same as the case of

Figure 3 (ii) and  $\theta$=0.478 . Figure 4 (ii) and  $\theta$=0.75.

On the other hand, we can show the convergence of the solution of (SP) to the

solution of (SS) in 1‐dimensional case as D\rightarrow\infty[10].
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