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Abstract

The present paper focuses on the steady state problem of some chemotaxis models. Besides a

summarization of known and new results for the so‐called classical chemotaxis model additional

results for some multi‐species chemotaxis models are established. For example, an existence

proof of nontrivial solutions to some nonlocal elliptic boundary value problems is given. Here

the focus lies at conflict‐free situations. Besides the presented steady state results some new

tools and generalization for the analysis of multi‐species chemotaxis models are presented,
which include for example some more general Lyapunov functionals than those known up to

now.

§1. Motivation and Introduction

�Movement is life!� Wilhelm Pfeffer (1845-1920)

This citation of the German botanist and plant physiologist Wilhelm Pfeffer might be

motivation enough to study the mechanisms and underlying effects for the motion of

mobile species. Therefore, studying the movement and selforganized pattern formation

of mobile species is an interesting topic in mathematical biology. There are several

aspects and mechanisms that influence the movement, in particular the direction of
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motion is in general the sum of several external impacts. For example, chemical sub‐

stances in the environment may have a strong influence on the movement of mobile

species. This can lead to strictly oriented movement or to partially oriented and par‐

tially tumbling movement of a single particle resulting in the corresponding movement

of a whole population. One particular effect of chemical substances on the movement of

mobile species is called chemotaxis. Here the movement towards a higher concentration

of the chemical substance is termed positive chemotaxis, while the movement towards

regions of a lower chemical concentration is called negative chemotactical movement.

However, besides chemotactic effects also predator‐prey interactions might cause the

movement in some certain direction. All these aspects can lead to complex and strongly

coupled systems of reaction‐diffusion systems with cross‐diffusion effects.

The present paper is organized as follows:

First we give the arguments and describe the underlying situations and mechanisms

for modelling chemotactic movement of species that lead to multi‐species chemotaxis

systems that extend the classical Keller‐Segel model to the situation of multi‐species
movement as an reaction to multi‐agent attraction resp. repulsion. Then some known

results from [13, 22] for these kind of models are recalled and a Lyapunov functional for

some special systems is presented.

In section 2 we summarize the results available for the steady states of the classical

single species Keller‐Segel model. While section 3 is devoted to the analysis of some

nonlocal elliptic boundary value problem that follows from some explicit examples of

multi‐species chemotaxis models introduced in the present paper and in[13]. We es‐

tablish the mountain pass structure of the corresponding variational formulation of the

nonlocal elliptic boundary value problem and prove the existence of nontrivial steady
state solutions applying and generalizing some techniques that have been introduced in

[19].

The paper finishes with some concluding remarks and comments on multi‐species chemo‐

taxis models.

§2. General multi‐species chemotaxis models

To model chemotactic movement of several mobile species let us assume for a moment

that we have three different populations of mobile species, that behave in a certain

chemotactical manner to two chemical agents s_{1} and s_{2} . Furthermore, we assume that

the population p_{1} flows from places where its density is high towards places where
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the density is low. At the same time the population p_{2} and the substance s_{1} has an

attracting and the population p_{3} and the substance s_{2} has a repelling effect on p_{1} and

therefore influences the flow of p_{1} . Thus p_{1} flows towards high of p_{2} and s_{1} , resp. low

density of p_{3} and s_{2} . Accordingly the flow vector \mathcal{J}_{p_{1}}(t, x) of the population density p_{1}

is a linear combination of the gradients of p_{1}, p_{2}, p_{3}, s_{1} and s_{2} . Therefore, we get:

\mathcal{J}_{p_{1}}=-d_{11} . grad p -d_{12}\cdot grad p -d_{13}\cdot grad p -d_{14}\cdot grad s -d_{15}\cdot grad s
,

where d_{11}, d_{12}, d_{14}>0 ,
and d_{13}, d_{15}\leq 0 are functions that depend on the p_{i} and s_{j}.

According to Fick�s law the flow contains a part that is proportional to the density

gradients p_{i} and according to Fourier�s law for the heat flow a part that is proportional
to the chemoattractant resp. chemorepellent gradients s_{i}.

(2.1) \displaystyle \frac{d}{dt}\int_{D}p_{1}(t, x)dx=Q_{(\mathrm{p},\mathrm{s})}^{1}(t, D)-\int_{\partial D}(\mathcal{J}_{p_{1}}(t, x)\cdot n(x))dS,
where Q_{(\mathrm{p},\mathrm{s})}^{i}(t, D) denotes the growth of the population density p_{i}(t, x) per domain and

time volume.

Generalizing the situation to n mobile species that react on m different chemical sub‐

stances and if we assume that the substances s_{i} simply diffusion according Fick�s law,
we can formulate the following generalized multi‐species chemotaxis model:

(2.2) \left\{\begin{array}{l}
\frac{\partial}{\partial t}p_{i}=\nabla[(\sum_{k=1}^{n}D_{ik}(\mathrm{p}, \mathrm{s})\nabla p_{k})+(\sum_{j=1}^{m}C_{ij}(\mathrm{p}, \mathrm{s})\nabla s_{j})]+F_{i}(\mathrm{p}, \mathrm{s}) ,\\
x\in $\Omega$\subset \mathbb{R}^{N}, t>0\\
\frac{\partial}{\partial t}s_{j}=\nabla\cdot(\sum_{l=1}^{m}A_{lj}(\mathrm{p}, \mathrm{s})\nabla s_{l})+H_{j}(\mathrm{p}, \mathrm{s}) ,\\
x\in $\Omega$\subset \mathbb{R}^{N}, t>0
\end{array}\right.
together with either

(2.3) \displaystyle \frac{\partial}{\partial n}p_{i}=0(i=1, n) , \frac{\partial}{\partial n}s_{j}=0(j=1, m) , (x, t)\in\partial $\Omega$\times(0, T)
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or

(2.4) \left\{\begin{array}{ll}
(\sum_{k=1}^{n}D_{ik}(\mathrm{p}, \mathrm{s})\frac{\partial}{\partial n}p_{k})+(\sum_{j=1}^{m}C_{ij}(\mathrm{p}, \mathrm{s})\frac{\partial}{\partial n}s_{j})=0(i=1, & n) ,\\
(x, t)\in\partial $\Omega$\times(0, T) & \\
s_{j}=0 (j=1, m) , & \\
(x, t)\in\partial $\Omega$\times(0, T) & 
\end{array}\right.
as boundary conditions and given initial data

(2.5) \mathrm{p}(0, x)=\mathrm{p}_{0}(x) , \mathrm{s}(0, x)=\mathrm{s}_{0}(x) , x\in $\Omega$,

where the functions

F_{i} : \mathbb{R}^{n}\times \mathbb{R}^{m}\rightarrow \mathbb{R} (i=1, n) and H_{j} : \mathbb{R}^{n}\times \mathbb{R}^{m}\rightarrow \mathbb{R}(j=1, m)

represent certain reaction terms that describe death and birth of the populations, resp.

production and decay properties of the substances. For the �diffusion coefficients�

D_{ik}(\mathrm{p}, \mathrm{s}) , C_{ij}(\mathrm{p}, \mathrm{s}) and A_{lj}(\mathrm{p}, \mathrm{s}) we assume that they are sufficiently smooth (at least

once continuous differentiable) functions from \mathbb{R}^{n}\times \mathbb{R}^{m}\rightarrow \mathbb{R}.

§2.1. The variational structure for special models

In the presence of population growth the given generalized Keller‐Segel models seem to

have in general no variational structure, i.e. no Lyapunov functional seems to exist for

these models except in those situations considered in [1]. However, in the absence of

growth and under some additional assumptions these kind of models possess Lyapunov
functionals. See for example [1, 13, 21] and [22] for more details.

To give an example for such cases we look at the following multi‐species chemotaxis

systems with mass conservation.

(2.6) \left\{\begin{array}{l}
\frac{\partial}{\partial t}Pi=a_{i}\triangle p_{i}+\nabla[(\sum_{l=1,l\neq i}^{n}$\delta$_{i,lPi}\nabla p_{l})-(\sum_{j=1}^{m}$\omega$_{i,j}p_{i}\nabla s_{j})],\\
x\in $\Omega$\subset \mathbb{R}^{N}, t>0\\
\frac{\partial}{\partial t}s_{j}=(\sum_{k=1}^{m}b_{k,j}\triangle s_{k})-\sum_{k=1}^{m}$\gamma$_{k,j^{S}k}+\sum_{k=1}^{n}$\alpha$_{k,jPk},\\
x\in $\Omega$\subset \mathbb{R}^{N}, t>0
\end{array}\right.
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where the a_{i}, b_{k,j}, $\alpha$_{k,j}, $\omega$_{i,j}, $\delta$_{i,l} and $\gamma$_{k,j} are given constants. G. Wolansky gave in

[22] (for similar systems) the following definition to describe conflict‐free systems, resp.

systems in the presence of conflict:

Definition 2.1 (according to Wolansky [22]). We set

$\lambda$_{i,j}=\displaystyle \sum_{k=1}^{m}$\omega$_{i,k}$\alpha$_{j,k}=$\omega$_{i}$\alpha$_{j}.
1. A population i_{1} is attracted (resp. repelled) to (resp. from) a population i_{2} if

$\lambda$_{i_{1},i_{2}}>0 (resp. $\lambda$_{i_{1},i_{2}}<0 ). In particular, a population is self‐attracting (self‐
repelling) if $\lambda$_{i,i}>0 (resp $\lambda$_{i,i}<0 ).

2. A pair of populations i_{1}, i_{2}\in\{1, n\} is said to be in a conflict, if

$\lambda$_{i_{1},i_{2}}\times$\lambda$_{i_{2},i_{1}}<0.

Remark 2.2. A pair of populations i_{1}, i_{2}\in\{1, n\} is said to be conflict‐free, if

$\lambda$_{i_{1},i_{2}}\times$\lambda$_{i_{2},i_{1}}>0 and if there are n positive constants $\rho$_{1}, $\rho$_{n} such that $\rho$_{i}$\lambda$_{i,l}=$\rho$_{l}$\lambda$_{l,j}.

However, the system presented here covers more interactions than the system considered

in [22]. Therefore, we have to define some additional kind of interaction between the

mobile populations.

Definition 2.3 (according to Horstmann [13]). For i\neq j we set

$\kappa$_{i,j}=$\delta$_{i,j}$\delta$_{j,i}.

1. A population i_{1} has common objectives (has no common objectives) with a popu‐

lation i_{2} if $\kappa$_{i_{1},i_{2}}>0 (resp. $\kappa$_{i_{1},i_{2}}<0 ).

2. If $\delta$_{i_{1},i_{2}}=$\delta$_{i_{2},i_{1}} we say that the populations i_{1} and i_{2} have homogeneous common

objectives.

3. We say that the system describes motion with common objectives, iff $\kappa$_{i,j}>0 for

all i, j\in\{1, n\} with i\neq j.

Similar to the Lyapunov functional for multi‐species chemotaxis systems presented in

[22] one can introduce Lyapunov functionals for the given multi‐species systems where

we have additionally to assume that

b_{i,j}=b_{j,i} for all i, j\in\{1, m\}, $\gamma$_{i,k}=$\gamma$_{k,i} for all i, k\in\{1, n\} with i\neq k,

$\delta$_{i,k}=$\delta$_{k,i} for all i, k\in\{1, n\} with i\neq k
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and

$\omega$_{i,j}=0 iff $\alpha$_{j,i}=0 for i\in\{1, n\} and j\in\{1, m\}

holds true. For this kind of conflict‐free systems in the presence of motion with common

objectives, we have the following Lyapunov functional (compare [13]) at hand:

\displaystyle \mathcal{L}(\mathrm{p}, \mathrm{s})=\frac{1}{2}\sum_{j=1}^{m}\sum_{l=1}^{m}$\beta$_{l,j}\int_{ $\Omega$}[b_{j,l}\nabla s_{j}\nabla s_{l}+$\gamma$_{j,l}s_{j}s_{l}]dx
n n m

+\displaystyle \sum$\rho$_{i}\int_{ $\Omega$}a_{i}p_{i}\ln(p_{i})dx-\sum\sum$\rho$_{i}$\omega$_{i,j}\int_{ $\Omega$}p_{i}s_{j}dxi=1 i=1j=1

(2.7) +\displaystyle \sum_{i=1}^{n}\sum_{k=1,k\neq i}^{n}$\rho$_{i}$\delta$_{i,k}\int_{ $\Omega$}p_{i}p_{k}dx,

where the matrix  $\beta$=($\beta$_{l,j})_{m\times m} is such that

 $\beta \alpha$_{i}=$\rho$_{i}$\omega$_{i} for all 1\leq i\leq n and \displaystyle \sum_{l=1}^{m}$\beta$_{l,j}>0 for all j\in\{1, \cdots, m\}.

Remark 2.4. This Lyapunov functional that has been introduced in [13] generalizes
the Lyapunov functional known from [22] since it takes also cross‐diffusion effects be‐

tween the different mobile species and the diffusible substances into account, which

have not been considered before. For other multi‐species chemotaxis models that pro‐

cess Lyapunov functionals we refer [1] and [13].
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Now, for classical solutions of (2.6) we see that

\displaystyle \frac{d}{dt}\mathcal{L}(\mathrm{p}, \mathrm{s})=\frac{1}{2}\sum_{j=1}^{m}\sum_{l=1}^{m}$\beta$_{l,j}\int_{ $\Omega$}[b_{j,l}\nabla s_{j}\nabla(\frac{\partial}{\partial t}s_{l})+$\gamma$_{j,l}s_{j}(\frac{\partial}{\partial t}s_{l})]dx
+\displaystyle \frac{1}{2}\sum_{j=1}^{m}\sum_{l=1}^{m}$\beta$_{l,j}\int_{ $\Omega$}[b_{j,l}\nabla(\frac{\partial}{\partial t}s_{j})\nabla s_{l}+$\gamma$_{j,l}(\frac{\partial}{\partial t}s_{j})s_{l}]dx
+\displaystyle \sum_{i=1}^{n}$\rho$_{i}\int_{ $\Omega$}a_{i}(\frac{\partial}{\partial t}p_{i})\ln(p_{i})dx+\sum_{i=1}^{n}$\rho$_{i}\int_{ $\Omega$}a_{i}(\frac{\partial}{\partial t}p_{i})dx

n m

-\displaystyle \sum\sum$\rho$_{i}$\omega$_{i,j}\int_{ $\Omega$}(\frac{\partial}{\partial t}p_{i})s_{j}+p_{i}(\frac{\partial}{\partial t}s_{j})dxi=1j=1

+\displaystyle \sum^{n} \sum^{n} $\rho$_{i}$\delta$_{i,k}\int_{ $\Omega$}(\frac{\partial}{\partial t}p_{i})pk+p_{i}(\frac{\partial}{\partial t}p_{k})dxi=1k=1,k\neq i

=-\displaystyle \sum_{j=1}^{m}\int_{ $\Omega$}\left(\begin{array}{l}
\partial\\
\overline{\partial t}^{S_{j}}
\end{array}\right) [\sum_{l=1}^{m}$\beta$_{l,j}b_{j,l}\triangle s_{l}+$\beta$_{l,j}$\gamma$_{j,l}s_{l}++\sum_{i=1}^{n}$\rho$_{i}$\omega$_{i,j}p_{i}]dx
+\displaystyle \sum$\rho$_{i}\int_{ $\Omega$}n(\frac{\partial}{\partial t}p_{i}) (a_{i}\ln(p_{i})-\sum_{j=1}^{m}$\omega$_{i,j^{S}j}+\sum_{k=1,k\neq i}^{n}$\delta$_{i,kpk}dx)i=1

=-\displaystyle \sum_{j=1}^{m}\int_{ $\Omega$}(\frac{\partial}{\partial t}s_{j}) [\sum_{l=1}^{m}$\beta$_{l,j}(\frac{\partial}{\partial t}s_{j})]dx
+\displaystyle \sum$\rho$_{i}\int_{ $\Omega$}n(\frac{\partial}{\partial t}p_{i}) (a_{i}\ln(p_{i})-\sum_{j=1}^{m}$\omega$_{i,j^{S}j}+\sum_{k=1,k\neq i}^{n}$\delta$_{i,kpk}dx)i=1

=-\displaystyle \int_{ $\Omega$}(\frac{\partial}{\partial t}\mathrm{s})^{T} $\beta$(\frac{\partial}{\partial t}\mathrm{S})dx
-\displaystyle \sum$\rho$_{i}\int_{ $\Omega$}p_{i}n|\nabla(\ln(p_{i})-\sum_{j=1}^{m}$\omega$_{i,j^{S}j}+\sum_{k=1,k\neq i}^{n}$\delta$_{i,k}p_{k})|^{2}dxi=1

holds. Thus, \mathcal{L}(\mathrm{p}, \mathrm{s}) is monotone non‐increasing if $\rho$_{i}>0 for all i\in\{1, n\} ,
i.e. in

the conflict‐free situation.

Remark 2.5. We refer the interested reader to [7] for sufficient conditions that guar‐

antee the existence of Lyapunov functionals for single species chemotaxis systems. fur‐

thermore, we refer to [1] for an alternative approach to derive Lyapunov functionals for

chemotaxis systems including the situations in the presence of population growth.
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§2.2. The steady state problem: reduction to a system of

parameter‐dependent elliptic partial differential equations for the agents

In [17] R. Schaaf focused on the properties of stationary solutions of the single species

Keller‐Segel model with homogeneous Neumann boundary data in a very general setting.
She shows that the stationary problem of the single species Keller‐Segel model can be

reduced to a parameter‐dependent single scalar equation. However, her result can easily
be generalized to multi‐species systems. Therefore, we consider the following steady
state system:

(2.8) \left\{\begin{array}{l}
0=\nabla(k_{i,1}(p_{i}, \mathrm{s})\nabla p_{i})+\nabla(k_{i,2}(p_{i}, \mathrm{s})\sum_{j=1}^{m}\nabla s_{j}) ,\\
0=\nabla\cdot(\sum_{j=1}^{m}A_{lj}(\mathrm{p}, \mathrm{s})\nabla s_{l})+H_{j}(\mathrm{p}, \mathrm{s}) ,
\end{array}\right.
where both equations are considered in x\in $\Omega$\subset \mathbb{R}^{N}, t>0 together with either

(2.9) \displaystyle \frac{\partial}{\partial n}p_{i}=0(i=1, n) , \frac{\partial}{\partial n}s_{j}=0(j=1, m) , (x, t)\in\partial $\Omega$\times(0, T)
or

(2.10) \left\{\begin{array}{ll}
k_{i,1}(p_{i}, \mathrm{s})\frac{\partial}{\partial n}p_{i}+(k_{i,2}(p_{i}, \mathrm{s})\sum_{j=1}^{m}\frac{\partial}{\partial n}s_{j})=0(i=1, & n) ,\\
(x, t)\in\partial $\Omega$\times(0, T) & \\
s_{j}=0 (j=1, m) , & \\
(x, t)\in\partial $\Omega$\times(0, T) & 
\end{array}\right.
as boundary conditions. Now it is easy to show that this coupled system can be reduced

to a elliptic system of partial differential equations for the substances \mathrm{s} . However, this

system of m elliptic partial differential equations for the agents depends on n parameters

that depend on the different population densities. Therefore, the generalization of R.

Schaaf�s result reads as follows:

Theorem 2.6. A pair (\tilde{\mathrm{p}}, \mathrm{s})\in\{w\in \mathcal{X}_{1}|w(\overline{ $\Omega$})\subset \mathbb{R}_{+}^{n}\}\times\{w\in \mathcal{X}_{2}|w(\overline{ $\Omega$})\subset \mathbb{R}_{+}^{m}\} is a

solution of (2.8) iff, for $\lambda$_{i}\in \mathbb{R}^{+} with i\in\{1, n\},

(2.11) p_{i}(x)=$\varphi$_{i}(\mathrm{s}(x), $\lambda$_{i}) for all x\in\overline{ $\Omega$} and

(2.12) 0=\displaystyle \nabla\cdot(\sum_{l=1}^{m}A_{lj}( $\varphi$(\mathrm{s}(x),  $\lambda$), \mathrm{s})\nabla s_{l})+H_{j}( $\varphi$(\mathrm{s}(x),  $\lambda$), \mathrm{s}) ,
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where  $\varphi$(\mathrm{s}(x),  $\lambda$) denotes ($\varphi$_{1}(\mathrm{s}(x), $\lambda$_{1}), $\varphi$_{n}(\mathrm{s}(x), $\lambda$_{n}))^{T}\in \mathbb{R}_{+}^{n}.

Here the spaces \mathcal{X}_{i} are defined as \{w\in \mathcal{Z}|\partial w/\partial n=0\} where \mathcal{Z} is the space C^{2, $\beta$}(\overline{ $\Omega$}, \mathbb{R}^{n})
with 0< $\beta$<1 for N>1 and C^{2}(\overline{ $\Omega$}, \mathbb{R}^{n}) for N=1 resp. the space c^{2, $\beta$}(, \mathrm{I}\mathrm{R}^{m}) with

0< $\beta$<1 for N>1 and C^{2}(, \mathrm{I}\mathrm{R}^{m}) for N=1 . The functions $\varphi$_{i}(s, $\lambda$_{i}) are given by
the functions r(s) that solve the equations

\displaystyle \frac{d}{ds}r_{i}(s)=k_{i,2}(r_{i}, \mathrm{s})/k_{i,1}(r_{i}, \mathrm{s}) , r_{i}(1)=$\lambda$_{i}.
For multi‐species chemotaxis systems like system (2.6) with $\delta$_{i,j}=0 for all i,  j\in

\{1, n\}, i\neq j the steady state problem therefore reduces to the following system of

m elliptic equations:

0=(\displaystyle \sum_{l=1}^{m}b_{l,j}\triangle s_{l})-\sum_{l=1}^{m}$\gamma$_{j,l^{S}l}+\sum_{k=1}^{n}$\alpha$_{k,j}$\lambda$_{k}\exp(\sum_{l=1}^{m}\frac{$\omega$_{k,l}}{a_{k}}s_{l}) ,

completed with homogeneous Neumann boundary conditions for all s_{j}, j\in\{1, m\}.
Some concrete results on the existence of steady states for conflict‐free systems with ho‐

mogeneous noflux for the first and Dirichlet boundary conditions for the second equation

having a variational structure can be found for N=2 in [22], while some steady state

analysis for a system with homogeneous Neumann conditions in the presence of conflict

in one spatial dimension N=1 has been performed in [4].

§3. Results for the classical single species chemotaxis model

Before we concentrate on the steady state problem for some multi‐species models we look

at the results available for the classical single species chemotaxis model. The classical

chemotaxis model, i.e. a simplified description of positive chemotactic movement is

given by the equations:

(3.1) \left\{\begin{array}{l}
u_{t} =\nabla(\nabla u- $\chi$ u\nabla v) , x\in $\Omega$, t>0\\
v_{t} =\triangle v-$\gamma$_{v}+ $\alpha$ u, x\in $\Omega$, t>0\\
\partial u/\partial n=\partial v/\partial n=0, x\in\partial $\Omega$, t>0\\
u(0, x)=u_{0}(x) , v(0, x)=v_{0}(x) , x\in $\Omega$,
\end{array}\right.
where  $\chi$,  $\gamma$ and  $\alpha$ are positive constants.

In 1981 S. Childress and J. K. Percus [2] formulated the following conjecture concerning
the time asymptotic behavior of solution for a linear chemotactic sensitivity function

�In particular, for the special model we have investigated, collapse cannot occur

in a one‐dimensional space; may or may not in two dimensions, depending upon

the cell population; and must, we surmise, in three or more dimensions under

a perturbation of sufficiently high symmetry.�
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This conjecture (and especially the statement about the two dimensional case) has

motivated several scientists to analyze the classical chemotaxis model and to study the

time‐asymptotic behavior of the solution (see [11] and the references therein for several

results). Before we briefly go more into details let us introduce the transformations

 U(x, t)=\displaystyle \frac{u(x,t)}{\int_{ $\Omega$}u(x,t)dx}, V(x, t)= $\chi$(v(x, t)-\frac{1}{| $\Omega$|}\int_{ $\Omega$}v(x, t)dx)
 $\gamma$= $\chi$\tilde{ $\gamma$} and  $\lambda$= $\alpha \chi$\displaystyle \int_{ $\Omega$}u(x, t)dx.

Thus we get the new system:

(3.2) \left\{\begin{array}{l}
U_{t} =\nabla(\nabla U-U\nabla V) , x\in $\Omega$, t>0\\
V_{t} =\triangle V- $\gamma$ V+ $\lambda$(U-\frac{1}{| $\Omega$|}) , x\in $\Omega$, t>0\\
\partial U/\partial n=\partial V/\partial n=0, x\in\partial $\Omega$, t>0\\
U(0, x)=U_{0}(x) , V(0, x)=V_{0}(x) , x\in $\Omega$.
\end{array}\right.
Now this model fits into the previously considered class of systems that are of variational

structure, therefore, we have the following tools at hand:

\displaystyle \mathcal{L}[U, V](t)=\frac{1}{2}\int_{ $\Omega$}|\nabla V|^{2}+ $\gamma$ V^{2}dx+ $\lambda$\int_{ $\Omega$}U(\log(U)-1)-1 −UVdx

\displaystyle \mathcal{F}[V](t)=\frac{1}{2}\int_{ $\Omega$}|\nabla V|^{2}+ $\gamma$ V^{2}dx- $\lambda$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{V}dx) .

and the corresponding parameter dependent nonlocal elliptic boundary value problem

-\displaystyle \triangle V+ $\gamma$ V= $\lambda$(\frac{e^{V}}{\int_{ $\Omega$}e^{V}dx}-\frac{1}{| $\Omega$|}) in  $\Omega$, \displaystyle \frac{\partial V}{\partial n}=0 on \partial $\Omega$.

Applying Young�s inequality we see that one can bound the Lyapunov functional \mathcal{L} from

below by \mathcal{F} . We see that:

U(V-\displaystyle \log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{V}dx))\leq U(\log U-1)+e^{V-\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{V}dx)}.
holds. Since \displaystyle \int_{ $\Omega$}U=1 ,

we have:

\displaystyle \mathcal{L}[U, V](t)\geq \mathcal{F}[V](t) :=\frac{1}{2}\int_{ $\Omega$}|\nabla V|^{2}+ $\gamma$ V^{2}dx- $\lambda$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{V}dx)
A typical blow‐up result that can be achieved in connection with the conjecture of

Childress and Percus for N=2 is given by:
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Theorem 3.1 (Horstmann & Wang [9]).
Let  $\Omega$\subset \mathbb{R}^{2} be a smooth simply connected domain and suppose that  $\gamma$>0 . Further‐

more, we assume that:

 4 $\pi$< $\lambda$ and  $\lambda$\neq 4 $\pi$ m for m\in \mathbb{N}.

Then there exist a constant -\infty<\hat{K}\leq 0 and initial data (U_{0}, V_{0}) ,
such that

\hat{K}>\mathcal{L}(U_{0}, V_{0}) .

The corresponding solution to this initial data has to blow up in finite or in infinite

time.

For similar results and further blow‐up results see [10, 11] and the references therein.

§3.1. Existence of nontrivial steady states

This result shows how important the steady state analysis is also in connection with the

time asymptotic behavior of the solution. Therefore, an important question is whether

nontrivial steady states exist or not. Thus, we focus on this question in the following of

the present section.

For a simply connected domain  $\Omega$\subset \mathbb{R}^{2} we consider the nonlocal elliptic boundary
value problem

0=\displaystyle \triangle V- $\gamma$ V+ $\lambda$(\frac{e^{V}}{\int_{ $\Omega$}e^{V}dx}-\frac{1}{| $\Omega$|}) in  $\Omega$, \displaystyle \frac{\partial V}{\partial n}=0 on \partial $\Omega$,

where  $\gamma$\geq 0 and  $\lambda$>0 . This problem is the Euler‐Lagrange equation of the variational

problem

\displaystyle \min_{V\in \mathcal{D}}\frac{1}{2}\int_{ $\Omega$}|\nabla V|^{2}+ $\gamma$ V^{2}dx- $\lambda$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{V}dx)\equiv\min_{V\in \mathcal{D}}\mathcal{F}(V) ,

where

\displaystyle \mathcal{D} :=\{V\in H^{1}( $\Omega$)|\int_{ $\Omega$}Vdx=0\}
Critical points of this variational problem are therefore solutions of our nonlocal bound‐

ary value problem. To show the existence of a minimizer for the variational problem we

can use the following exponential Sobolev inequalities that are also known as Moser‐

Trudinger, resp. Onofri, resp. Chang‐Yang type inequalities.
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Lemma 3.2. Suppose that  $\Omega$\subset \mathbb{R}^{2} is a simply connected domain with C^{2} boundary.
Then for all V\in \mathcal{D} we have that

\displaystyle \int_{ $\Omega$}e^{V}dx\leq k_{ $\Omega$}\cdot e^{\frac{1}{8 $\pi$}\int_{ $\Omega$}|\nabla V|^{2}}dx
For radially symmetric V\in \mathcal{D} and  $\Omega$=B(0, R) (a disk in \mathbb{R}^{2} with radius R ) we have:

\displaystyle \int_{ $\Omega$}e^{V}dx\leq k_{ $\Omega$}\cdot e^{\frac{1}{16 $\pi$}\int_{ $\Omega$}|\nabla V|^{2}}dx+V(R)
Applying this lemma we see that the variational problem is coercive in both cases, in

some parameter range of  $\lambda$ . Therefore, one can use the direct method of the calculus of

variations to establish the existence of a minimizer and thus the existence of a possibly
nontrivial solution of our nonlocal elliptic boundary value problem.

Theorem 3.3. Suppose  $\Omega$\subset \mathbb{R}^{2} is simply connected with C^{2} boundary. If  $\lambda$<4 $\pi$

holds, then there exists a possibly nontrivial minimizer of the given variational problem.
If  $\Omega$ denotes a disk in \mathbb{R}^{2} and if one restricts oneself to the radial function belonging to

\mathcal{D}
,

then the existence of a minimizer is guaranteed for any  $\lambda$\leq 8 $\pi$ . This minimizer is

given by  V\equiv 0.

Using the mountain pass structure of the functional \mathcal{F} one can prove the existence of

nontrivial steady state solutions for the given Keller‐Segel equations. These results can

be summarized in the following two statements.

Theorem 3.4 (Horstmann [8], Wang & Wei [20]). Let us suppose that  $\Omega$\subset \mathbb{R}^{2} is a

simply connected domain of class C^{2} . If  $\gamma$\geq $\lambda$ ,
then there exists a nontrivial solution

of the nonlocal elliptic boundary value problem for almost every  $\lambda$>4 $\pi$.

Corollary 3.5 (Horstmann [8]). Let  $\Omega$\subset \mathbb{R}^{2} denote a simply connected domain of

class C^{2} and let $\mu$_{1} denote the first nonzero eigenvalue of the Laplace‐operator with

Neumann boundary conditions on \partial $\Omega$ . Suppose that

 4 $\pi$<$\mu$_{1}

is satisfied. Then there exists at least one nontrivial solution of the nonlocal elliptic

boundary value problem for almost every  $\lambda$\in(4 $\pi,\ \mu$_{1}) with 0\leq $\gamma$< $\lambda$.

§3.2. Some symmetry properties of steady state solutions

Now we want to analyze some symmetry properties of the steady state solutions. For

the rest of our analysis in the present section we consider the following nonlocal elliptic
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boundary value problem:

(3.3) \left\{\begin{array}{l}
-\triangle V= $\lambda$(\frac{e^{V}}{\int_{ $\Omega$}e^{V}dx}-\frac{1}{| $\Omega$|}) , \mathrm{i}\mathrm{n}  $\Omega$,\\
\partial V/\partial n=0, \mathrm{o}\mathrm{n} \partial $\Omega$,\\
\int_{ $\Omega$}V=0.
\end{array}\right.
Given a group of isometry G of \mathbb{R}^{2} we consider the space H^{G} defined as the class of

functions of mean zero which are invariant under the action of G :

H^{G}:=\{V\in H^{1}(B) : \displaystyle \int_{B}V=0 and V=V\circ g\forall g\in G\}
Mostly G will be:

\bullet the group generated by a rotation  R_{ $\theta$} of angle  $\theta$ denoted henceforth \langle R_{ $\theta$}\rangle,

\bullet or the Dihedral group  D_{n} generated by n reflections and a rotation (a group with

2n elements).

First one observes the following property of steady states belonging to some H^{\langle R_{ $\theta$}\rangle}
,
with

 $\theta$=\displaystyle \frac{2 $\pi$}{n}(n\in \mathbb{N}) .

Theorem 3.6 (Horstmann & Lucia [12]). Let V\in C^{2}(\overline{B}) be a solution our nonlocal

boundary value problem satisfying:

V\displaystyle \in H^{\langle R_{ $\theta$}\rangle},  $\theta$=\frac{2 $\pi$}{n}(n\in \mathbb{N}) ,

and consider a critical point C of V in \overline{B}\backslash \{0\} . Then V\in H^{D_{n}} where D_{n} is the Dihedral

group with generators R_{ $\theta$}, $\sigma$_{C} ,
where we use the notations

R_{ $\theta$}:= Rotation of angle  $\theta$ and  $\sigma$_{C}:= Reflection respectively to OC ,
for C\neq 0.

We conclude from the maximum principle that V\equiv 0 is the unique solution of the

nonlocal problem if  $\lambda$\leq 0 . For positive  $\lambda$ the uniqueness is not obvious. Let us first

consider the following relaxed problem:

(3.4) \left\{\begin{array}{l}
-\triangle V= $\lambda$(\frac{e^{V}}{\int_{ $\Omega$}e^{V}dx}-\frac{1}{| $\Omega$|}) ,\\
V\in C^{2}( $\Omega$)\cap C^{0}(\overline{ $\Omega$}) , \mathrm{o}\mathrm{s}\mathrm{c}_{\partial $\Omega$}(V)\equiv 0.
\end{array}\right.
Senba and Suzuki [18] proved that radially symmetric solutions of this problem have to

be constant if  $\lambda$<8 $\pi$.
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Theorem 3.7 (Horstmann & Lucia [12]). For  $\lambda$\leq 8 $\pi$ the constant functions are the

unique solution of Problem (3.4).

When the domain  $\Omega$ is a disk and under the assumption (9) we immediately deduce

from the last Theorem the following:

\bullet Any radial solutions of (3.4) must be constant whenever  $\lambda$\leq 8 $\pi$ ;

\bullet  V\equiv 0 is the unique radial solution of Problem (3.3) whenever  $\lambda$\leq 8 $\pi$.

The uniqueness result about radial solutions raises the following question:

In a ball B are there any non‐trivial solutions to the nonlocal elliptic boundary value

problem that are invariant under a group of isometries G of B^{l}?

Of course a natural attempt to get such solutions is to consider the minimizing problem
in the space H^{G} . In the simplest case when G=\{id, R_{ $\pi$}\} (the group generated by a

rotation of angle  $\pi$ ), this approach has been used by Senba and Suzuki [18] who proved:

(3.5) \mathcal{F}|_{H^{G}} admits a minimizer for each  $\lambda$<8 $\pi$.

However, one can generalize such a result as follows [12]: Consider the group G generated

by a rotation of angle 2 $\pi$/n(n\in \mathbb{N}) ,
then conclusion (3.5) holds.

Theorem 3.8 (Horstmann & Lucia [12]). If V\in H^{\langle R_{2 $\pi$/n}\rangle}\backslash \{0\} is a solution of problem

(3.3), then

(3.6)  $\lambda$>$\Lambda$_{n} :=\left\{\begin{array}{l}
\frac{64}{ $\pi$} \mathrm{i}\mathrm{f} n=2,\\
8 $\pi$ \mathrm{i}\mathrm{f} n\geq 3.
\end{array}\right.
Our above theorem gives several optimal exponential Sobolev inequalities. Indeed one

has for each  $\lambda$<$\Lambda$_{n} the following optimal inequality:

\displaystyle \frac{1}{|B|}\int_{B}e^{V}\leq e^{\frac{ $\pi$}{128}\int_{B}|\nabla V|^{2}} \forall V\in H^{\langle R_{ $\pi$}\rangle}
and for n\geq 3 :

\displaystyle \frac{1}{|B|}\int_{B}e^{V}\leq e^{\frac{1}{16 $\pi$}\int_{B}|\nabla V|^{2}} \forall V\in H^{\langle R_{2 $\pi$/n}\rangle}.
Summarizing the results for the steady state problem of the single species model we

have the following results:

1. Suppose  $\Omega$\subset \mathbb{R}^{2} is simply connected and its boundary is piecewise of class C^{2} . For

 $\lambda$<4 $\theta$ there exists a possibly nontrivial minimizer of the functional \mathcal{F}(V) over the

set of functions from H^{1}() having mean value equal to zero. Here  $\theta$ denotes the

smallest interior angle of \partial $\Omega$ [compare Gajewski & Zacharias [6]].
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2. Suppose  $\Omega$\subset \mathbb{R}^{2} is a simply connected domain and its boundary is piecewise of

class C^{2},  $\gamma$\geq 1 and  $\lambda$>4 $\theta$ . Then there exists a nontrivial solution of the nonlocal

elliptic boundary value problem [compare Horstmann [8] and Wang & Wei [20]].

3. Let  $\Omega$ denote a disk in \mathrm{I}\mathrm{R}^{2},  $\gamma$=0 and  $\lambda$\leq 8 $\pi$ ,
then there exists no nontrivial

solution of the nonlocal elliptic boundary value problem in the class of all radial

symmetric functions [compare Horstmann & Lucia [12]].

4. Suppose  $\Omega$ is a disk in \mathrm{I}\mathrm{R}^{2},  $\gamma$=0 and  $\lambda$\leq 8 $\pi$ . Furthermore let  R_{ $\theta$} denote a rotation

of angle  $\theta$ and  H^{R_{ $\theta$}}:=\{u\in H^{1} () : uog=u, \forall g\in R_{ $\theta$}\} . Then there exists

a global minimizer of the functional \mathcal{F}(V) in the class H^{R_{2 $\pi$/n}} . For n\geq 3 this

minimizer is given by the trivial solution V\equiv 0 . For n=2 the minimizer is also

the trivial solution V\equiv 0 , provided  $\lambda \pi$\leq 64 [compare Horstmann & Lucia [12]].

§3.3. Consequences for the time asymptotic behavior

For the time dependent problem these results allow us to draw the following conclusions.

Suppose  $\gamma$=0 . Let (U, V)\in H^{\langle R_{2 $\pi$/n}\rangle} denote a solution of the chemotaxis equations.
For  $\lambda$<8 $\pi$ we have that:

\displaystyle \mathcal{L}[U, V](t)\geq\frac{1}{2}(1-\frac{ $\lambda$}{8 $\pi$})\int_{ $\Omega$}|\nabla V|^{2} dx — C , \forall V\in H^{\langle R_{2 $\pi$/n}\rangle}.

According to Gajewski & Zacharias in [6] one can prove the global existence and the

uniform boundedness of all terms of the Lyapunov functional for any t\geq 0 . In fact

\mathcal{L}[U, V](t)\geq-C implies that for a solution that exists global in time

\displaystyle \frac{d}{dt}\mathcal{L}[U, V](t)\rightarrow 0 as  t\rightarrow\infty has to hold.

From this we conclude:

\displaystyle \lim_{t\rightarrow\infty}\Vert\frac{\partial V}{\partial t}(\cdot, t)\Vert_{L^{2}( $\Omega$)}^{2}=0 and \displaystyle \lim_{t\rightarrow\infty}\int_{ $\Omega$}U(t)|\nabla(\log U(t)-V(t))|^{2}dx=0.
Standard arguments show that (U, V)\in L^{\infty}(0, \infty;H^{D_{n}}\times H^{D_{n}}) . Applying recent results

by Feireisl, Laurencot & Petzeltová [5] it follows that classical solutions have to converge

to steady state solutions in the C^{1} ‐sense as t\rightarrow\infty.

For weak solutions it has been shown in [Gajewski & Zacharias [6]] that this convergence

holds true for a subsequence (t)1N such that

U(t_{k})\displaystyle \rightarrow| $\Omega$|e^{V^{*}}/\int_{ $\Omega$}e^{V^{*}}dx
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in L^{2}() and V(t_{k})\rightarrow V^{*} in H^{1} () as  t_{k}\rightarrow\infty . Here  V^{*} denotes a solution of the

nonlocal elliptic boundary value problem.

Therefore we see that for  $\lambda$<$\Lambda$_{n}($\Lambda$_{n} as given in (3.6) the solution (U, V)\in H^{D_{n}}\times H^{D_{n}}
of the chemotaxis system has to converge to the uniform distribution as  t\rightarrow\infty

,
since

 V\equiv 0 is the unique solution of the nonlocal elliptic boundary value problem in this

case. Since any radial function belongs to each H^{D_{n}}
,
this observation also implies that:

Corollary 3.9 (Horstmann & Lucia [12]). Consider the Keller‐Segel model in a disk

and let (U, V) be a radial solution. If  $\lambda$<8 $\pi$ ,
then the solution is globally defined and

\displaystyle \lim_{t\rightarrow\infty}(U, V) t)=(1, 0) in C^{1}(\overline{ $\Omega$}) .

Furthermore, we see that:

Theorem 3.10 (Horstmann& Lucia [12]). Consider the Keller‐Segel model in a disk

and let (U, V) be a C^{2} ‐solution belonging to the space H^{D_{n}}\times H^{D_{n}} . If  $\lambda$<$\Lambda$_{n} with

$\Lambda$_{n} defined in (3.6), then the solution is globally defined and \displaystyle \lim_{t\rightarrow\infty}(U, V) t) =

(1,0) in C^{1}

§4. Results for the steady state problem of some multi‐species system

In this section we want to pay our attention to some simplified multi‐species chemotaxis

models of the following type:

(4.1) \left\{\begin{array}{l}
u_{t} =\nabla(\nabla u-$\chi$_{1}u\nabla v) , x\in $\Omega$, t>0\\
w_{t} =\nabla(\nabla w\pm$\chi$_{2}w\nabla v) , x\in $\Omega$, t>0\\
v_{t} =\triangle v- $\gamma$ v+$\alpha$_{1}u\mp$\alpha$_{2}w, x\in $\Omega$, t>0\\
\frac{\partial u}{\partial n} =\frac{\partial w}{\partial n}=\frac{\partial v}{\partial n}=0 x\in\partial $\Omega$, t>0\\
u(0, x)=u_{0}(x) , w(0, x)=w_{0}(x) , x\in $\Omega$,\\
v(0, x)=v_{0}(x) , x\in $\Omega$.
\end{array}\right.
We remark that the first two equations imply together with the boundary conditions a

conservation of the initial mass for all times. Furthermore, four different situations are

given. For

(4.2) \left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-$\chi$_{1}u\nabla v) , x\in $\Omega$, t>0\\
w_{t}=\nabla(\nabla w-$\chi$_{2}w\nabla v) , x\in $\Omega$, t>0\\
v_{t}=\triangle v- $\gamma$ v+$\alpha$_{1}u-$\alpha$_{2}w, x\in $\Omega$, t>0
\end{array}\right.
and

(4.3) \left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-$\chi$_{1}u\nabla v) , x\in $\Omega$, t>0\\
w_{t}=\nabla(\nabla w+$\chi$_{2}w\nabla v) , x\in $\Omega$, t>0\\
v_{t}=\triangle v- $\gamma$ v+$\alpha$_{1}u+$\alpha$_{2}w, x\in $\Omega$, t>0
\end{array}\right.
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the equations are in the presence of a conflict of interests, while the system is conflict‐free

for

(4.4) \left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-$\chi$_{1}u\nabla v) , x\in $\Omega$, t>0\\
w_{t}=\nabla(\nabla w+$\chi$_{2}w\nabla v) , x\in $\Omega$, t>0\\
v_{t}=\triangle v- $\gamma$ v+$\alpha$_{1}u-$\alpha$_{2}w, x\in $\Omega$, t>0
\end{array}\right.
and

(4.5) \left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-$\chi$_{1}u\nabla v) , x\in $\Omega$, t>0\\
w_{t}=\nabla(\nabla w-$\chi$_{2}w\nabla v) , x\in $\Omega$, t>0\\
v_{t}=\triangle v- $\gamma$ v+$\alpha$_{1}u+$\alpha$_{2}w, x\in $\Omega$, t>0
\end{array}\right.
Processing in the same way as in the single species case we now introduce the new

variables

U(x, t)=\displaystyle \frac{u(x,t)}{\int_{ $\Omega$}u(x,t)dx}, W(x, t)=\frac{w(x,t)}{\int_{ $\Omega$}w(x,t)dx}
and

V(x, t)=v(x, t)-\displaystyle \frac{1}{| $\Omega$|}\int_{ $\Omega$}v(x, t)dx
as well as the new parameters

v^{\pm}=$\alpha$_{1}\displaystyle \int_{ $\Omega$}u(x, t)dx\pm$\alpha$_{2}\int_{ $\Omega$}w(x, t)dx,  $\lambda$=\frac{$\alpha$_{1}}{v^{\pm}}\int_{ $\Omega$}u(x, t)dx
and

 $\mu$=\displaystyle \frac{$\alpha$_{2}}{v^{\pm}}\int_{ $\Omega$}w(x, t)dx with  $\lambda$\pm $\mu$=1.

Before we go on, let us make the following important convention for our analysis:

Hypothesis 4.1. Throughout the present paper we assume that v^{+} resp. v^{-} are posi‐
tive.

For our later observations we remark here that according to our hypothesis the following

limiting behavior is possible:

1.  v^{\pm}\rightarrow\infty with  $\lambda$\rightarrow 1 and  $\mu$\rightarrow 0

2.  v^{+}\rightarrow\infty with  $\lambda$\rightarrow 0 and  $\mu$\rightarrow 1

3.  v^{\pm}\rightarrow\infty with  $\lambda$\displaystyle \rightarrow\frac{$\alpha$_{1}}{$\alpha$_{1}\pm$\alpha$_{2}} and  $\mu$\displaystyle \rightarrow\frac{$\alpha$_{2}}{$\alpha$_{1}\pm$\alpha$_{2}}
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Therefore, the given transformations and new notations lead us to the new systems:

(4.6) \left\{\begin{array}{l}
U_{t} =\nabla(\nabla U-$\chi$_{1}U\nabla V) , x\in $\Omega$, t>0\\
W_{t} =\nabla(\nabla W\pm$\chi$_{2}W\nabla V) , x\in $\Omega$, t>0\\
V_{t} =\triangle V- $\gamma$ V+v^{\pm}( $\lambda$ U\pm $\mu$ W-\frac{1}{| $\Omega$|}) , x\in $\Omega$, t>0\\
\frac{\partial U}{\partial n} =\frac{\partial W}{\partial n}=\frac{\partial V}{\partial n}=0 x\in\partial $\Omega$, t>0\\
U(0, x)=U_{0}(x) , W(0, x)=W_{0}(x) , x\in $\Omega$\\
 V(0, x)=V_{0}(x) , x\in $\Omega$.
\end{array}\right.
Thus the corresponding steady state problems with homogeneous Neumann boundary
conditions read as follows:

(4.7) 0=\displaystyle \triangle V- $\gamma$ V+v^{\pm}( $\lambda$\frac{e^{$\chi$_{1}V}}{\int_{ $\Omega$}e^{$\chi$_{1}V}dx}\mp $\mu$\frac{e^{\mp$\chi$_{2}V}}{\int_{ $\Omega$}\mp$\chi$_{2}V}-\frac{1}{| $\Omega$|})
Consequently, the corresponding four variational problems are now given by the two

situations in the presence of conflict:

\displaystyle \min_{V\in \mathcal{D}}\frac{1}{2}\int_{ $\Omega$}|\nabla V|^{2}+ $\gamma$ V^{2}dx-v^{-} $\lambda$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx)+v^{-} $\mu$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{2}V}dx)
\displaystyle \equiv\min_{V\in \mathcal{D}}\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{+}}(V) ,

\displaystyle \min_{V\in \mathcal{D}}\frac{1}{2}\int_{ $\Omega$}|\nabla V|^{2}+ $\gamma$ V^{2}dx-v^{+} $\lambda$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx)+v^{+} $\mu$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{-$\chi$_{2}V}dx)
\displaystyle \equiv\min_{V\in \mathcal{D}}\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{+},$\chi$_{2}^{-}}(V) ,

and the two conflict‐free problems:

\displaystyle \min_{V\in \mathcal{D}}\frac{1}{2}\int_{ $\Omega$}|\nabla V|^{2}+ $\gamma$ V^{2}dx-v^{+} $\lambda$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx)-v^{+} $\mu$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{2}V}dx)
\displaystyle \equiv\min_{V\in \mathcal{D}}\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{+},$\chi$_{2}^{+}}(V) ,

and

\displaystyle \min_{V\in \mathcal{D}}\frac{1}{2}\int_{ $\Omega$}|\nabla V|^{2}+ $\gamma$ V^{2}dx-v^{-} $\lambda$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx)-v^{-} $\mu$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{-$\chi$_{2}V}dx)
\displaystyle \equiv\min_{V\in \mathcal{D}}\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}}(V) ,
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where in all four cases

\displaystyle \mathcal{D} :=\{V\in H^{1}( $\Omega$)|\int_{ $\Omega$}Vdx=0\}
Applying the exponential Sobolev inequalities and remembering that according to Jensen�s

inequality

\displaystyle \log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{\mp$\chi$_{2}V}dx)\geq 0
holds for all V\in \mathcal{D} ,

we can state the following results:

Theorem 4.1. Suppose  $\Omega$\subset \mathbb{R}^{2} is simply connected with C^{2} boundary. If  v^{\mp} $\lambda \chi$_{1}<4 $\pi$

holds, then there exists a possibly nontrivial minimizer of the given variational problem

with \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{+}}(V) or \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{+},$\chi$_{2}^{-}}(V) . If  $\Omega$ denotes a disk in \mathbb{R}^{2} and if one restricts oneself

to the radial function belonging to \mathcal{D}
,

then the existence of a minimizer is guaranteed
for any  v^{\pm} $\lambda \chi$_{1}\leq 8 $\pi$ . This minimizer is given by  V\equiv 0.

Theorem 4.2. Suppose  $\Omega$\subset \mathbb{R}^{2} is simply connected with C^{2} boundary. If v^{\pm}($\chi$_{1} $\lambda$+
 $\chi$_{2} $\mu$)<4 $\pi$ holds, then there exists a possibly nontrivial minimizer of the given varia‐

tional problem with \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{+},$\chi$_{2}^{+}}(V) resp. \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}}(V) . If  $\Omega$ denotes a disk in \mathbb{R}^{2} and if one

restricts oneself to the radial function belonging to \mathcal{D}
,
then the existence of a minimizer

is guaranteed for any  v^{\pm}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$)\leq 8 $\pi$ . This minimizer is given by  V\equiv 0.

Remark 4.3. The given conditions on the existence of global minimizers for the present

variational problems correspond to condition (iii) in [22, Theroem 4] for the boundedness

of the Lyapunov functionals considered there and to the one given in [3, Theorem 2] to

guarantee the global existence of the solution to the explicit conflict‐free multi‐species
model studied therein. To simplify the comparison we remark that the inequalities

 v^{\pm}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$)<4 $\pi$ resp.  v^{\pm}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$)<8 $\pi$

can be rewritten as:

 v^{\pm}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$)($\chi$_{2} $\lambda$+$\chi$_{1} $\mu$)<4 $\pi$($\chi$_{2} $\lambda$+$\chi$_{1} $\mu$)

resp.

v^{\pm}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$)($\chi$_{2} $\lambda$+$\chi$_{1} $\mu$)<8 $\pi$($\chi$_{2} $\lambda$+$\chi$_{1} $\mu$)

Remembering the definition of our used notation this is transformed into

($\alpha$_{1}\displaystyle \int_{ $\Omega$}u_{0}(x)dx+$\alpha$_{2}\int_{ $\Omega$}w_{0}(x)dx)^{2}<4 $\pi$(\frac{$\alpha$_{1}}{$\chi$_{1}}\int_{ $\Omega$}u_{0}(x)dx+\frac{$\alpha$_{2}}{$\chi$_{2}}\int_{ $\Omega$}w_{0}(x)dx)
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resp.

($\alpha$_{1}\displaystyle \int_{ $\Omega$}u_{0}(x)dx+$\alpha$_{2}\int_{ $\Omega$}w_{0}(x)dx)^{2}<8 $\pi$(\frac{$\alpha$_{1}}{$\chi$_{1}}\int_{ $\Omega$}u_{0}(x)dx+\frac{$\alpha$_{2}}{$\chi$_{2}}\int_{ $\Omega$}w_{0}(x)dx)
Let us now look a little bit closer at the structure of the four given functionals. Calcu‐

lating the first and the second variation of the functionals we get

\displaystyle \frac{d}{d $\delta$}\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\mp},$\chi$_{2}^{+}}(V+ $\delta \varphi$)|_{ $\delta$=0}=\int_{ $\Omega$}\nabla V\nabla $\varphi$+ $\gamma$ V $\varphi$ dx
\displaystyle \int $\varphi$ e^{$\chi$_{1}V}dx \int $\varphi$ e^{$\chi$_{2}V}dx

-v^{\mp} $\lambda \chi$_{1}\displaystyle \frac{ $\Omega$}{\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx}\pm v^{\mp} $\mu \chi$_{2}\frac{ $\Omega$}{\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{2}V}dx}

\displaystyle \frac{d}{d $\delta$}\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\mp},$\chi$_{2}^{-}}(V+ $\delta \varphi$)|_{ $\delta$=0}=\int_{ $\Omega$}\nabla V\nabla $\varphi$+ $\gamma$ V $\varphi$ dx
\displaystyle \int $\varphi$ e^{$\chi$_{1}V}dx \int $\varphi$ e^{-$\chi$_{2}V}dx

-v^{\mp} $\lambda \chi$_{1}\displaystyle \frac{ $\Omega$}{\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx}\pm v^{\mp} $\mu \chi$_{2}\frac{ $\Omega$}{\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{-$\chi$_{2}V}dx}

\displaystyle \frac{d^{2}}{d$\delta$^{2}}\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\mp},$\chi$_{2}^{+}}(V+ $\delta \varphi$)|_{ $\delta$=0}=\int_{ $\Omega$}|\nabla $\varphi$|^{2}+ $\gamma \varphi$^{2}dx
\displaystyle \int_{ $\Omega$}e^{$\chi$_{1}V}dx\int$\varphi$^{2}e^{$\chi$_{1}V}dx-(\int_{ $\Omega$} $\varphi$ e^{$\chi$_{1}V}dx)^{2}

-v^{\mp} $\lambda \chi$_{1}^{2}\displaystyle \frac{ $\Omega$}{| $\Omega$|(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx)^{2}}
\displaystyle \int_{ $\Omega$}e^{$\chi$_{2}V}dx\int$\varphi$^{2}e^{$\chi$_{2}V}dx-(\int_{ $\Omega$} $\varphi$ e^{$\chi$_{2}V}dx)^{2}

\displaystyle \pm v^{\mp} $\mu \chi$_{2}^{2}\frac{ $\Omega$}{| $\Omega$|(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{2}V}dx)^{2}}

\displaystyle \frac{d^{2}}{d$\delta$^{2}}\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\mp},$\chi$_{2}^{-}}(V+ $\delta \varphi$)|_{ $\delta$=0}=\int_{ $\Omega$}|\nabla $\varphi$|^{2}+ $\gamma \varphi$^{2}dx
\displaystyle \int_{ $\Omega$}e^{$\chi$_{1}V}dx\int$\varphi$^{2}e^{$\chi$_{1}V}dx-(\int_{ $\Omega$} $\varphi$ e^{$\chi$_{1}V}dx)^{2}

-v^{\mp} $\lambda \chi$_{1}^{2}\displaystyle \frac{ $\Omega$}{| $\Omega$|(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx)^{2}}
\displaystyle \int_{ $\Omega$}e^{-$\chi$_{2}V}dx\int$\varphi$^{2}e^{-$\chi$_{2}V}dx-(\int_{ $\Omega$} $\varphi$ e^{-$\chi$_{2}V}dx)^{2}

\displaystyle \mp v^{\mp} $\mu \chi$_{2}^{2}\frac{ $\Omega$}{| $\Omega$|(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{-$\chi$_{2}V}dx)^{2}}
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for all  $\varphi$\in \mathcal{D} . Therefore, we conclude that

V\equiv 0 is a strict local minima of \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\mp},$\chi$_{2}^{+}} for all  v^{\mp}( $\lambda \chi$_{1}^{2}\mp $\mu \chi$_{2}^{2})\leq$\mu$_{1}+ $\gamma$

and

 V\equiv 0 is a strict local minima of \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\mp},$\chi$_{2}^{-}} for all v^{\mp}( $\lambda \chi$_{1}^{2}\pm $\mu \chi$_{2}^{2})\leq$\mu$_{1}+ $\gamma$.

Remark 4.4. We want to point out that this is completely different from the situation

given and considered in [16]. There a similar problem with homogeneous Dirichlet

conditions is analyzed, where the given conditions exclude V\equiv 0 as a solution.

§4.1. Unboundedness of the functionals from below under the condition

that  v^{\pm}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$)>4 $\pi$

For the rest of the present paper we focus at the conflict‐free situations, i.e. we look at

the functionals \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{+},$\chi$_{2}^{+}} and \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}} ,
where we will use the notation \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\pm},$\chi$_{2}^{\pm}} for these

two functionals for briefness.

Now in the same way as it has been done in [8] for the single species case we can show

that for

 v^{\pm}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$)>4 $\pi$ and  v^{+}( $\lambda \chi$_{1}^{2}+ $\mu \chi$_{2}^{2})\leq$\mu$_{1}+ $\gamma$

there exists a  1>$\epsilon$_{0}>0 and a function v_{$\epsilon$_{0}}\in \mathcal{D} such that

\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{+},$\chi$_{2}^{+}}(v_{$\epsilon$_{0}})<0 and ||\nabla v_{$\epsilon$_{0}}||_{L^{2}( $\Omega$)}^{2}\geq 1 holds.

The functional \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}} has a mountain pass structure and is unbounded from below, if

 v^{-}\displaystyle \min\{$\chi$_{1} $\lambda,\ \chi$_{2} $\mu$\}>4 $\pi$ and  v^{-}( $\lambda \chi$_{1}^{2}+ $\mu \chi$_{2}^{2})\leq$\mu$_{1}+ $\gamma$,

\mathrm{i}. \mathrm{e} . there exists a 1>$\epsilon$_{0}>0 and a function v_{$\epsilon$_{0}}\in \mathcal{D} such that

\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}}(v_{$\epsilon$_{0}})<0 and ||\nabla v_{$\epsilon$_{0}}||_{L^{2}( $\Omega$)}^{2}\geq 1 holds.

To show that the functionals \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\pm},$\chi$_{2}^{\pm}} are no longer bounded from below in this cases

we restrict ourselves for simplicity to the case that  $\Omega$=B(y_{0},1) is a disk in \mathbb{R}^{2} and

x_{0}=0\in\partial $\Omega$.

Now we look for a sequence (v_{ $\epsilon$})_{ $\epsilon$\geq 0}\subset H^{1}() ,
with

\displaystyle \lim_{ $\epsilon$\rightarrow 0}\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\pm},$\chi$_{2}^{\pm}}(v_{ $\epsilon$})=-\infty.
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Exactly as in the single species case that has been considered in [8] we choose

v_{ $\epsilon$}(x)=\displaystyle \log(\frac{$\epsilon$^{2}}{($\epsilon$^{2}+ $\pi$|x-x_{0}|^{2})^{2}})-\frac{1}{| $\Omega$|}\int_{ $\Omega$}\log(\frac{$\epsilon$^{2}}{($\epsilon$^{2}+ $\pi$|x-x_{0}|^{2})^{2}})
=u_{ $\epsilon$}(x)-\displaystyle \frac{1}{| $\Omega$|}\int_{ $\Omega$}u_{ $\epsilon$}(x) .

Remark 4.5. Since each

$\psi$_{ $\epsilon$,x_{0}}(x)\displaystyle \equiv u_{ $\epsilon$}(x)+\log(8 $\pi$)=\log(\frac{8 $\pi \epsilon$^{2}}{($\epsilon$^{2}+ $\pi$|x-x_{0}|^{2})^{2}}) ,

 $\epsilon$>0, x_{0}\in \mathrm{R}^{2} ,
is a solution of

-\triangle $\psi$(x)=e^{ $\psi$(x)}, x\in \mathrm{R}^{2}

\displaystyle \int_{\mathrm{R}^{2}}e^{ $\psi$(x)}dx<\infty,
the sequence (v_{ $\epsilon$})_{ $\epsilon$\geq 0} with

v_{ $\epsilon$}=$\psi$_{ $\epsilon$,x_{0}}(x)-\displaystyle \frac{1}{| $\Omega$|}\int_{ $\Omega$}$\psi$_{ $\epsilon$,x_{0}}(x)dx\in \mathcal{D}
and x_{0}\in\overline{ $\Omega$} seems to be a good choice for a sequence of functions with the desired

properties in the limiting situation  $\epsilon$\rightarrow 0

Lemma 4.6. Let  $\Omega$ be as stated above. Suppose  v^{+}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$)>4 $\pi$ and  $\epsilon$\rightarrow 0 then

\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{+},$\chi$_{2}^{+}}(v_{ $\epsilon$})\rightarrow-\infty and \displaystyle \int_{ $\Omega$}|\nabla v_{ $\epsilon$}|^{2}dx\rightarrow\infty.
For  v^{-}\displaystyle \min\{$\chi$_{1} $\lambda,\ \chi$_{2} $\mu$\}>4 $\pi$ and  $\epsilon$\rightarrow 0 either

\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}}(v_{ $\epsilon$})\rightarrow-\infty and \displaystyle \int_{ $\Omega$}|\nabla v_{ $\epsilon$}|^{2}dx\rightarrow\infty
or

\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}}(-v_{ $\epsilon$})\rightarrow-\infty and \displaystyle \int_{ $\Omega$}|\nabla v_{ $\epsilon$}|^{2}dx\rightarrow\infty
Remark 4.7. For the analogous result in the radially symmetric case one has to con‐

sider the given sequence with  x_{0} as the center of the disk  $\Omega$=B(0,1) .
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Proof:

We see that

\displaystyle \frac{1}{2}\int_{ $\Omega$}|\nabla v_{ $\epsilon$}|^{2}dx=\frac{16$\pi$^{2}}{2}\int_{ $\Omega$}\frac{|x|^{2}}{($\epsilon$^{2}+ $\pi$|x|^{2})^{2}}dx
\displaystyle \frac{ $\gamma$}{2}\int_{ $\Omega$}v_{ $\epsilon$}^{2}dx=\frac{ $\gamma$}{2}\int_{ $\Omega$}(\log($\epsilon$^{2}+ $\pi$|x|^{2})^{2})^{2}dx-\frac{ $\gamma$}{2}\int_{ $\Omega$}\log($\epsilon$^{2}+ $\pi$|x|^{2})^{2^{2}}

\displaystyle \log\frac{1}{ $\pi$}\int_{ $\Omega$}e^{$\chi$_{1}v_{ $\epsilon$}}=\log\frac{1}{ $\pi$}\int_{ $\Omega$}e^{$\chi$_{1}\log(\frac{$\epsilon$^{2}}{($\epsilon$^{2}+ $\pi$|x|^{2})^{2}})}-\frac{$\chi$_{1}}{ $\pi$}\int_{ $\Omega$}\log(\frac{$\epsilon$^{2}}{($\epsilon$^{2}+ $\pi$|x|^{2})^{2}})
\displaystyle \log\frac{1}{ $\pi$}\int_{ $\Omega$}e^{\pm$\chi$_{2}v_{ $\epsilon$}}=\log\frac{1}{ $\pi$}\int_{ $\Omega$}e^{\pm$\chi$_{2}\log(\frac{$\epsilon$^{2}}{($\epsilon$^{2}+ $\pi$|x|^{2})^{2}})}-\pm\frac{$\chi$_{2}}{ $\pi$}\int_{ $\Omega$}\log(\frac{$\epsilon$^{2}}{($\epsilon$^{2}+ $\pi$|x|^{2})^{2}}) .

Now we look a bit closer at

\displaystyle \frac{1}{2}\int_{ $\Omega$}|\nabla v_{ $\epsilon$}|^{2}dx.
Using the substitution  y=x/ $\epsilon$ and polar coordinates with respect to  x_{0} we can calculate

after an integration

\displaystyle \frac{1}{2}||\nabla v_{ $\epsilon$}||_{L^{2}( $\Omega$)}^{2}=8$\pi$^{3}\int_{0}^{2$\epsilon$^{-1}}\frac{r^{3}}{(1+ $\pi$ r^{2})^{2}}dr- Error

=4$\pi$^{3}(\displaystyle \frac{$\epsilon$^{2}}{$\pi$^{2}($\epsilon$^{2}+4 $\pi$)}+\frac{\log(\frac{1}{$\epsilon$^{2}}($\epsilon$^{2}+4 $\pi$))}{$\pi$^{2}}-\frac{1}{$\pi$^{2}})- Error

=8 $\pi$\displaystyle \log(\frac{1}{ $\epsilon$})+O(1) —Error.

Now we remark that the Error‐term in this calculation is positive. Therefore, we see

that

\displaystyle \frac{1}{2}||\nabla v_{ $\epsilon$}||_{L^{2}( $\Omega$)}^{2}\leq 8 $\pi$\log(\frac{1}{ $\epsilon$})+O(1) .

In the same way we get after an integration of v_{ $\epsilon$}^{2} :

\displaystyle \frac{ $\gamma$}{2}\int_{ $\Omega$}v_{ $\epsilon$}^{2}dx=2 $\pi \gamma$\int_{0}^{2}r(\log($\epsilon$^{2}+ $\pi$ r^{2}))^{2}dr-2 $\gamma$\int_{ $\Omega$}\log($\epsilon$^{2}+ $\pi$|x|^{2})^{2}- Error

\displaystyle \leq 2 $\pi \gamma$\int_{0}^{2}r(\log($\epsilon$^{2}+ $\pi$ r^{2}))^{2}dr-2 $\gamma$\int_{ $\Omega$}\log($\epsilon$^{2}+ $\pi$|x|^{2})^{2}=O(1)
Now we have to determine the last two expressions. Here, we have to be more careful.

This time we make no use of the substitution applied for the other two integrals. We



62 Horstmann and Lucia

see that for positive $\chi$_{i} :

\displaystyle \log\frac{1}{ $\pi$}\int_{ $\Omega$}(\frac{$\epsilon$^{2}}{($\epsilon$^{2}+ $\pi$|x|^{2})^{2}})^{$\chi$_{i}}=\log\frac{1}{ $\pi$}\int_{ $\Omega$}\frac{$\epsilon$^{2$\chi$_{i}}}{($\epsilon$^{2}+ $\pi$|x|^{2})^{2$\chi$_{i}}}dx
=O(1)

and

\displaystyle \frac{$\chi$_{i}}{ $\pi$}\int_{ $\Omega$}\log(\frac{$\epsilon$^{2}}{($\epsilon$^{2}+ $\pi$|x|^{2})^{2}})=\frac{$\chi$_{i}}{ $\pi$}\int_{ $\Omega$}u_{ $\epsilon$}dx
=2$\chi$_{i}\displaystyle \log( $\epsilon$)-2\frac{$\chi$_{i}}{ $\pi$}\int_{ $\Omega$}\log($\epsilon$^{2}+ $\pi$|x|^{2})dx
=2$\chi$_{i}\log( $\epsilon$)+O(1) .

for i\in\{1 ,
2 \} . This all together implies our claim that

\displaystyle \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{+},$\chi$_{2}^{+}}(v_{ $\epsilon$})\leq(8 $\pi$-2v^{+}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$))\log(\frac{1}{ $\epsilon$})+O(1)
and therefore

\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{+},$\chi$_{2}^{+}}(v_{ $\epsilon$})\rightarrow-\infty as  $\epsilon$\rightarrow 0.

The claim for \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}}(v) follows from the inequalities

(4.8) \displaystyle \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}}(v)\leq\frac{1}{2}\int_{ $\Omega$}|\nabla v|^{2}+ $\gamma$ v^{2}dx-v^{-} $\lambda$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}v}dx)
and

(4.9) \displaystyle \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{-}}(v)\leq\frac{1}{2}\int_{ $\Omega$}|\nabla v|^{2}+ $\gamma$ v^{2}dx-v^{-} $\mu$\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{-$\chi$_{2}v}dx)
that hold for all v\in \mathcal{D}. \square 

Remark 4.8. The calculations presented above give us some insights to the structure

of the functional \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{+}} for a situation in the presence of conflicts. Let  $\Omega$ be as stated

above. Suppose  v^{-}($\chi$_{1} $\lambda-\chi$_{2} $\mu$)>4 $\pi$ and  $\epsilon$\rightarrow 0 then

\mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{-},$\chi$_{2}^{+}}(v_{ $\epsilon$})\rightarrow-\infty and \displaystyle \int_{ $\Omega$}|\nabla v_{ $\epsilon$}|^{2}dx\rightarrow\infty.
Remembering that the functionals are bounded from below and coercive for v^{\pm}$\chi$_{1} $\lambda$<
 4 $\pi$

,
the following questions are obvious (using again the simplified notation \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\mp},$\chi$_{2}^{\pm}} ):
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++

Figure 1. Sketch of the mountain pass structure of the functionals \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\pm},$\chi$_{2}^{\pm}}

1. Are the functionals \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\mp},$\chi$_{2}^{\pm}} bounded from below for  4 $\pi$\leq v^{\pm}$\chi$_{1} $\lambda$\leq 4 $\pi$+v^{\pm}$\chi$_{2} $\mu$ ?

2. If the functionals \mathcal{F}_{ $\lambda,\ \mu$}^{$\nu$^{\mp},$\chi$_{2}^{\pm}} are bounded from below for  4 $\pi$\leq v^{\pm}$\chi$_{1} $\lambda$\leq 4 $\pi$+v^{\pm}$\chi$_{2} $\mu$
are there any nontrivial minimizers in \mathcal{D} ?

Remark 4.9. The statement of the lemma remains also true for more general domains

(with piecewise smooth boundary) where one might have to replace  $\pi$ by the smallest

interior angle of the boundary \partial $\Omega$ of the considered domain  $\Omega$.

Now it seems as if the famous mountain pass theorem by Ambrosetti and Rabinowitz

might be applicable to establish the existence of a nontrivial solution in the given
conflict‐free cases, but unfortunately the functionals do not satisfy the Palais‐Smale

condition. Therefore, we have to proceed in a slightly different way.

§4.2. Existence of nontrivial steady state solutions in the conflict‐free

cases

According to our observations concerning the limiting behavior of  $\lambda$(v) and  $\mu$(v) as

 v^{\pm}\rightarrow\infty we see that

\mathcal{F}_{ $\lambda$(s), $\mu$(s)}^{s,$\chi$_{2}^{\pm}}(v_{$\epsilon$_{0}})<\mathcal{F}_{ $\lambda$($\nu$^{\pm}), $\mu$($\nu$^{\pm})}^{$\nu$^{\pm},$\chi$_{2}^{\pm}}(v_{$\epsilon$_{0}})<0
for every s\geq v^{\pm} ,

with  v^{+}($\chi$_{1} $\lambda$+$\chi$_{2} $\mu$)>4 $\pi$ resp.  v^{-}\displaystyle \min\{$\chi$_{1} $\lambda,\ \chi$_{2} $\mu$\}>4 $\pi$.

However, since  $\lambda$ and  $\mu$ depend both on  v^{\pm} the case  $\lambda$\neq $\mu$ is a little bit more subtle

than it seems at a first glance.

Remark 4.10. We remark that for  $\lambda$= $\mu$ the functionals only depend on the parameter

 $\lambda$ v^{\pm} . Therefore we can simplify the notation of the functionals in this case in the
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following way:

\mathcal{F}_{$\nu$^{\pm} $\lambda$}^{$\chi$_{2}^{\pm}}:=\mathcal{F}_{ $\lambda,\ \lambda$}^{$\nu$^{\pm},$\chi$_{2}^{\pm}}
Therefore, we remark that according to our observations above we have the inequalities:

\mathcal{F}_{s}^{$\chi$_{2}^{\pm}}(v_{$\epsilon$_{0}})<\mathcal{F}_{$\nu$^{\pm} $\lambda$}^{$\chi$_{2}^{\pm}}(v_{$\epsilon$_{0}})<0
for every s\geq $\lambda$ v^{\pm} with  $\lambda$ v^{+}($\chi$_{1}+$\chi$_{2})>4 $\pi$ resp.  $\lambda$ v^{-}\displaystyle \min\{$\chi$_{1}, $\chi$_{2}\}>4 $\pi$.

We define \mathcal{P} := {p:[0, 1]\rightarrow \mathcal{D}|p is continous and p(0)=0, p(1)=v_{$\epsilon$_{0}} } and set

k_{s}\displaystyle \equiv \mathrm{i}\mathrm{n}\mathrm{f}\max \mathcal{F}_{S}^{$\chi$_{2}^{\pm}}(p(t))
p\in \mathcal{P}t\in[0,1]

for all  s\geq v^{\pm} $\lambda$ . Since  v^{\pm} $\lambda$\mapsto \mathcal{F}_{$\nu$^{\pm} $\lambda$}^{$\chi$_{2}^{\pm}}(v) is monotone decreasing for all v\in \mathcal{D} ,
we see

that s\mapsto k_{S} is also monotone decreasing for all  s\geq v^{\pm} $\lambda$ and, therefore, this mapping is

differentiable for almost any  s\geq v^{\pm} $\lambda$ . Furthermore, we know that there is a constant

 k_{0} not depending on the parameter  v^{\pm} $\lambda$ such that

 k_{s}\geq k_{0}>0

(since for all  v^{\pm}($\chi$_{1}^{2} $\lambda$+$\chi$_{2}^{2} $\mu$)\leq$\mu$_{1}+ $\gamma$ ,
i.e.  v^{\pm} $\lambda$($\chi$_{1}^{2}+$\chi$_{2}^{2})\leq$\mu$_{1}+ $\gamma$ ,

a strict local minima

is given by the trivial solution  V\equiv 0 ).

To prove the existence of nontrivial solutions to our nonlocal elliptic boundary value

problems we have to establish the following statement.

Lemma 4.11. We assume that  $\lambda$= $\mu$ and  $\lambda$ v^{+}($\chi$_{1}+$\chi$_{2})>4 $\pi$ resp. that  $\lambda$= $\mu$ and

 $\lambda$ v^{-}\displaystyle \min\{$\chi$_{1}, $\chi$_{2}\}>4 $\pi$ . Let us suppose that the mapping  s\mapsto k_{S} is differentiable at

 s>v^{\pm} $\lambda$ . Then  k_{S} denotes a critical value of the functional \mathcal{F}_{s}^{$\chi$_{2}^{\pm}} ,
i.e. there exists a

nontrivial stationary solution for almost every s>v^{\pm} $\lambda$.

As in [19] we need two lemmata to prove this result.

Lemma 4.12.

1. For each pair of functions u, v\in \mathcal{D} and every s>0 we have:

\displaystyle \mathcal{F}_{ $\lambda,\ \mu$}^{s,$\chi$_{2}^{\pm}}(u+v)\leq \mathcal{F}_{ $\lambda,\ \mu$}^{s,$\chi$_{2}^{\pm}}(u)+\int_{ $\Omega$}\nabla v\nabla u+ $\gamma$ vudx
\displaystyle \int ve^{$\chi$_{1}u}dx \int ve^{\pm$\chi$_{2}u}dx

-s $\lambda \chi$_{1}\displaystyle \frac{ $\Omega$}{\int_{ $\Omega$}e^{$\chi$_{1}u}}-\pm s $\mu \chi$_{2}\frac{ $\Omega$}{\int_{ $\Omega$}e^{\pm$\chi$_{2}u}}
(4.10) +\displaystyle \frac{1}{2}\int_{ $\Omega$}|\nabla v|^{2}+ $\gamma$ v^{2}dx
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2. For any C_{1}\geq 0 there exists a constant K such that for any s, q\in \mathbb{R} the estimate

(4.11) \Vert(\mathcal{F}_{ $\lambda,\ \mu$}^{s,$\chi$_{2}^{\pm}})'(v)-(\mathcal{F}_{ $\lambda,\ \mu$}^{q,$\chi$_{2}^{\pm}})'(v)\Vert_{H-1}\leq K|s-q|
holds uniformly in v\in \mathcal{D} ,

with ||\nabla v||_{L^{2}( $\Omega$)}^{2}\leq C_{1}.
Remark 4.13. For  $\lambda$= $\mu$ the two statements of Lemma 4.12 read as follows:

1. For each pair of functions  u, v\in \mathcal{D} and every s>0 we have:

\displaystyle \mathcal{F}_{s}^{$\chi$_{2}^{\pm}}(u+v)\leq \mathcal{F}_{S}^{$\chi$_{2}^{\pm}}(u)+\int_{ $\Omega$}\nabla v\nabla u+ $\gamma$ vudx
\displaystyle \int ve^{$\chi$_{1}u}dx \int ve^{\pm$\chi$_{2}u}dx

-s$\chi$_{1}\displaystyle \frac{ $\Omega$}{\int_{ $\Omega$}e^{$\chi$_{1}u}}-\pm s$\chi$_{2}\frac{ $\Omega$}{\int_{ $\Omega$}e^{\pm$\chi$_{2}u}}
(4.12) +\displaystyle \frac{1}{2}\int_{ $\Omega$}|\nabla v|^{2}+ $\gamma$ v^{2}dx

2. For any C_{1}\geq 0 there exists a constant K such that for any s, q\in \mathbb{R} the estimate

(4.13) \Vert(\mathcal{F}_{S}^{$\chi$_{2}^{\pm}})'(v)-(\mathcal{F}_{q}^{$\chi$_{2}^{\pm}})'(v)\Vert_{H-1}\leq K|s-q|
holds uniformly in v\in \mathcal{D} ,

with ||\nabla v||_{L^{2}( $\Omega$)}^{2}\leq C_{1}.
Proof of Lemma 4.12:

First we consider the first statement and remark that:

\displaystyle \mathcal{F}_{ $\lambda,\ \mu$}^{s,$\chi$_{2}^{\pm}}(u+v)-\mathcal{F}_{ $\lambda,\ \mu$}^{s,$\chi$_{2}^{\pm}}(u)-\int_{ $\Omega$}\nabla v\nabla u+ $\gamma$ vudx-\frac{1}{2}\int_{ $\Omega$}|\nabla v|^{2}+ $\gamma$ v^{2}dx
\displaystyle \int ve^{$\chi$_{1}u}dx \int ve^{\pm$\chi$_{2}u}dx

+s $\lambda \chi$_{1}\displaystyle \frac{ $\Omega$}{\int_{ $\Omega$}e^{$\chi$_{1}u}}+\pm s $\mu \chi$_{2}\frac{ $\Omega$}{\int_{ $\Omega$}e^{\pm$\chi$_{2}u}}

-s $\lambda$\displaystyle \lfloor\lceil_{\log}(\frac{\int_{ $\Omega$}e^{$\chi$_{1}(u+v)}dx}{\int_{ $\Omega$}e^{$\chi$_{1}u}dx}1-\frac{$\chi$_{1}\int_{ $\Omega$}ve^{$\chi$_{1}u}dx}{\int_{ $\Omega$}e^{$\chi$_{1}u}dx}]
-s $\mu$[\displaystyle \log(\frac{\int_{ $\Omega$}e^{\pm$\chi$_{2}(u+v)}dx}{\int_{ $\Omega$}e^{\pm$\chi$_{2}u}dx}1-\frac{\pm$\chi$_{2}\int_{ $\Omega$}ve^{\pm$\chi$_{2}u}dx}{\int_{ $\Omega$}e^{\pm$\chi$_{2}u}dx}]
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-\displaystyle \int_{0}^{1}\int_{0}^{$\delta$'}\frac{d^{2}f}{d$\delta$^{2}}($\delta$'')d$\delta$''d$\delta$',
with

f( $\delta$)= $\lambda$\displaystyle \log(\frac{\int_{ $\Omega$}e^{$\chi$_{1}(u+ $\delta$ v)}dx}{\int_{ $\Omega$}e^{$\chi$_{1}u}dx}1+ $\mu$\log(\frac{\int_{ $\Omega$}e^{\pm$\chi$_{2}(u+ $\delta$ v)}dx}{\int_{ $\Omega$}e^{\pm$\chi$_{2}u}dx}1
Now since

f''( $\delta$)=\displaystyle \frac{ $\lambda$[\int_{ $\Omega$}e^{$\chi$_{1}(u+ $\delta$ v)}$\chi$_{1}^{2}v^{2}dx\cdot\int_{ $\Omega$}e^{$\chi$_{1}(u+ $\delta$ v)}dx-(\int_{ $\Omega$}e^{$\chi$_{1}(u+ $\delta$ v)}$\chi$_{1}vdx)^{2}]}{(\int_{ $\Omega$}e^{$\chi$_{1}(u+ $\delta$ v)}dx)^{2}}
+\displaystyle \frac{ $\mu$[\int_{ $\Omega$}e^{\pm$\chi$_{2}(u+ $\delta$ v)}$\chi$_{2}^{2}v^{2}dx\cdot\int_{ $\Omega$}e^{\pm$\chi$_{2}(u+ $\delta$ v)}dx-(\int_{ $\Omega$}e^{\pm$\chi$_{2}(u+ $\delta$ v)}(\pm$\chi$_{2})vdx)^{2}]}{(\int_{ $\Omega$}e^{\pm$\chi$_{2}(u+ $\delta$ v)d_{X)^{2}}}}

\geq 0

is true according to Hölder�s inequality we see that the first statement of our Lemma is

valid.

Let us now turn to the second claim:

For all u\in \mathcal{D} with ||\nabla u||_{L^{2}( $\Omega$)}\leq 1 we see that:

\langle(\mathcal{F}_{ $\lambda,\ \mu$}^{s,$\chi$_{2}^{\pm}})'(v) , u\rangle-\langle(\mathcal{F}_{ $\lambda,\ \mu$}^{q,$\chi$_{2}^{\pm}})'(v) , u\displaystyle \rangle=(q-s)(\frac{$\chi$_{1} $\lambda$\int_{ $\Omega$}ue^{$\chi$_{1}v}dx}{\int_{ $\Omega$}e^{$\chi$_{1}v}dx}+\frac{\pm$\chi$_{2} $\mu$\int_{ $\Omega$}ue^{\pm$\chi$_{2}v}dx}{\int_{ $\Omega$}e^{\pm$\chi$_{2}v}dx})
\displaystyle \leq|s-q|\max\{$\chi$_{1}, $\chi$_{2}\}|| $\lambda$|+| $\mu$||K(C)
\displaystyle \leq 2\max\{| $\lambda$|, | $\mu$|\}\max\{$\chi$_{1}, $\chi$_{2}\}\tilde{K}(C_{1})|s-q|
\leq K|s-q|

where K(C) is a positive constant that can be determined explicitly by using Hölder�s

inequality and the Moser‐Trudinger type inequality in the present paper. (For  $\lambda$= $\mu$

and the functionals \mathcal{F}_{S}^{$\chi$_{2}^{\pm}} the proof reduces to a simple application of Hölder�s inequality
and the Moser‐Trudinger type inequality.) \square 

Proof of Lemma 4.11:
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Let us fix a point s where k_{s} is differentiable. Now we choose a monotone decreasing

sequence (s_{n})_{n\in \mathrm{N}} with s_{n}\rightarrow s as  n\rightarrow\infty . For  n\in \mathrm{N} and each p_{n}\in \mathcal{P} with

(4.14) \displaystyle \max_{t\in[0,1]}\mathcal{F}_{s}^{$\chi$_{2}^{\pm}}(p_{n}(t))\leq k_{S}+(s_{n}-s)
we look at a point v=p_{n}(t_{n}) ,

such that

(4.15) \mathcal{F}_{S}^{$\chi$_{2}^{\pm}}(v)\geq k_{s_{n}}-2(s_{n}-s)
holds. Now we set  $\alpha$=-k_{S}'+3 and choose n_{0}\in \mathrm{N} sufficiently large. For all n\geq n_{0} we

have the following:

k_{s}- $\alpha$(s_{n}-s)\leq k_{s_{n}}-2(s_{n}-s)\leq \mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(v)\leq \mathcal{F}_{s}^{$\chi$_{2}^{\pm}}(v)
(4.16) \displaystyle \leq 0\leq t\leq 1\max \mathcal{F}_{s}^{$\chi$_{2}^{\pm}}(p_{n}(t))\leq k_{s}+(s_{n}-s)
n_{0} is independent of p_{n} . The inequality (4.16) implies

0\leq \mathcal{F}_{S}^{$\chi$_{2}^{\pm}}(v)-\mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(v)\leq k_{S}-\mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(v)+(s_{n}-s)
and thus, according to (4.15),

0\leq^{\underline{\mathcal{F}_{S}^{$\chi$_{2}^{\pm}}(v)-\mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(v)}}
s_{n} -s

=\displaystyle \log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx)+\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{\pm$\chi$_{2}V}dx)
(4.17) \leq $\alpha$+1.

However, this inequality also guarantees that

(4.18) ||\nabla v||_{L^{2}( $\Omega$)}^{2}\leq C_{1}
for all v=p_{n}(t_{n}) ,

with n\geq n_{0} ,
since

||\displaystyle \nabla v||_{L^{2}( $\Omega$)}^{2}=2\mathcal{F}_{S}^{$\chi$_{2}^{\pm}}(v)+2s[\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{$\chi$_{1}V}dx)+\log(\frac{1}{| $\Omega$|}\int_{ $\Omega$}e^{\pm$\chi$_{2}V}dx)]
\leq 2k_{s}+2(s_{n}-s)+2s( $\alpha$+1)

\leq C_{1}.

Now we make use of the next lemma, which we will prove at the end of this section.

Lemma 4.14. There exists a sequence (\mathrm{V})_{\mathrm{I}\mathrm{N}} in \mathcal{D}
,

such that ||\nabla v_{n}||_{L^{2}( $\Omega$)}^{2}\leq C_{1} and

\mathcal{F}_{s}^{$\chi$_{2}^{\pm}}(v_{n})\rightarrow k_{S} as well as (\mathcal{F}_{s}^{$\chi$_{2}^{\pm}})'(v_{n})\rightarrow 0 is true as n\rightarrow\infty.
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Let (v_{n})_{n\in \mathrm{N}} denote a sequence mentioned in Lemma 4.14. We assume that v_{n}\rightarrow v for

 n\rightarrow\infty in \mathcal{D} and according to the compact imbedding of H^{1}() into the Orlicz space

L_{e^{v}-v-1}() that e^{v_{n}}\rightarrow e^{v} in L^{2}() . Thus we have

o(1)=\displaystyle \int_{ $\Omega$}\nabla v_{n}\nabla(v_{n}-v)+ $\gamma$ v_{n}(v_{n}-v)dx
\displaystyle \int e^{$\chi$_{1}v_{n}} (vn—v) dx \displaystyle \int e^{\pm$\chi$_{2}v_{n}} (vn—v) dx

-s$\chi$_{1}\displaystyle \frac{ $\Omega$}{\int_{ $\Omega$}e^{$\chi$_{1}v_{n}}}-\pm s$\chi$_{2}\frac{ $\Omega$}{\int_{ $\Omega$}e^{\pm$\chi$_{2}v_{n}}}
=||\nabla(v_{n}-v)||_{L^{2}( $\Omega$)}^{2}+ $\gamma$||v_{n}-v||_{L^{2}( $\Omega$)}^{2}-o(1) ,

where o(1)\rightarrow 0 for  n\rightarrow\infty . Therefore we have the strong convergence of (v_{n})_{n\in \mathrm{N}}
in H^{1}() . Using now the lower semi‐continuity of the functionals \mathcal{F}_{S}^{$\chi$_{2}^{\pm}} the proof is

finished. \square 

Proof of Lemma 4.14 (compare [19]):
We prove the claim of Lemma 4.14 via contradiction. Therefore, we assume that no

such sequence exists. The assumptions imply that there is a  $\epsilon$>0 such that

\Vert(\mathcal{F}_{S}^{$\chi$_{2}^{\pm}})'(v)\Vert_{H-1}\geq 2 $\epsilon$ for all  v\in \mathcal{D} ,
with ||\nabla v||_{L^{2}( $\Omega$)}^{2}\leq K_{1}

and

|\mathcal{F}_{s}^{$\chi$_{2}^{\pm}}(v)-k_{S}|<2 $\epsilon$.
Furthermore, we can assume that for n\geq n_{0} the inequalities

 $\alpha$(s_{n}-s)<\displaystyle \frac{ $\epsilon$}{4}\sqrt{s_{n}-s}< $\epsilon$ and \displaystyle \frac{$\mu$_{1}+ $\gamma$}{2$\mu$_{1}}|s_{n}-s|<\frac{ $\epsilon$}{4}\sqrt{s_{n}-s}
hold true. First we choose a function  $\psi$\in C^{\infty}(\mathrm{R}) with 0\leq $\psi$\leq 1 defined by

 $\psi$(r)=1 ,
ifr \geq-1,  $\psi$(r)=0 ,

ifr \leq-2,

$\psi$_{n}(v)= $\psi$(\displaystyle \frac{\mathcal{F}_{s_{n}}(v)-k_{s_{n}}}{s_{n}-s}) ,
if n\in \mathrm{N} ,

and v\in \mathcal{D}.

Now we choose p_{n}\in \mathcal{P} satisfying inequality (4.14) and define

p_{n}(t)\equiv p_{n}(t)-\sqrt{s_{n}-s}\cdot$\psi$_{n}(p_{n}(t))\underline{(\mathcal{F}_{s}^{$\chi$_{2}^{\pm}})'(p_{n}(t))}
\Vert(\mathcal{F}_{S}^{$\chi$_{2}^{\pm}})'(p_{n}(t))\Vert_{H-1}

Inequality (4.16) was satisfied for all v=p(t) with \mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(v)\geq k_{s_{n}}-2(s_{n}-s) . Thus

(4.17) is true for such v
,
if n\geq n_{0}. (4.16) implies that

|\mathcal{F}_{s}^{$\chi$_{2}^{\pm}}(v)-k_{S}|<2 $\epsilon$ and ||(\mathcal{F}_{s}^{$\chi$_{2}^{\pm}})'(v)||_{H-1}\geq 2 $\epsilon$.
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According to (4.18) and the second statement of Lemma 4.12 we have for such v and

sufficiently large n\geq n_{0} the following inequalities:

\langle(\mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}})'(v) , (\mathcal{F}_{S}^{$\chi$_{2}^{\pm}})'(v)\rangle =\Vert(\mathcal{F}_{s}^{$\chi$_{2}^{\pm}})'(v)\Vert_{H-1}^{2}-\langle(\mathcal{F}_{S}^{$\chi$_{2}^{\pm}})'(v) , (\mathcal{F}_{s}^{$\chi$_{2}^{\pm}})'(v)\rangle
+\langle(\mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}})'(v) , (\mathcal{F}_{s}^{$\chi$_{2}^{\pm}})'(v)\rangle

\displaystyle \geq\frac{\Vert(\mathcal{F}_{s}^{$\chi$_{2}^{\pm}})'(v)|\left|2H-1 & -\right||(\mathcal{F}_{s}^{$\chi$_{2}^{\pm}})'(v)-(\mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}})'(v)\Vert_{H-1}^{2}}{2}
\displaystyle \geq\frac{1}{2}\Vert(\mathcal{F}_{S}^{$\chi$_{2}^{\pm}})'(v)\Vert_{H-1}^{2}-K|s-s_{n}|^{2}
\displaystyle \geq\frac{1}{4}\Vert(\mathcal{F}_{S}^{$\chi$_{2}^{\pm}})'(v)\Vert_{H-1}^{2} \geq$\epsilon$^{2}

But for such v we have from the point of view of the first statement in Lemma 4.12,
with \tilde{v}\equiv p_{n}(t_{n}) ,

\displaystyle \mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(\tilde{v})\leq \mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(v)-\frac{1}{4}\sqrt{s_{n}-s}\cdot$\psi$_{n}(v)\Vert(\mathcal{F}_{S}^{$\chi$_{2}^{\pm}})'(v)\Vert_{H-1}+\frac{$\mu$_{1}+ $\gamma$}{2$\mu$_{1}}|s_{n}-s|$\psi$_{n}^{2}(v)
\displaystyle \leq \mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(v)-\frac{ $\epsilon$}{2}\sqrt{s_{n}-s}\cdot$\psi$_{n}(v)+\frac{ $\epsilon$}{4}\sqrt{s_{n}-s}\cdot$\psi$_{n}(v)
\displaystyle \leq \mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(v)-\frac{ $\epsilon$}{4}\sqrt{s_{n}-s}\cdot$\psi$_{n}(v)
\leq \mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(v)

for n\geq n_{0} . Thus we have for n\geq n_{0} :

k_{s_{n}}\displaystyle \leq_{0}\max_{\leq t\leq 1}\mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(p_{n}(t))=
\{t

\mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(p_{n}(t))
(\mathcal{F}_{\mathrm{s}_{n}}^{x_{2}^{\pm}})^{\max_{\prime}}(p_{n}(t))\geq k_{\mathrm{s}_{n}}-(s_{n}-s)\}

\displaystyle \leq 0\leq t\leq 1\max \mathcal{F}_{s_{n}}^{$\chi$_{2}^{\pm}}(p_{n}(t))-\frac{ $\epsilon$}{4}\sqrt{s_{n}-s}\leq 0\leq t\leq 1\max \mathcal{F}_{s}^{$\chi$_{2}^{\pm}}(p_{n}(t))-\frac{ $\epsilon$}{4}\sqrt{s_{n}-s}
\displaystyle \leq k_{S}+(s_{n}-s)-\frac{ $\epsilon$}{4}\sqrt{s_{n}-s}\leq k_{s_{n}}+ $\alpha$(s_{n}-s)-\frac{ $\epsilon$}{4}\sqrt{s_{n}-s}
<k_{s_{n}}

But this is a contradiction. \square 

No we have everything at hand to formulate the main Theorem of this subsection.

Theorem 4.15. Let  $\Omega$\subset \mathbb{R}^{2} be a simply connected smooth domain. Then there exists
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a nontrivial solution for problem

0=\displaystyle \triangle V- $\gamma$ V+v^{\pm} $\lambda$(\frac{e^{$\chi$_{1}V}}{\int_{ $\Omega$}e^{$\chi$_{1}V}dx}+\frac{e^{$\chi$_{2}V}}{\int_{ $\Omega$}e^{$\chi$_{2}V}dx}-1) in  $\Omega$, \displaystyle \frac{\partial V}{\partial n}=0 on \partial $\Omega$

for almost every  $\lambda$ v^{+}($\chi$_{1}+$\chi$_{2})>4 $\pi$ that satisfy  v^{+} $\lambda$($\chi$_{1}^{2}+$\chi$_{2}^{2})\leq$\mu$_{1}+ $\gamma$ and there exists

a nontrivial solution for problem

 0=\displaystyle \triangle V- $\gamma$ V+v^{\pm} $\lambda$(\frac{e^{$\chi$_{1}V}}{\int_{ $\Omega$}e^{$\chi$_{1}V}dx}-\frac{e^{-$\chi$_{2}V}}{\int_{ $\Omega$}e^{-$\chi$_{2}V}dx}-1) in  $\Omega$, \displaystyle \frac{\partial V}{\partial n}=0 on \partial $\Omega$

for almost every  $\lambda$ v^{-}\displaystyle \min\{$\chi$_{1}, $\chi$_{2}\}>4 $\pi$ satisfying  v^{-} $\lambda$($\chi$_{1}^{2}+$\chi$_{2}^{2})\leq$\mu$_{1}+ $\gamma$.

Remark 4.16. Unfortunately the given existence proof of nontrivial steady state solu‐

tions in the conflict‐free cases needs essentially the assumption that  $\lambda$= $\mu$ . Therefore,
it would be interesting to know whether one can overcome this assumption or not.

§5. Concluding remarks

The analysis of multi‐species chemotaxis systems is a challenging research topic. Espe‐

cially the effects caused by possible interactions between the mobile species seem to be

quite interesting and have not been that well studied so far. Most results available for

multi‐species chemotaxis systems apply for models with only one mobile species but a

various number of substances, that attracted or repelled the mobile species. Models in

the presence of conflicts seem to be quite complicated and several techniques that work

in the conflict‐free situation fail in the presence of conflicts. For example the techniques
used in the present paper to establish the existence of nontrivial steady state solutions

for some conflict‐free systems seem to be not applicable in the presence of conflicts.

Although we have not discussed the �presence of conflict�‐case in this paper, the present

results bring some new insights in studying the multi‐species chemotaxis models. More

alternative aspects and approaches will be discussed in [13] where we will also focus at

models in the presence of conflict.

While the present paper deals with the steady state analysis and, therefore, leaves the

time asymptotic behavior of the multi‐species chemotaxis models relatively untouched,
it would be quite interesting to get also more insights into this aspect. Once again the

situation in the presence of conflict seems to be (at a first glance) very challenging. In

conflict‐free systems one finds generalizations of the well‐known threshold phenomena
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for the single species chemotaxis model in two spatial dimensions. It would not be sur‐

prising if one could use similar arguments to those for single species chemotaxis systems
to prove blow‐up results for conflict‐free models. For example one can think of differ‐

ent blow‐up times for each mobile species. However, first finite time blow‐up results

for conflict‐free two species systems that have been achieved in [3] show simultaneous

blow‐up of the solution in finite time. Of course there are still open questions in this

context. For example: Is there blow‐up in multi‐species chemotaxis models that do not

describe motion with grounds of the mobile species? If there is a blow‐up behavior for

such kind of systems, is the blow‐up simultaneous?

However, also the asymptotic behavior of the solution for models in the presence of con‐

flict seem to allow much more features than in the conflict‐free situations. Therefore,
there might be different mechanisms that influence the time asymptotic behavior of the

solution that have not been discovered yet.
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