
RIMS Kôkyûroku Bessatsu
B15 (2009), 113123

The strong maximum principle
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By
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Abstract

This paper reviews some of the most paradigmatic results on the minimum and the max‐

imum principles for a class of second order linear elliptic operators, and establishes some new

extremely sharp connections between them.

§1. Introduction

This paper considers a second order uniformly elliptic differential operator of the form

(1.1) L:=-\mathrm{d}\mathrm{i}\mathrm{v}(A\nabla\cdot)+\langle b, \nabla\cdot\rangle+c

in a bounded domain  $\Omega$ of \mathbb{R}^{N}, N\geq 1 ,
where �div� stands for the divergence operator,

N

\displaystyle \mathrm{d}\mathrm{i}\mathrm{v}(u_{1}, \ldots, u_{N})=\sum_{j=1}\frac{\partial u_{j}}{\partial x_{j}},
\rangle is the Euclidean inner product of \mathbb{R}^{N}

,
and

(1.2) \left\{\begin{array}{l}
A=(a_{ij})_{1\leq i,j\leq N}\in \mathcal{M}_{N}^{\mathrm{s}\mathrm{y}\mathrm{m}}(W^{1,\infty}( $\Omega$)) ,\\
b= (b_{1}, b_{N})\in(L^{\infty}( $\Omega$))^{N}, c\in L^{\infty}( $\Omega$) .
\end{array}\right.
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Given a Banach space X, \mathcal{M}_{N}^{\mathrm{s}\mathrm{y}\mathrm{m}}(X) stands for the space of symmetric square matrices

of order N with entries in X
,

and W^{1,\infty}() denotes the Sobolev space consisting of all

functions of L^{\infty}() with weak derivatives of first order in L^{\infty}() .

Also, throughout this paper, we are making the following general assumptions:

B1.  $\Omega$ is a bounded domain of \mathbb{R}^{N}, N\geq 1 ,
whose boundary, \partial $\Omega$ ,

consists of two disjoint

open and closed subsets,  $\Gamma$_{0} and $\Gamma$_{1} ,
of class C^{1},

\partial $\Omega$:=$\Gamma$_{0}\cup$\Gamma$_{1},

some of which might be empty.

B2.  $\beta$\in C($\Gamma$_{1}) ,
\mathrm{n} denotes the outward unit normal vector field of  $\Omega$

,
and  v:=A\mathrm{n} is the

conormal vector field, i.e., for every u\in C^{1}($\Gamma$_{1}) ,

\displaystyle \frac{\partial u}{\partial v}=\langle\nabla u, A\mathrm{n}\rangle=\langle A\nabla u, \mathrm{n}\rangle.
Under these assumptions, we denote by

\mathfrak{B}:C($\Gamma$_{0})\otimes C^{1}($\Gamma$_{1})\rightarrow C(\partial $\Omega$)

the boundary operator defined through

(1.3) \mathfrak{B} $\psi$ :=\left\{\begin{array}{ll}
 $\psi$ & \mathrm{o}\mathrm{n} $\Gamma$_{0},\\
\frac{\partial $\psi$}{\partial_{l} $\nu$}+ $\beta \psi$ & \mathrm{o}\mathrm{n} $\Gamma$_{1},
\end{array}\right.  $\psi$\in C($\Gamma$_{0})\otimes C^{1}($\Gamma$_{1}) .

When $\Gamma$_{1}=\emptyset, \mathfrak{B} becomes the Dirichlet boundary operator on \partial $\Omega$ ; in such case, we will

set \mathfrak{D}:= B. If $\Gamma$_{0}=\emptyset and  $\beta$=0 ,
then \mathfrak{B} equals a Neumann boundary operator on

\partial $\Omega$.

Essentially, this paper establishes some sharp connections between the classic min‐

imum principles of Hopf [10], [11] and Protter and Weinberger [17] and the charac‐

terization of the strong maximum principle established by López‐Gómez and Molina‐

Meyer [14]; further generalized by Amann and López‐Gómez [3], López‐Gómez [13],
and Amann [2]. As a byproduct, the generalized minimum principle of Protter and

Weinberger will be substantially generalized and considerably tidied up.

The distribution of the paper is as follows. Section 2 collects the minimum principles
of Hopf, Section 3 collects the generalized minimum principle of Protter and Weinberger,
Section 4 includes the characterization of the strong maximum principle, and Section 5

uses the characterization of Section 4 for sharpening the classical results of Sections 2

and 3.
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§2. The minimum principle of E. Hopf

The next result goes back to Hopf [10]; it was the first minimum principle where the

continuity assumptions on the coefficients of L were removed away.

Theorem 2.1. Suppose c\geq 0 ,
and u\in C^{2}( $\Omega$) satisfies

Lu\geq 0 in  $\Omega$, m:=\displaystyle \inf_{ $\Omega$}u\in(-\infty, 0].
Then, either u=m in  $\Omega$

,
or else  u(x)>m for all  x\in $\Omega$ . In other words,  u cannot

attain m in  $\Omega$
,

unless  u=m in  $\Omega$ . Consequently,

\displaystyle \inf_{\overline{ $\Omega$}}u=\inf_{\partial $\Omega$}u=m
if u\in C^{2}( $\Omega$)\cap C(\overline{ $\Omega$}) .

Usually, a function u\in C^{2}() is said to be an harmonic function of L in  $\Omega$ if  Lu=0

in  $\Omega$
,

while it is said to be superharmonic if  Lu\geq 0 in  $\Omega$
,

and subharmonic when -u

is superharmonic. According to this terminology, Theorem2.1 establishes that no non‐

constant superharmonic function u can reach a non‐positive absolute minimum in  $\Omega$.

Consequently, by inter‐exchanging u by -u
,

no non‐constant subharmonic function can

attain a non‐negative absolute maximum in  $\Omega$ . Therefore, no non‐constant harmonic

function can attain its absolute maximum neither its absolute minimum in  $\Omega$.

The next result improves Theorem2.1 by establishing that any non‐constant super‐

harmonic function u\in C^{2}( $\Omega$)\cap C(\overline{ $\Omega$}) of L in  $\Omega$ must decay linearly at any point  x_{0}\in\partial $\Omega$
where

 u(x_{0})=\displaystyle \inf_{\overline{ $\Omega$}}u\leq 0
along any outward pointing direction for which u admits a directional derivative. Seem‐

ingly, it goes back to Giraud [8], [9], under some additional continuity properties on the

coefficients of the operator. The version included here is attributable to Hopf [11] and

Oleinik [16].

Theorem 2.2. Suppose c\geq 0 and u\in C^{2}( $\Omega$) is a non‐constant function satis‐

fying
Lu\geq 0 in  $\Omega$, m:=\displaystyle \inf_{ $\Omega$}u\in(-\infty, 0].

Assume, in addition, that there exist  x_{0}\in\partial $\Omega$ and  R>0 such that

u(x_{0})=m, u\in C(B_{R}(x_{0})\cap\overline{ $\Omega$}) ,

and  $\Omega$ satisfies an interior sphere property at  x_{0}.
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Then, for any outward pointing vector v\in \mathbb{R}^{N}\backslash \{0\} at x_{0} for which

\displaystyle \frac{\partial u}{\partial v}(x_{0}):= \lim_{x\in $\Omega$,x\rightarrow x_{0}}\langle v, \nabla u(x)\rangle
exists, necessarily

\displaystyle \frac{\partial u}{\partial v}(x_{0})<0.
Thanks to Theorem2.1, under the assumptions of Theorem2.2,

u(x)>m for every x\in $\Omega$,

as we are assuming that u is non‐constant. Therefore, Theorem 2.1 establishes that

any non‐constant superharmonic function u(x) decays linearly towards its minimum,

m=u(x_{0}) ,
as  x\in $\Omega$ approximates  x_{0}\in\partial $\Omega$ ,

if  m\leq 0.

§3. The generalized minimum principle of Protter and Weinberger

The next result is a sharp generalization of Theorems2.1 and 2.2 to cover the general
case when the function c(x) is not necessarily non‐negative. It goes back to Theorem

10 of Protter and Weinberger [17, Chap. 2].

Theorem 3.1. Suppose (L,  $\Omega$) admits a strictly positive superharmonic function

h\in C^{2}( $\Omega$)\cap C(\overline{ $\Omega$}) ,
in the sense that

i) h(x)>0 for all x\in\overline{ $\Omega$},

ii) Lh\geq 0 in  $\Omega$.

Then, for any superharmonic function u\in C^{2}() of L in  $\Omega$ such that

(3.1)  m:=\displaystyle \inf_{ $\Omega$}\frac{u}{h}\in (, 0],
either

(3.2) u(x)>mh(x) for all x\in $\Omega$,

or else

(3.3) u=mh in  $\Omega$.

Further, suppose (3.2), and the following three conditions:

a) h\in C^{1}(\overline{ $\Omega$}) ,
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b) u(x_{0})=mh(x_{0}) for some  x_{0}\in\partial $\Omega$ ,
and there exists  R>0 such that  u\in C(B_{R}(x_{0})\cap

\overline{ $\Omega$}) ,

c)  $\Omega$ satisfies the interior tangent sphere property at  x_{0} and there is an outward pointing
vector v\in \mathbb{R}^{N}\backslash \{0\} for which \displaystyle \frac{\partial(u/h)}{\partial_{l} $\nu$}(X) exists.

Then,

\displaystyle \frac{\partial(u/h)}{\partial v}(x_{0})<0.
It should be noted that, in case c\geq 0 ,

the function h:=1 satisfies conditions

(i) and (ii) and, hence, it provides us with a strict positive superharmonic function of

L in  $\Omega$ . Consequently, in this special case, Theorem3.1 provides us, simultaneously,
with Theorems 2.1 and 2.2, for as  u/h=u . Consequently, Theorem 3.1 seems to be

substantially sharper than these results because it does not impose any restriction on

the sign of c\in L^{\infty}( $\Omega$) . Its real strength will be revealed in Section 5.

§4. The characterization of the strong maximum principle

The following concept plays a pivotal role in the theory of elliptic partial differential

equations. Subsequently, we will set

\displaystyle \mathcal{W}( $\Omega$):=\bigcap_{p>1}W^{2,p}( $\Omega$) .

Definition 4.1. A function h\in \mathcal{W}( $\Omega$) is said to be a supersolution of (L, \mathfrak{B},  $\Omega$)
if

\left\{\begin{array}{ll}
Lh\geq 0 & \mathrm{i}\mathrm{n}  $\Omega$,\\
\mathfrak{B}h\geq 0 & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right.
The function h is said to be a strict supersolution of (L, \mathfrak{B},  $\Omega$) if, in addition, some of

these inequalities is strict (on a measurable set of positive measure). Also,

a) It is said that (L, \mathfrak{B},  $\Omega$) satisfies the strong maximum principle if any nonzero su‐

persolution u\in \mathcal{W}( $\Omega$) of (L, \mathfrak{B},  $\Omega$) (in particular, any strict supersolution) satisfies

u(x)>0 \forall x\in $\Omega$\cup$\Gamma$_{1} and \displaystyle \frac{\partial u}{\partial v}(x)<0 \forall x\in u^{-1}(0)\cap$\Gamma$_{0}.

In such case, it will be simply said that u\gg 0.

b) It is said that (L, \mathfrak{B},  $\Omega$) satisfies the maximum principle if any supersolution  u\in

\mathcal{W}( $\Omega$) of (L, \mathfrak{B},  $\Omega$) satisfies u(x)\geq 0 for all x\in\overline{ $\Omega$}.
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Subsequently, for a sufficiently large  $\omega$>0, e stands for the unique weak solution

of

(4.1) \left\{\begin{array}{ll}
(L+ $\omega$)e=1 & \mathrm{i}\mathrm{n}  $\Omega$,\\
\mathfrak{B}e=0 & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right.
By elliptic regularity, e\in \mathcal{W}( $\Omega$) and, owing to Amann and López‐Gómez [3, Theorem

2.4], e\gg 0 . Now, we can introduce the Banach space

(4.2) C_{\mathrm{e}}(\overline{ $\Omega$}):= { u\in C(\overline{ $\Omega$}):\exists $\lambda$>0 such that - $\lambda$ e\leq u\leq $\lambda$ e\mathrm{i}\mathrm{n}\overline{ $\Omega$} }

equipped with the Minkowski norm

\displaystyle \Vert u\Vert_{\mathrm{e}}:=\inf\{ $\lambda$>0 : - $\lambda$ e\leq u\leq $\lambda$ e\}, u\in C_{\mathrm{e}}(\overline{ $\Omega$}) .

According to Amann and López‐Gómez [3, Theorem 2.4] and López‐Gómez [13, Theo‐

rem 6.1], it readily follows the next characterization of the strong maximum principle,
where  $\sigma$[L, \mathfrak{B},  $\Omega$] stands for the principal eigenvalue of the linear eigenvalue problem

\left\{\begin{array}{ll}
L $\varphi$= $\sigma \varphi$ & \mathrm{i}\mathrm{n}  $\Omega$,\\
\mathfrak{B} $\varphi$=0 & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right.
Theorem 4.2. The following assertions are equivalent:

i) $\sigma$_{0}:= $\sigma$[L, \mathfrak{B},  $\Omega$]>0.

ii) (L, \mathfrak{B},  $\Omega$) possesses a positive strict supersolution h\in W^{2,p}( $\Omega$) for some p>N.

iii) (L, \mathfrak{B},  $\Omega$) satisfies the strong maximum principle.

iv) (L, \mathfrak{B},  $\Omega$) satisfies the maximum principle.

v) The resolvent of the linear problem

(4.3) \left\{\begin{array}{ll}
Lu=f\in C_{\mathrm{e}}(\overline{ $\Omega$}) & in  $\Omega$,\\
\mathfrak{B}u=0 & on \partial $\Omega$,
\end{array}\right.
\mathfrak{R}_{0}:C_{\mathrm{e}}(\overline{ $\Omega$})\rightarrow C_{\mathrm{e}}(\overline{ $\Omega$}) , is well defined and it is strongly positive.

In case \mathfrak{B}=\mathfrak{D} ,
Theorem 4.2 goes back to López‐Gómez and Molina‐Meyer [14,

Theorem 2.1]. Although in March 1994, when [14] appeared, there were already available

a number of preliminary results trying to establish the hidden connections between the

sign of $\sigma$_{0} ,
the validity of the maximum principle, the validity of the strong maximum

principle, and the existence of a positive supersolution (e.g., Sweers [18], Figueiredo and

Mitidieri [5], [6], López‐Gómez and Pardo [15, Lemma 3.2], Fleckinger, Hernández and

de Thélin [7]), the theorem establishing the equivalence between the following conditions

goes back to [14, Theorem 2.1], not only for a single second order linear elliptic operator,

but, more generally, for a rather general class of cooperative linear elliptic systems:
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\bullet (L, \mathfrak{D},  $\Omega$) possesses a positive strict supersolution.

\bullet The resolvent of (L, \mathfrak{D},  $\Omega$) is well defined and it is strongly positive.

\bullet (L, \mathfrak{D},  $\Omega$) satisfies the strong maximum principle.

\bullet (L, \mathfrak{D},  $\Omega$) satisfies the maximum principle.

\bullet (L, \mathfrak{D},  $\Omega$) has a principal eigenvalue and

(4.4)  $\sigma$[L, \mathfrak{D},  $\Omega$]>0.

Almost simultaneously, but in this case for the scalar operator (not for a cooperative

system), Berestycki, Nirenberg and Varadhan [4, Theorem 1.1] established that (L, \mathfrak{D},  $\Omega$)
satisfies the maximum principle if and only if (4.4) holds; some precursors of this result

had been already given by Agmon [1].
The fact that the characterization of the strong maximum principle in terms of the

existence of a strict positive supersolution had been left outside the general scope of

Berestycki, Nirenberg and Varadhan [4], prompted López‐Gómez to include all technical

details of the proof of Theorem 4.2, in the special case when \mathfrak{B}=\mathfrak{D} ,
in [12, Theorem

2.5], for as he realized that even the simplest version of [14, Theorem 2.1], for the

scalar operator, was unknown for the most recognized specialists in the field. All the

materials covered by [12] had been already delivered by J. López‐Gómez in his \mathrm{P}\mathrm{h}\mathrm{D}

course on Bifurcation Theory in the Department of Mathematics of the University of

Zürich during the summer semester of 1994 (see the Acknowledgements of [12]).
From the point of view of the applications, the most crucial feature from Theorem

4.2 is the fact that the existence of a positive strict supersolution characterizes the strong
maximum principle, for as this is the usual strategy adopted in the applications to make

sure that (4.4), or, equivalently, the strong maximum principle, holds. This provides to

[14, Theorem 2.1] with its greatest significance when it is weighted versus Berestycki,

Nirenberg and Varadhan [4, Theorem 1.1].
Three years later, in March 1997, Amann and López‐Gómez [3, Theorem 2.4] gen‐

eralized López‐Gómez [12, Theorem 2.5] up to cover general boundary operators of the

type considered in this paper. Some very very weak versions of this theorem have been

recently given by Amann [2].

§5. The classical minimum principles revisited

Throughout this section we suppose that \mathfrak{B}=\mathfrak{D} is the Dirichlet boundary operator.

Then,

$\sigma$_{0}:= $\sigma$[L, \mathfrak{D},  $\Omega$].
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The next consequence from Theorem 4.2 shows that the assumption that (L,  $\Omega$) admits

a superharmonic function h such that

h(x)>0 for all x\in\overline{ $\Omega$}

in Theorem 3.1 is nothing more than the positivity of $\sigma$_{0}.

Corollary 5.1. Suppose \mathfrak{B}= D. Then, conditions \mathrm{i})\mathrm{v} ) of Theorem 4.2 are

equivalent to

vi) (L, \mathfrak{D},  $\Omega$) admits a supersolution h\in \mathcal{W}( $\Omega$) such that h(x)>0 for all x\in\overline{ $\Omega$}.

vii) (L, \mathfrak{D},  $\Omega$) admits a positive strict supersolution h\in \mathcal{W}( $\Omega$) such that h=0 on \partial $\Omega$.

Proof: Suppose $\sigma$_{0}>0 . Then, by Theorem 4.2, the unique solution of

\left\{\begin{array}{ll}
Lh=0 & \mathrm{i}\mathrm{n}  $\Omega$,\\
h=1 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right.
provides us with a strict supersolution satisfying vi). Note that

h=1-\mathfrak{R}_{0}c,

where c is the zero order term of L ,
and \mathfrak{R}_{0} is the resolvent of (4.3). Also, any principal

eigenfunction $\varphi$_{0} provides us with a positive strict supersolution satisfying vii).
Conversely, under any of the conditions vi) or vii), h provides us with a positive

strict supersolution of (L, \mathfrak{D},  $\Omega$) and, hence, thanks to Theorem 4.2, we find that $\sigma$_{0}>0.

The proof is complete. \square 

Note that if c\geq 0 , then, the constant function h:=1 provides us with a supersolu‐
tion satisfying condition vi), and, hence, $\sigma$_{0}>0 . Consequently, the next result provides
us with a substancial generalization of the theory of E. Hopf (Theorems 2.1 and 2.2)
and of M. H. Protter and H. F. Weinberger (Theorem 3.1).

Theorem 5.2. Suppose $\sigma$_{0}>0 and u\in C^{2}( $\Omega$)\cap C^{1}(\overline{ $\Omega$}) satisfies

(5.1) Lu\geq 0 in  $\Omega$ and \displaystyle \inf_{\overline{ $\Omega$}}u\geq 0.
Then, u\gg 0 ,

unless u=0.

If, instead of (5.1), u satisfies

(5.2) Lu\geq 0 in  $\Omega$ and \displaystyle \inf_{\overline{ $\Omega$}}u<0,
then, for every h\in \mathcal{W}( $\Omega$) such that

(5.3) Lh\geq 0 in  $\Omega$ and \displaystyle \inf_{\overline{ $\Omega$}}h>0,
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the quotient function

(5.4) v(x):=\displaystyle \frac{u(x)}{h(x)}, x\in\overline{ $\Omega$},
satisfies

m:=\displaystyle \inf_{\overline{ $\Omega$}}v<0
and

(5.5) v(x)>m\displaystyle \forall x\in $\Omega$ \wedge \frac{\partial v}{\partial v}(x)<0\forall x\in v^{-1}(m)\cap\partial $\Omega$,
unless v=m in \overline{ $\Omega$}.

TherefO re, if, for any given f>0, h is chosen as the unique solution of

(5.6) \left\{\begin{array}{ll}
Lh=f & in  $\Omega$,\\
h=1 & on \partial $\Omega$,
\end{array}\right.
then, we necessarily have that

(5.7) \displaystyle \inf_{\overline{ $\Omega$}}\frac{u}{h}=\inf_{\partial $\Omega$}\frac{u}{h}=\inf_{\partial $\Omega$}u<0,

(5.8) u(x)>(\displaystyle \inf_{\partial $\Omega$}u)h(x) for all x\in $\Omega$,

and

(5.9) \displaystyle \frac{\partial}{\partial v}\frac{u}{h}(x_{0})<0 for all x_{0}\displaystyle \in u^{-1}(\inf_{\partial $\Omega$}u)\cap\partial $\Omega$.
Proof: Since $\sigma$_{0}>0 , according to Theorem 4.2, (L, \mathfrak{B},  $\Omega$) satisfies the strong max‐

imum principle. Suppose u\neq 0 satisfies (5.1). Then, u provides us with a nonzero

supersolution of (L, \mathfrak{B},  $\Omega$) and, therefore, u satisfies the requested properties.

Subsequently, we suppose that u and h satisfy (5.2) and (5.3), respectively. By
Theorem 4.2, the solution of (5.6) provides us with one of those functions h for every

f>0 . Note that

h=1+\mathfrak{R}_{0}(f-c) .

Now, consider the quotient function v defined by (5.4). As \displaystyle \inf_{\overline{ $\Omega$}}u<0 and \displaystyle \inf_{\overline{ $\Omega$}}h>0,
we have that

m:=\displaystyle \inf_{\overline{ $\Omega$}}v<0.
Moreover, owing to Theorem 3.1, (5.5) holds, unless v=m in \overline{ $\Omega$} . In any of these

circumstances, we have that

(5.10) \displaystyle \inf_{\overline{ $\Omega$}}v=\inf_{\partial $\Omega$}v.
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Subsequently, we fix f>0 and suppose that h is the unique solution of (5.6). Then,
since h=1 on \partial $\Omega$ ,

we have that  v=u on \partial $\Omega$ and, hence, (5.10) implies (5.7).
Suppose  v=m in \overline{ $\Omega$} . Then, u=mh and, hence,

0\leq Lu=mLh=mf<0,

which is impossible. Therefore, (5.8) and (5.9) follow from (5.5). This completes the

proof of the theorem. \square 
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