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Abstract

A characterization problem is discussed of semigroups of Lipschitz operators providing
mild solutions to the Cauchy problem for the semilinear evolution equation of parabolic type
u'(t) = (A+B)u(t) for t > 0. By parabolic type is meant that the operator A is the infinitesimal
generator of an analytic (Cp) semigroup on a general Banach space X. The operator B is
assumed to be continuous from a closed subset of Y into X, where Y is a Banach space
which is contained in X and has a stronger norm defined through a fractional power of —A.
The abstract result is new in that a functional V (¢, s, z,y) depending on (¢,s) can be taken
as a metric-like functional used to show uniqueness in applications. This extension allows
to make discussions based on LP-L? estimates as well as by fractional power (—A)“, so that
the characterization is applied to the global solvability of the Cauchy problem for the drift-
diffusion system. The existence and uniqueness, the continuous dependence on initial data,
and the smoothing effect of C''-solutions of the Cauchy problem for the drift-diffusion system
can be obtained through the abstract result.

§1. Introduction

Let X be a general Banach space with norm || - || and D a closed subset of X. By
a semigroup on D is meant a one-parameter family {S(¢);t > 0} of operators from D
into itself satisfying the so-called semigroup property and the strong continuity in ¢ > 0.

Received April 10, 2009. Revised August 18, 2009. Accepted August 23, 2009.
2000 Mathematics Subject Classification(s): 47H14, 47H20, 34G20
*Partially supported by JSPS Grant-in-Aid for Scientific Research (C) No. 20540173
**Partially supported by JSPS Grant-in-Aid for Scientific Research (C) No. 19540177
*Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University,
Higashi-Hiroshima 739-8526, Japan.
e-mail: mats@math.sci.hiroshima-u.ac.jp
**Department of Mathematics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
e-mail: sntanak@ipc.shizuoka.ac.jp

© 2009 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



148 TOSHITAKA MATSUMOTO AND NAOKI TANAKA

In order to develop a general theory of nonlinear semigroups, it is necessary to consider
the continuity of the operators S(t) in an appropriate way. In this paper, we consider
the continuity condition of the operators S(¢) in such a way that for each 7 > 0 there
exists L, > 0 satisfying

|S(t)x — St)y|l < Lz — y| for x,y € D and t € [0, 7].

A semigroup on D satisfying the above-mentioned continuity condition is called a semi-
group of Lipschitz operators on D. The generation of such semigroups has been recently
studied in several settings. Among others, characterization theorems of nonlinearly per-
turbed (Cp) semigroups and analytic semigroups were given in [10, 18], respectively. In
this paper we concern on studying a characterization of nonlinearly perturbed analytic
(Cp) semigroups which is an extension of the previous result [18]. We apply this result
to the global solvability of the Cauchy problem for the drift-diffusion system

Oy — Au—V - (uVy) =0 in RY x (0, 00),
(1.1) —AY = \u in RY x (0, 00),
u(z,0) = up(x) >0 in RV,

where N > 2 and A = 1. This system with A = 1 is related to the mathematical model
for semiconductor devices, and the system (1.1) with A = —1 is a mathematical model
for chemotaxis. For chemotaxis model we refer to Nagai [19, 20, 21]. Kurokiba-Nagai-
Ogawa [12] studied the bipolar drift-diffusion system

(8tn—An+V-(nV¢) =0 in RY x (0, 00),
(1.2) Op—Ap—V - (pVy) =0 in RY x (0, 00),
—AYp=Ap—n) in RY x (0, 00),

(n(z,0) =no(z), p(z,0)=po(z) in RY,

where N = 2 and A = —1. They showed the global existence and the uniform bounded-
ness of solutions to (1.2) for initial values in the weighted space. Kurokiba-Ogawa [13]
considered (1.2) with A = 1 and they verified the local existence of solutions to (1.2)
and the global existence result for A = 1 in LP(RY) under the restriction N/2 < p < N
or N = p = 2. Recently Ogawa-Shimizu [22] establish linear and bilinear estimates
in the Hardy space H'(R?) and apply them to (1.2) to obtain the local existence of
solutions for large data in H!(R?) and the global existence for small data. We shall
apply our main results to show the global existence of solutions to (1.1) with A =1 in
LP(RN) under the restriction N/2 < p < N. This fact will be proved in Section 7.

In order to characterize nonlinearly perturbed analytic (Cp) semigroups, we inter-
pret such a problem as a characterization problem of semigroups of Lipschitz operators
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providing mild solutions to the Cauchy problem for the semilinear evolution equation
of parabolic type

(SP) u'(t) = (A+ B)u(t) fort > 0.

By parabolic type we mean that the operator A is the infinitesimal generator of an
analytic (Cp) semigroup {7'(t);t > 0} on X. The operator B is assumed to be continuous
from DNY into X, where Y is a Banach space which is contained in X and has a stronger
norm defined through a fractional power of —A.

The semilinear problem (SP) has been studied by many authors. If B is locally
Lipschitz continuous from the set D N'Y into X, then the local solvability for (SP)
can be shown in [1, 16] by the Banach-Picard fixed point theorem. In the setting that
B is locally continuous from the set D N'Y into X, the construction of approximate
solutions was done under various types of subtangential condition. ([15], [2] and [5].)
Priiss proposed in [25] the following subtangential condition: There exists > 0 such
that to each v € DNY and € > 0 there correspond h > 0 and w,, € DNY, and z,
defined by

h
zp =T (h)v -I-/ T(&)Bvd¢ —wy,
0

satisfies ||z || < eh and ||(—A)%z,|| < eh". This condition is necessary for the existence
of local mild solutions.

As is seen from the proof of Theorem 2.3 “(i) = (ii)”, a metric-like functional Vj
on X x X is necessary for the global existence of mild solutions depending Lipschitz
continuously on their initial data. This fact implies that such a functional may be
constructed for a given differential system which is well-posed.

The arguments in the above-mentioned papers studying (1.1) or (1.2) are based on
LP-L7 estimates. In the present paper, the abstract result in [18] is extended such that
a functional V' (¢, s, z,y) depending on (¢, s) satisfying (V1) through (V3) can be taken
as a metric-like functional in applications. This extension allows to make discussions
based on LP-L? estimates as well as by fractional power (—A)%, as will be illustrated in
Section 7.

In this paper we shall employ the subtangential condition in the sense of Priiss
type and demonstrate that a sequence of approximate solutions converges to a mild
solution to (SP) under the semilinear stability condition by means of a functional V' on
A xY x Y satisfying (V1) through (V3).

This paper is organized as follows: In Section 2 we impose basic assumptions on A
and B appearing in (SP) and characterize semigroups of Lipschitz operators providing
mild solutions to semilinear evolution equations of parabolic type. The characterization
is provided by Theorem 2.3. The uniqueness and the regularity results of mild solutions
are given in Section 3. The proof of the existence of mild solutions is divided into two
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parts. Section 4 is devoted to construct approximate solutions to (SP). In Section 6
we discuss the convergence of a sequence of approximate solutions to a mild solution to
the Cauchy problem for (SP) which forms a semigroup of Lipschitz operators. A key
estimate to show the latter is given in Section 5. Section 7 deals with the drift-diffusion
system. Our main theorem is applied to show the unique existence of solutions to the
Cauchy problem for the drift-diffusion system.

§2. Main theorem

Let X be a general Banach space with norm || - || and D a closed subset of X. We
begin by listing up basic assumptions on A and B appearing in (SP).

(A)  The operator A is the infinitesimal generator of an analytic (Cp) semigroup
{T'(t);t > 0} on X whose type is negative.

Let o € (0,1) and let Y be the Banach space D((—A)%) equipped with the norm
lzlly = [[(—A)*z]|| for x € D((—A)*). We consider the set C':= DNY in Y and assume
that C' is dense in D. Then we introduce the relative continuity on the perturbing
operator B from C into X and the linear growth condition for B in the following sense:

(B1)  The operator B is continuous from C into X.
(B2)  There exists Mp > 0 such that ||Bzx| < Mg(1+ ||z|y) for x € C.

The Cauchy problem for the semilinear evolution equation (SP) with initial condi-
tion u(0) = up is denoted by (SP;ug). In oder to characterize semigroups of Lipschitz
operators associated with semilinear evolution equations of parabolic type, we need the
following notion of solutions that may not be differentiable in general.

Definition 2.1. Letug € D and 7 > 0. A function u € C([0,7]; X)NC((0,7];Y)
is called a mild solution to (SP;ug) on [0,7] if u(t) € C for t € (0,7], Bu € C((0,7]; X)N
LY(0,7; X) and u satisfies the integral equation

(2.1) u(t) =T'(t)up + /0 T(t — s)Bu(s)ds fort e [0,7].

A function u € C([0,00); X)NC((0,00);Y) is called a global mild solution to (SP;uyg) if
for each 7 > 0 the restriction u to [0, 7] is a mild solution to (SP;ug) on [0, 7].

We start with the definition of semigroups of Lipschitz operators.

Definition 2.2. A one-parameter family {S(¢);t > 0} of Lipschitz operators
from D into itself is called a semigroup of Lipschitz operators on D if the following

three conditions are satisfied:
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(S1)  S(0)z =z for z € D, and S(t + s)x = S(t)S(s)x for s, t > 0 and = € D.
(S2)  For each x € D, S(-)z : [0,00) — X is continuous.

(S3)  For each 7 > 0 there exists L, > 0 such that

[S(#t)x — SOyl < Lz — vyl forz, y € D and t € [0, 7].

The main theorem in this paper is given by

Theorem 2.3.  Assume that conditions (A) and (B) are satisfied. Then, the
following two statements are equivalent:

(i)  There exists a semigroup {S(t);t > 0} of Lipschitz operators on D such that for
each x € D, S(-)x is a global mild solution to (SP;x).

(ii)  There exist ag, B € [0,1) such that the following three conditions are satisfied:

(ii-1)  There exist T > 0 and a nonnegative functional V- on A XY XY, where
A ={(t,s);0<s<t<T7}, such that

(V1)  there exists L > 0 such that

|V(t’ 87:173 y) - V(t’ 87§77Q)|
< L(llz = 2l + ly = gl + t* | T(t = s)(@ — &)lly + % | Tt~ s)(y = D)

fo/r‘ (t78’x7y)7 (t’S’j’g) e A >< Y >< Y7
(V2) there exist M > m > 0 such that

V(t,s,z,y) < Mtoo(t —s) |z —y|| for (t,s) € A witht# s and x,y € C,
mlx —yl| < V(t,t,z,y) fortel0,7] and z,y € C,

(V3) there is a nondecreasing function 0 : Ry — Ry such that lim, o 6(r) = 0 and
V(ts,2,y) = V(E,5,2,9)] <O(t — i + s = 3DA + [lz]ly + [lylly)

for (t,s,z,y), (8, z,y) € AxC xC.

(ii-2)  There ezists w > 0 such that to each e > 0, (t,s) € A witht # s, and z,y € C
there corresponds h € (0,¢] such that s+ h <t and

(V(t,s+ h,J(h)x, J(h)y) — V(t,s,z,y))/h
< tho (t—s) " (s+ h)_ﬁ0 (WV(s,s,2,y) +¢€),

where J(o)w = T(o)w + [; T(§)Bwd¢ for (o,w) € [0,00) x C.
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(ii-3)  There exists § € (0,1) such that to each x € C and € > 0 there correspond
h € (0,e], zp, € C and z, € Y satisfying

h
xp =T (h)x +/ T(s)Bxds + zn, ||z] <eh and ||zu|ly < ehP.
0

Remark.  (a) The proof of the implication “(ii) = (i)” of Theorem 2.3 will be

shown by defining a semigroup {S(t);t > 0} of Lipschitz operators on D by S(t)uy =
u(t) for t > 0, where u(t) is the unique global mild solution to (SP;ug) whose existence
is ensured by Section 4 through Section 6. For this reason, we need to demonstrate
the existence and uniqueness of global mild solutions under condition (ii) of Theorem
2.3. The important point for our arguments is that we may assume, without loss of
generality, that there exists wa < 0 such that the analytic (Cy) semigroup {7'(t);t > 0}
on X satisfies | T'(t)|| < e¥4t for t > 0. This is ensured by [23, Proposition 2.5] and the
renorming technique ([6]).
(b) In proving that (ii) implies (i), the following conditions on the functional V' derived
from (V1) and (V2) will be used. (b-i) By (V2) we have V(¢,s,z,2) =0 for (t,s) € A
and z € C. (b-ii) By setting & = ¢ = y in condition (V1), we have V(t,s,x,y) <
L(||z—y| +t% ||z —yl|ly) for (t,s,2,y) € AxCxC. (b-iii) By (V1) there exists Ly > 0
such that |V (¢, s,z,y)—V(t,s,2,9)| < Ly (||x—2|v+|ly—79|v) for (t,s,z,y), (t,s,Z,7) €
AXxY xY. (b-iv) By (V1) there exists Lx > 0 such that

|V(t,s,x,y) - V(tas’iag)l < LX(l + tﬁo(t - 3)_0)(Hx - 33” + Hy - Z)H)

for (t,s) € A with t # s and x,y € Y.

§ 3. Basic properties of mild solutions

The continuous dependence of mild solutions to the Cauchy problem for (SP) on
their initial data is given by

Proposition 3.1. Let 7 > 0 and x, & € D. Let u, o : [0,7] — X be mild
solutions to (SP;x) and (SP;z) on [0, 7| respectively. Suppose that conditions (ii-1) and
(ii-2) in Theorem 2.3 are satisfied. Then there exist M > 0 and & > 0 such that

lu(t) — a(t)| < Mexp(@t)|lz — &[] fort € [0,7].

Proof. Let o € (0,7], where 7 > 0 is a number satisfying condition (ii-1) in
Theorem 2.3. Let [ be a nonnegative integer such that o + 17 < 7 and t € (0,0]. Let
0 < e < t. Then, since u € C((0,7];Y) we observe by (V1) and (V3) that the function
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s +— V(t,s,u(s + I7),a(s + I7)) is continuous on [e,t]. By the semigroup property of
{T'(t);t > 0} and (2.1), we have

u(s+h+Ir)=J(h)u(s+11) + /Oh T(&)(Bu(s+h+Ir — &) — Bu(s +11)) d¢

for s € (0,t) and h > 0 with s + h < ¢. Since Bu € C((0,7]; X), we deduce from
condition (ii-2) that the lower right Dini derivative of the function

s — V(t,s,u(s+17),0(s +I1)) — / wtbo(t — &)~ PoV (&, &, u(é + 1), u(E + I7)) dE

€

is nonpositive on [e,t — ¢]. It follows that

(3.1) V(t,t —e,u(t+1r —e),a(t + 1t —¢))
<V(t,e,u(lt +¢),u(lt +¢))

t—e
+ / Wtﬁo (t - 5)_a06_ﬁov(§v ga U(f + ZT)’ ,&'(6 + lT)) dg

for t € [e,0]. By Remark (b-ii) in Section 2 we have

EPV(E & u(€ +Ir), a6 + 1))
< L (P (lu(€ + 1) + [[a(€ + 1)) + [[ul€ + in)|ly + [|a(€ +17)]y)
< 2L (sup{||u(s)|; s € [0, 7]} 4+ Ko (F)(1 + [|lz]| + |Z])(€ +17) %),

where we have used Proposition 3.3 (ii) to obtain the last inequality. This implies
that the function ¢(§) := €%V (€, &, u(€ + I1),a(€ + I7)) is integrable on (0,t). We
use condition (V2) to obtain limsup, oV (t,&, u(lT +¢),4(lT +¢)) < M|[u(lT) — a(lT)].
Passing to the limit in (3.1) as ¢ | 0, we have

t
80 < Mllulir) — alt)le ™ + [ (e - &) o(¢)de
0
for t € (0,0]. Applying Lemma 3.2 below and then using condition (V2), we have
(32) lu(t +17) —at + I7)|| < (M/m)Kpg,,a0.0(7)|[u(lT) —a(lT)]|

for t € [0,0],1 >0 with 0 +I7 < 7 and o € (0, 7].
Now, let t € [0,7]. Then, we have t = [t/7]T + o for some o € [0, 7), where [t/7]
stands for the integer part of ¢t/7. We apply (3.2) repeatedly to obtain

lu(t) — a()ll < ((M/m)Kgy,a00 (1) u(0) = a(0)]).

By setting M = (M/m)Kg,.a0..(T) and @ = 77 log((M/m)K g, ap.w(T)), the desired
result is obtained. O
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Lemma 3.2.  (Henry’s inequality) ([9, p.190, Execise 4], [18, Lemma 2.3]) Let
7>0,a,b>0 and 0,0 € [0,1). Suppose that w is a nonnegative, integrable function
over (0,7) satisfying the inequality

w(t) <at™? + b/ot(t —5) %w(s)ds forte (0,7).
Then, there exists Ky 9 € C(Ry;Ry) such that
w(t) <at " Kypp(t) forte (0,7).
As for the regularity of mild solutions, the following properties hold.

Proposition 3.3.  ([18, Proposition 2.4]) Let 7 > 0 and x € D. Let u be a mild
solution to (SP;x) on [0,7]. Then the following assertions hold:

(i)  For each v € [a, 1), the function s — (—A)YT(t — s)Bu(s) is integrable on the
interval (0,t), u(t) € D((—A)7) and

t
(3.3)  (—A)u(t) = (—AT(H)a + / (—AY'T(t — s)Bu(s)ds fort € (0,7].
0
(ii)  For each v € [a, 1) and each 4 € [0, ] there exists a nonnegative, nondecreasing

function K, 5 on Ry such that if x € D then

(3.4) I(=A) u(®)] < Kqs(F) (L + [[(=A) 2 )= for t € (0,7].

(iii)  The mild solution u is locally Hélder continuous on (0,7] in'Y .
(iv)  Assume that for each p > 0 there exists Lp(p) > 0 such that

[Bu — Bo|| < Lp(p)llu —vlly

foru,v € C with ||lully, [|[v]ly < p. Then, u is continuously differentiable over (0, 7]
in X, Au is continuous on (0,7] in X, and u satisfies (SP;x) for t € (0,7].

(v) IfxeC thenue C(0,7];Y) and Bu € C([0,7]; X).

§4. Construction of approximate solutions

To discuss the construction of approximate solutions, we need the local uniformity
(Proposition 4.2) of condition (ii-3) in Theorem 2.3. Without loss of generality we may
assume that 3 < 1 — «a, where (3 is a constant appearing in (ii-3) in Theorem 2.3.
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Lemma 4.1.  ([25, Lemma 3], [24, Lemma 3.1]) There exists K > 1 depending
only on «a,f such that for any o € (0,1] and any finite sequence {Sk}szo satisfying
0<sy<s1<---<sn <a, the following two assertions hold:

(i) IfM > 0 and G is a measurable function from [0,0) into X satisfying |G(§)|| < M
for £ €0,0), then

/Si 1T (s;i — E)G(E)|ly dé < KM (s; — s;)° for0<1<i<N.

S

(ii) Lete > 0. Then, for any finite sequence {(;} N, inY satisfying ||(;|| < e(s; —si_1)
and ||Gilly < e(si — Si—l)ﬁ for 1 <i < N, it holds that

> T (si —s0)Glly < Ke(si —s)® for0<k<i<N.
l=k+1

In sections 4 through 6, K stands for a constant appearing in Lemma 4.1.
The next proposition asserts that the subtangential condition (ii-3) in Theorem 2.3
holds uniformly in a neighborhood of each element of C'.

Proposition 4.2.  ([18, Proposition 3.6]) Suppose that (ii-3) in Theorem 2.3
holds. Let vo € C. Assume that h, € € (0,1] and positive numbers p, M,n and v
satisfy that

|Bz|| <M and ||Bx— Buv| <n forxz e Uylvy,p]NC,

K(M +e+v)h” + sup [|T(s)vo — volly < p.
s€[0,h]

Let § € [0,h], wo € C and G be a measurable function from [0,6) into X such that

lwo = T(0)voll < 6(M +v), [GE <M for & €l0,0),

< KvéP.
Y

)
wo — T (8o — / T(5 — €)G(€) de

Then, for each o > 0 with o + & < h there exist zg € C and fo € Y such that

20 = T(0)wo + / T(©)Buodé + fo,  |foll <ole+2n), [folly < K(e+2n)”.

The following proposition establishes the existence of approximate solutions to the
Cauchy problem for (SP).
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Proposition 4.3.  Suppose that condition (ii-3) in Theorem 2.3 is satisfied. Let
xo € C. Assume that 7 € (0,1], po > 0, Mp > 0 and € € (0,1/2] satisfy that

|Bz|| < Mp  for x € Uy[zg, po] N C and K(Mpg +1)7" + Sl[lp] T (s)xo — zo|ly < po-
se|0,7

Then there exists a sequence {(t;,7;,(;)}32, in [0,7) x C X Y satisfying the following:

(i) 0:t0<t1<"'<t]‘<"'<7_' and tj—tj_1§€ for 7 > 1.

tj
(i) @, =T(t; —tj—1)xj—1 +/ T(t; —&)Bxj1dE+ (G forj>1.

tj_l
(i) NGl <elty—tj—1) and |Glly ety —t;—1)7 forj>1.
(iv) If x € C satisfies the inequality

lz —zjally < K(Mp+1)(t; —tj-1)" + sup || T(s)zj—1 — zj1 ]y,
SE[O,tj—tj_l]

then |Bx — Bxj_1|| <e/(4K) forj > 1.
(v) K(Mp+1)(t; —tj-1)° +supsepo,—¢, ) IT(8)xj1 —xj 1]y <e forj>1.
(Vl) hmj_wo tj =T.

Outlined Proof. We shall construct inductively a sequence {(t;,z;,;)}32; in [0, T)x
C x Y satisfying conditions (i) through (vi). For this purpose, let ¢ > 1 and assume
that a sequence {(t;,z;,(;) ;;ﬁ in [0,7) x C'x Y can be constructed so that it satisfies
(i) through (v). Then we define h; by the supremum of numbers h € [0, ] such that
h <7T—ti_1, |Be — Br;_1| < ¢/(4K) for x € Uy[x;_1,p]| N C, where p := K(Mp +
1)h? + supgepo.n |1 7(s)i—1 — i—1lly and p < e. Since h; > 0 by condition (B1)
and the strong continuity of 7'(-) in B(Y') on [0, 00), there exists h; € (0,¢] such that
hi/2 < h; < 7 —t;_1 and ||Bx — Bx;_1| < ¢/(4K) for x € Uylx;_1,p;] N C, where
pi = K(Mp+ 1)hiﬁ + suP,eio,n, 17(8)Tim1 — @i—ally <e. If we set t; =t;—1 + hy, then
conditions (i), (iv) and (v) are satisfied. Next we apply Proposition 4.2 to show the
existence of x; € C' and (; € Y satisfying conditions (ii) and (iii) with j = i. Thus, we
obtain a sequence {(t;,z;,(;)}52; satisfying conditions (i) through (v).

It remains to show that condition (vi) is satisfied. To this end, we assume to the

contrary that ¢ := lim;_,o t; < 7. Applying [18, Lemma 3.3 (i)], we have
i = zjlly <K (Mp +e)((ti —te)” + (85 — t)7) + | T(t; — ti)zs — T(ti — tr)zr|ly

for i, j > k > 1. This together with the strong continuity of 7'(-) in B(Y) on [0, c0)
implies that limsup; ; . [|2; — ;]y < 2K(Mp + ¢)(t — t)? for all k > 1. Since
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limy_,o0 t =t and C'is closed in Y, the inequality above shows that the sequence {x;}
in C' is convergent in Y to some Z € C. Since T'(-) is strongly continuous in B(Y') on
[0,00) and B is continuous from C into X, one finds h € (0,¢] such that h < 7 — £ and
|Bx—Bz| < ¢/(8K) for x € Uy |z, 2p]NC, where p := K(MB—I—l)Bﬁ-I—supse[o,,—l] T (s)z—
Z|ly < e/2. Since the sequence {x;} converges in Y to Z and since the sequence {p;},
defined by p; = K(Mp + 1)hP + sup,ejo,p] 17(s)@i—1 — @i—1lly for i > 1, converges
to p as i — 00, there exists an integer ig > 1 such that Uy[z;—1,p;] C Uy|[z,2p],
|BZ — Bxi—1|| <e/(8K) and p; < ¢ for all i > iy. Let i > ig. Then we have

SS/(8K)+€/(8K)=€/(4K) fOl"l'EUy[xi_l,ﬁi]ﬂC.

Hence h < h; fori > iy. This contradicts the fact h > 0, since h; < 2h; = 2(t;—t;—1) — 0
as i — oo. This proves that condition (vii) is satisfied. It is concluded that a sequence
{(t5,25,¢)}52, in [0,7) x C x Y can be constructed so that conditions (i) through (vi)
are satisfied. O

§5. Key estimate on the difference between approximate solutions

In this section we give a key estimate to showing the convergence of a sequence of
approximate solutions constructed in the previous sections. The proof is similar to but
more complicated than that in [17, 14, 10].

Throughout this section, condition (ii) in Theorem 2.3 is assumed to be satisfied,
and let 7 stand for a number appearing condition (ii-1) in Theorem 2.3. The symbols
a A'b:=min(a,b) and a V b := max(a,b) are used in the rest of this paper.

Proposition 5.1.  Let ©g, 09 € C. Assume that h € (0,7 A1], p > 0, M > 0,
7>0,€(0,1,7>0,he (0,7A1], p>0, M>0,7>0,¢e (0,1 and ¥ > 0 satisfy
the following conditions:

(5.1) |Bz|| < M and |Bx— Boo|| <7 forx e Uylvg,p]NC.
|Bz|| < M and ||Bx— Bio|| <@ forz € Uylig, p]NC.
(5.2) K(M +e+0)h’ + sup ||T(s)0 — Vo|ly < p.
s€[0,h]
K(M+é+0)h° + s?pk] 1T (5)do — oy < p.
s€[0,h

Let § € [0,h], 6 € [0,h] and wo, o € C, and let G : [0,8) — X and G : [0,8) — X be
measurable functions such that they satisfy the following conditions:

— 6 — —_—
o — T(8)d0 — / T(5 - €)T(€) de

(5.3) |lwo — T(8)vo|| < 6(M + ), < KuéP.

Y
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(5.4) [[GEI <M for€€l0,0).

< K.
Y

5
o — T(8)so|l < ST + ), ||uo — T8t — /0 T — €)6(€) de

IGEI <M for € €[0.6).
Let 79 € [0, 7). Then, for each o > 0 with o+ 6 < h, o446 < h and o+ 19 < 7, and for

each t € |19 + 0, 7], there exist Zo, 29 € C' and fo, fo €Y such that

(55) 2 = T(0)o + / T(€)Bodé + fo, |foll < oz +20), lfolly < KoP(e+27),

(5.6) 20 = T(o)io + / T(€)Bio d€ + fo, || foll < o(é+20), |Ifolly < Ko (& + 2i),
0

(5.7) |lwo —volly <p, o —olly <5, |20 —Uolly <p, |20 — tolly < p,

(58) V(t,a + 7'0,20,7:’0) — V(t, To,’LTJ(),’LZJ())

o+70
< wtPo (/ (t — &)~ og=Po df) V (70, To, Wo, Wo)

0

o+To
4 4P (/ (t — &) 0g—Fo d§> (wB(20) (1 + [[woly + [lwolly)

0

+2wLy (p+p) +£+€)
o+To
+ Lx (€ +¢) (tﬁo/ (t—g)—ad§+a(1+t50(é+é))).

Outlined Proof. We first construct a sequence {(sj,wj,zbj,fj,éj)};?‘;l in [0,0) x

C x C xY x Y satisfying the following conditions:

(i) 0=sp<s1<---<8;<---<a0.

Sj _
(ii-1) wj = T(Sj — sj_l)u_)j_l —I-/ T(Sj — §)B2Dj_1 d¢ +¢; for j > 1.
Sj—1

j_

Sj R
(11—2) zi)j = T(Sj — Sj—l)'UA)j—l —I-/ T(Sj — é)BUA)j_l dé + Cj fOI‘j Z 1.
Sj—1

i
(iii-1) (|Gl < &(sj — s5-1) and [|Glly < &(sj —s5-1)7 for j > 1.
(ii-2) (|Gl < &(s; —s5-1) and [|§lly < é(s; —s5-1)7 for j > 1.
(iv) (VI s; + 10,w5,05) = V(E,85-1 4 To, Wj—1, Wj-1))/(s; — $j-1)
<wtfo(t —sj_1—70) " (85 +70) PV (sj-1 + 70,851 + To, Wj—1,Wj—1)

+t60(t — 8j-1— To)_ao(Sj + 7'0)_’60(6_4-@)
+ Lx(1+t9(t — (s; +70)) %) (E+€) forj>1.
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sj+T7o
(V) (t=(sj+70))"(sj —sj-1) < / (t—&) " dE+(s; —sj-1)(E+¢€) forj=>1.
Sj—1+70

(Vl) hmj_,oo §; =0.

The above sequence can be constructed inductively in a way similar to [18, Proposition
4.1]. Applying [18, Lemma 3.4 (ii)] to the sequence constructed above, we find Zy,
Zp € C' and fo,fo € Y such that limj_wo ||Z() — QZ)j“Y =0, limj_wo ||20 — Qi]j“y =0 and
conditions (5.5) and (5.6) are satisfied. From (iv) and (v) we deduce that

(5.9) V(t, Sk + 70, @k,lﬁk) — V(t, To,tﬁo,l[]o)
k
< i Z hj(t —sj—1—70)" (85 + 7'0)_[30‘/(53'—1 + 70, 8j—1 + To, Wj—1,Wj—1)
j=1

k
+ tﬁo Z hj(t — Sj—l — To)_aO(Sj + To)_ﬁo(§+é)
j=1
Sk+To

+ Lx(6+¢) (tBO/ (t—g)—ad§+a(1+t5°(é+é))>

for k = 1,2,.... To estimate the first term on the right-hand side of (5.9), let 0 <[ <
k — 1. By Remark 2 (b-iii) and (V3) we have

V(s1 + 710, 81 + 10, Wi, W) < V(s; + 10, 81 + To, Wo, Wo)
+ Ly (||w; — olly + || — olly)
< V(70, 70, Wo, Wo) + 0(20) (1 + |[wol|y + [[wol|y)

+ Ly ([l — wolly + [[dr — oy )-
Since w; — vg = (w; — T'(s1 + 6)vo) + (T'(s; + §)v9 — p), we have
lwr = Bolly < K(M +&+0)(s1+6)7 + | T (s + 8)vo — ol < p.
This implies (5.7) and

V(s1 + 70, 81 + 7o, Wi, i) < V(7o, 7o, Wo, Wo) + 0(20) (1 + [|wolly + [[dolly)
+2Ly(p+ p).

Substituting this inequality into (5.9) and using the inequality
k 8 Sk
S [ o) s ) S [ € m) (),
j=1v5i-1 0

we have

V(t7 Sk + TOau_ka ’UA)k;) - V(t77-07 w()v UA}O)
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Sk+To
< wtbo (/ (t— &) g dé) V (70, 70, Wo, o)

70

Skr+To
weh ([ - e M de) (@001 + aaly + il

0

+2wLy (p+p) +E+€)

b Lx(+8) (tﬁo /SWO (t— &) de + o (1 + 1% (5 + é)))

0

for k =1,2,... Passing to the limit as k — oo, we obtain the inequality (5.8). U]

The following is the key to showing the convergence of a sequence of approximate
solutions.

Proposition 5.2. Letzg € C. Let 0 < 7 < (t A1), po > 0, Mp > 0 and X,
w € (0,1/2] and suppose that

|Bz|| < Mp for x € Uy[zq, po] NC and K(Mp + 1)7” + Sl[lp] T (s)xo — zo|ly < po-
se|0,T

For each & = A, j1, suppose that there exists a sequence {(t,25,(5)}52, in [0,7) x CxY
satisfying the following conditions:

i) 0=tf<ti<---<tf<---<T.

t
(i) 2§ =T —t5_1)75, +/ T(t5 — &)Baj 1 de+ ¢ for j = 1, where 5 = wo.
te

b1

(i) (|Gl <e(t; —t5-1) and |Gy <e(t; -1

]_1)5 forj>1.

(iv) If x € C satisfies the inequality

lz =25 ylly < K(Mp+1)(t5 — 57+ sup  [T(s)25, — a5 4]y,

s€0,t5—15_,]

then ||Bx — Bx5_,|| < e/(4K), for j > 1.
(v) K(Mp+1)(t; —tj-1)° +supsepo,—¢, ) IT(8)xj1 —xjally <e forj>1.

(vi)  limj oo t5 =7,

Set P = {t};i = 0,1,...} U {t?;j = 0,1,...}, and define s = 0 and s, = inf(P \
{s0,81,...,86-1}) for k > 1. Let N be a nonnegative integer. Then there ezists a
sequence {(zp, 2k )} in C x C and a sequence {(¢p, 9h)}_, in Y X Y satisfying the
following conditions:

(a) Foreache=X\pand0 <k <N, if s, =t for some i then zj = x5.
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(b)  For eache = A p and 0 < k < N, if s, # t; for all i then the element f; inY
defined by

Sk
610) i =Tl-seiot [ Tl OB dE— 5

k-1
satisfies || fo| < e(sk — sk—1) and ||fE|ly < e(sk — sk—1)".
(¢) Foreache=MApand0 <k <N, if s =1t for some i, then
ozl < 3(5 —t5_1)e,  llotlly < 3Kt —t5_1) .
For each e = X\, pp and 1 <k < N, if s # t5 for all i, then ¢5 = 0.
(d) For0<k<N, V(sg, sk, 20,2 ) < Ly(2p0 + (1 + 3K7%) (A + p)).
() For1<k<N,

(5.11) V(sn, 8k, 205 28) — V(SN Sk—1, 2015 2 1)
< L(llonll + 651l + 72N T (sv = se)dnlly + 72 NT(sn = sk)dplly)

+ wsh? </ (s — €)oo d5> V(sk-1, 851, -1, 7 1)

Sk—1

+ sy (/ (s — €)oo df) xu(Zo, po)

—1

+Lx(A+p) (8?\? /Sk (sv = &) dE + (sk — sk—1)(1 +8?\?(>\+u))> :

where 6x,, (%o, po) = wO2X + 2p) (1 + 2||zolly +2p0 + A+ 1) + 2wLy + 1)(A + p).

Outlined Proof. We shall construct inductively a sequence {(z},z4)}Y_, in C x C
satisfying conditions (a) through (d). For this purpose, set (z{,2) = (x3,xh). Let
1 <1 < N and assume that a sequence {(z7,z)}._% in C' x C can be chosen so that
conditions (a) through (d) are satisfied. Then we want to find a pair (27, 2/') € C'x C as
required, by applying Proposition 5.1. Since all the assumptions of Proposition 5.1 can
be checked in a way similar to the proof of [18, Proposition 4.2], we apply Proposition

5.1 with t = sy to find y}, y/' € C and g}, g' € Y satisfying the following conditions:

S1—81—1
(5.12) U = T(st— s1_1)5, + / T(6)B2 , de + g,
0

lgi'll < Msi = si-1), g lly < Mst = s1-1)”,

S1—S1—-1
o= Tl = s+ [ TQBH g+ o,
0
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lgi'll < ulsi—sic1), Nlgl'lly < plsi —s1-1),
(5.13) Iz — 2y lly < A [ 339‘_1||Y < W,
ly? =22 ally <Ayl == ylly <,

(514) V(SNa slayl)\vylu) - V(SNa Sl—lazl)\—lvzf_l)

< wsh (/ (s — &) g dé) V(si-1, 511,21, 21 )

S1—1

+a ( | w—greg d£> (@OCA+ 21+ |2l + 124 1)

Si—1

+ (QWLY + 1)(/\ + ,u))

+ Lx (A4 p) (s?\? /sz (sy —&) “dE+ (s1—s1-1)(1 +s§3\?()\+u))> .

S1—1

Now, we consider the pair (2}, 2") in C x C defined by

)\ 1 >\ 12 . )7
= yp  if s <t and 2l — Yy it s <t
x) if s =t alf if s =1,

and the pair (¢, ¢)') in Y x Y defined by ¢ = z — y and ¢)' = zI' — y/'. Then,
conditions (a) and (b) are clearly satisfied. Note by (5.13) that ||z |||y < ||zo|ly +po+A
and ||z} ,|ly < |lzolly + po + p. Substituting these inequalities into (5.14), and using
condition (V1), we verify condition (e). Once condition (¢) with & = [ is proved,
condition (d) can be shown by using (5.13),

V(s 81,20, 21) < Vs, 81,90 u1) + Ly (|édly + 1ot lly)
< Ly (v} — v“llv + oty + lolly)

and ||z ; — 2 lly < 2po. The fact that the pair (2, 21") satisfies conditions (c) for

k =1 is proved similarly to [18, Proposition 4.2]. We here omit the detail. Thus, the
desired sequences {(z}, 24 ) }2_, in C x C and {(¢3, #})}~_, in Y x Y can be constructed

inductively. O

§6. Proof of Theorem 2.3

We begin by showing the implication “(i) = (ii)”. To do this, assume that there
exists a semigroup {S(¢);t > 0} of Lipschitz operators on D such that for each z € D,
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S(+)x is a global mild solution to (SP;x). It is known [11, Theorem 4.1] that there exist
wo >0, M >m >0, L>0and a nonnegative functional Vj; on X x X such that

Vo(z,y) = Vo(2,9)| < L(llz —yl + 2 —g[) for (2,9),(#,9) € X x X,
mllz —yl| < Vo(z,y) < Mllz —y|| for z,y € D,
Vo(S(t)z, S(t)y) < e“*'Vy(z,y) for x,y € D and t > 0.

Let 7 > 0 and define a nonnegative functional V on AxY xY by V(t,s,z,y) = Vo(x,y)
for (t,s,x,y) € AxY xY. Let ag, 5y € [0,1). Then, it is obvious that the functional V'
satisfies conditions (V1) through (V3). It remains to check conditions (ii-2) and (ii-3).
To do this, let (¢,s) € A with ¢ # s and (z,y) € C x C. Then we have, for h > 0 such
that s+ h < t,

((s+h)/1)%(t = 5)*(V(t, s+ h, J(h)z, J(h)y) — V(t,s,2,9))/h
< (t=5)*(Vo(J(h)z, J(h)y) = Volz,y))/h
< 70{h7H (e = )Vo(x,y) + LT ()2 — S(R)l| + [|J (h)y — S(h)yll) /1 },

and the last term on the right-hand side vanishes as h | 0 because S(-)z is a mild solution
to (SP;z) and limy, o h= 1 (S(h)z— J(h)z) = limy o h~* [ T(h—s)(BS(s)z— Bx)ds = 0.
Here we have used the continuity of BS(-)z in X at ¢ = 0 (by Proposition 3.3 (v)).
Condition (ii-2) is thus shown to be satisfied with w = 7%wq. To check condition
(ii-3), let x € C. Then, we have S(-)z € C([0,00);Y) and BS(:)z € C([0,00); X) by
Proposition 3.3 (v). Since J(h)x — S(h)z € D((—A)®) and

I(=A)* (J(h)x = S(h)z)| </ I(= —s)(Bx — BS(s))| ds

(1—a) *M, sup ||Bx— BS(s)z|-h'"*
0<s<h
for all h > 0, and since S(h)xz € C for all h > 0, we observe that condition (ii-3) is
satisfied with 8 =1 — a and x5 = S(0)x.

In order to prove that (ii) implies (i), by [18, Propositions 2.5 and 2.6] we have
only to show the existence of a local mild solution with initial value in C. To this end,
let ¢ € C. Then, condition (B) ensures the existence of pg > 0 and Mp > 0 satisfying
|Bz|| < Mp for x € Uy[xo,po] N C. By continuity, there exists a > 0 such that
K(Mg + 1)a? + SUP¢eo,q] IT(§)T0 — @olly < po. Let b be a positive number satisfying
wh'=*B(1—ap,1— ) < 1, where B(-,-) is the beta function. Set 7 = aAbATA1. Then
we have K(Mp + 1)7% + supgco,7 17(§)xo — a:0||y < po. Proposition 4.3 asserts that
for each € € (0, 0] there exists a sequence {(¢5,25,(5)}52; in [0,7) X C x Y satisfying
(i) through (vii) in Proposition 4.3. For each € € (0, e¢], we define a family {u®} of step
functions by u®(t) = «§ for ¢t € [t§,t5, ;) and i = 0,1,2,... Once it is demonstrated that
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the family {u®} converges in the space C'([0,7); X) as € | 0, the proof of the implication
“(ii) = (i)” is completed just as in the proof of [18, Theorem 5.2].

Now, let A\, o € (0,¢e0], and let {s;}72, be a sequence constructed as in Proposition
5.2. Then, in order to show that the family {u®} converges in the space C([0,7); X) as
e | 0, we use the step function ¥ : [0,7) — R, defined by

U(s) = V(sp_1, 61,0 (Sp_1), u*(sp_1)) fors e [sk—1,sk) and k =1,2,3,...

Let t € [0,7). Then there exists a nonnegative integer N such that t € [sy,snt1).
Applying Proposition 5.2, we find a sequence {(z7, 24)}2_, in C x C and a sequence
{(g2, )}V, in Y x Y satisfying (a) through (e) in Proposition 5.2. In order to estimate
U(t) we need the following inequality

(6.1)  |V(Sk—1s8k—1, 201, 2h_1) — V(Sk—1, Sk—1,u™(85—1), u" (s6-1))| < Ly (A + p)

for 1 < k < N+1, which is derived in a way similar to [18, Theorem 5.2]. By Proposition
to estimate z,iv:l |T(sn — sk)dplly- Let {k; }3:1 be the increasing sequence consisting
of all 1 < k < N such that s = tf‘ for some 7. Then there exists an increasing sequence
{ij}é'zl such that sz, = tf‘j for 1 < j < 1. By Proposition 5.2 (c) we have ¢ = 0
!

for k & {ky,....ki}; hence ;1 [|T(sn — se)dplly = S5y IT(snw — ti,)dp [l Set
t2 = 0. Since tf‘j_l < t?j_l < tf‘j for 1 < j < [, Proposition 5.2 (c) implies that
H(b?ﬁ“ < 3)\(t£‘j — tf‘j_l) and ||¢2j||y < 3K/\(t?j — tf‘j_l)ﬁ for 1 < j < 1. We therefore
apply Lemma 4.1 (ii) to obtain Zszl |T(sn — sk)pplly < 3K2)\s§3\,.

Using (6.1) to estimate the second term on the right-hand side of (5.11) and adding
the resulting inequality from £ =1 and k = N, we find

U(t) <Ly (A + p) + 3KL(T + KFPTP) (A + p) + wsi / SN (sy — &)~ Pow(g) de
0
e ( [ g des) WLy (A + 1) + 30 (201 p0)

SN
rixOtn) (0 [T en -9 a0 ).
0
The third term on the right-hand side is estimated in such a way that

s /0 (s — ©)70EPOW(E) dg < P B(1 - a0, 1~ By) s, U(s).

Therefore, there exists a family {e, ,,} of positive numbers such that limsup, , oex . =
0 and

U(t) <expy+wr' ™ ™B(l—ag,1—F) sup ¥(s) forte[0,7).
s€[0,7)
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Since wT1~* B(1 — ap,1 — () < 1, this implies that
sup{[[u*(t) — w"(t)[|;¢ € [0,7)} = 0 as A, |0

and hence that there exists a measurable function u : [0, 7) — X such that lim, o u®(t) =
u(t) in X, uniformly for ¢ € [0,7). Thus the proof is complete. O

§7. An application to drift-diffusion systems

This section is devoted to an application of Theorem 2.3 to the Cauchy problem
for the drift-diffusion system
ou— Au — V- (uVy) =0 in RY x (0, 00),
(DD) —Ap=u  onRY x(0,00),
u(x,0) = up(x) > 0,

where N > 2. Let LE (RY) be the set of all nonnegative functions in L?(RY). The fol-
lowing theorem will be obtained through our abstract results (Theorem 2.3 and Propo-
sition 3.3).

Theorem 7.1.  Let p € [N/2,N). For each initial data uy € LY (RY), the
Cauchy problem to (DD) has a unique solution u in the class

C([0,00); LE(RY)) N CH((0, 00); LP(RY)) N C((0,00); D(A)),
where D(A,) is the domain of the Laplace operator A in LP(RYN) defined by
D(A,) = W*P(RY)  for N/J2 <p< N,

W2N/2 for N > 3,
D(Any2) = . . .
{ue L'yue WHP for1 <p<2and Aue L'} for N =2.
Let p € [N/2, N). Then the operator A in X = LP(R¥Y) defined by
Au=Au—u for u e D(A) := D(A))

is the infinitesimal generator of an analytic (Cp) semigroup on X of negative type. By
using the operator B from D N D((—A)?) into X defined by

Bu=V:(uVyY)+u forue DND((—A)"), where —Ay) = u,

the Cauchy problem for (DD) can be converted into the semilinear problem (SP) if the
set D C X and « € (0, 1) appearing in the abstract setting are determined appropriately.
The arguments are divided into the following two cases:

(7.1) () N/2<p<N, (1) p=N/2.
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For simplicity in notation we write L?, LE and W*? instead of LP(RY), L% (RY)
and W*P(RN), respectively. The usual LP norm is denoted by || - ||,. The symbol K
stands for various constants throughout this section.

We begin by considering the case (I). Let X = LP and || - || = || - |p- Then,
the analytic (Cp) semigroup {7'(t);t > 0} on X generated by the operator A satisfies
IT(t)|| < et for t > 0 and the LP-LP" estimate

(7.2) ITE)(V -v)|| < Kt N/CP)||v|,  for v e (LP)N with V- v € X,

where 1/p’ =1/p+1/q and 1/¢ = 1/p — 1/N. By the Gagliardo-Nirenberg inequality
we have D(A) C L N WY and

ulloo < K [l =N/ ||| N2P) < K|l 2N/ 20| AN/ 2P for w € D(A),
ullwrnx < Klful[ N/ CP||ul| N2 < Kfu][*~N/ @) Au| N/ 3P for u € D(A),

By (7.1) (I) we choose o € (N/(2p),1) and set Y = D((—A)®). Then, by [18, Lemma
A.1] we have Y C L N WHN and

(7.3) lulloo < K Jul =N/ || (— )|V EPO - for ue Y,
(7.4) lullway < Kul NP [[(— )| VPO for u e Y.

Let ro > 0 and set

(7.5) D={uel? u>0, |ull, <70}

and C' = DNY. Then, we define an operator B from C into X by
(7.6) Bu=V-(uVY)+u (= Vu-Vi —u?+u) forueC,

where ¢ = (—A)"!u. The definition makes sense because Vu € (L) for u € C,
Vi € (LY)N and 1/q = 1/p — 1/N, by the following lemma.

Lemma 7.2. [13, Corollary 2.3] Let r € (1,N) and 1/s = 1/r — 1/N. Then
there exists a positive constant Ky , depending only on N and r such that

IV(=A) " flls < Knyollfll» for f€L”.

This lemma immediately follows from the Hardy-Littlewood-Sobolev inequality.
The following lemma asserts that the operator B satisfies conditions (B1) and (B2).

Lemma 7.3.

(i) For each p > 0 there exists Lg(p) > 0 such that

|Bu— Bv| < Lg(p)|lu—2v|y foru, veC with ||ully <p and ||v]y < p.
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(ii) There exists Mp > 0 such that ||Bul| < Mpllully foru e C.

Proof. Let u, @ € C and put ¢) = (—A)~4. Since 1/g = 1/p—1/N, by the Holder
inequality we have

|Bu— Bl < [|Vu- Ve — Vi Vi + u? — 2], + Ju - all,
< = il [Vl + lillwon [V(=2) " w — @),
- 2(]lully + lallp) e — @lloo + llu— all,.

Using (7.3), (7.4), Lemma 7.2 with (r,s) = (p,q) and the inequality ||u| < K||ully, we
see that assertion (i) holds. To show assertion (ii), let u € C. Then, we have

1Bull < |Vullw V¥l + u?llp + llull,
< Klullpllully +llulloollully + l[ull, < K1 +70)|ully

by (7.3), (7.4) and Lemma 7.2. O

To check condition (ii-3), let vy € C and consider the linear operator By on Y into
X defined by Bou = Vu - Vg — uvg + u for u € Y, where g = (—A) tvg. Similarly
to the verification of (ii) of Lemma 7.3, the operator By is bounded on Y into X. This
implies the existence of u € C([0,00);Y) N C1((0,00); X) such that u(0) = vy and
u'(t) = Au(t) + Bou(t) for t > 0.

Lemma 7.4.  For each € > 0 there exists § € (0,¢] such that u(d) € C and
(7.7) lu(8) = J(8)wvoll < €6, [lu(d) — J(8)volly < ed'7,

where J(t)vg = T (t)vy + fot T(&)Buvg d fort > 0.

Proof. To prove u(t) € C for t > 0, let p. be a mollifier and define h. and ®. by
he(o) = [7_pe(€) d§ and ®.(c) = [7_h(§) dE for o € R. Then

(d/dt) /]RN O (—u—e)dr
_ / B (—u — &) he(—u — £)(Au + Vau - Vb — uvo) de
]RN

for t > 0. If f € C?(R) satisfies that f(£) > 0 for £ € [a,b] and that |f(£)| < K|¢],
[f/(§)] < K and f"(§) >0 for £ € R, then

()P (v)Avdr <0 for v e WP with a < v <b.
RN



168 TOSHITAKA MATSUMOTO AND NAOKI TANAKA

An application of this fact yields that
(d/dt) / B, (—u— )P da
RN

< V(@ (—u—e)P) - Vipgdr — p/ O (—u— )P he(—u — &) (—u)vg dx
RN RN

< (1-p) /]RN O (—u—e)Pvgdr

for t > 0. To obtain the last inequality we have used the fact that —Avy = vy and
O (£ —¢e) < h (€ —¢e)¢ for £ € R. Notice that vy > 0. Since the right-hand side is less
than or equal to zero, we have ®.(—u —¢) = 0 for ¢ > 0; hence u(t) > 0 for ¢t > 0.
Similarly, we find, by noting that w(t) > 0 for ¢t > 0,

(d/dt)|lu(t)||b < (1 —p) /RN u(x,t)Pvo(x)dz <0 for t > 0,

which implies that ||u(t)|, < ||vollp, < 70 for t > 0. Hence u(t) € C for t > 0. Since
u(t) = T(t)vo + fot T(t — &) Bou(&) d€ for t > 0, we have
t
u(t) — J(t)vg = / T(t— &) (Bou(&) — Bug) d§
0
for t > 0. By (7.3), (7.4) and Lemma 7.2 with (r,s) = (p,q) we have

[ Bou(€) = Buol| < [[V(w(§) = vo)llwl[Vibollg + [[u(€) = vollollvollp + [[u(€) = vollp
< K(1 4+ [lvollp)[[w(€) = volly

for £ > 0. Since | T(t)v]ly < Mut=||v|| for v € Y and ¢ > 0, we find that

[u(t) = J()voll, < K(1+ ||vo||p)/0 [w(€) = volly d&,

lu(t) = J()volly < K (14 [|vollp)t" S [u(§) = volly-
€10,t

Since u € C([0,00);Y"), the assertion of the lemma is true. O

Let 7 >0 and A = {(t,5);0 < s <t < 7}. To check conditions (ii-1) and (ii-2), we
employ the nonnegative functional V on A X Y X Y defined by

V(t,s,v,w) =||T(t —s)(v—w)|| for (t,s,v,w) e AXY xY.

Then it is easily checked that condition (V1) and (V2) in (ii-1) is satisfied with Gy = 0.
Condition (V3) follows from the contractivity of 7'(¢) in B(X) and the inequality

(7.8) [(=A)(T(h)v = v) < Kh*vlly
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for h > 0, v € [0,a] and v € Y. To verify condition (ii-2), let s € [0,7) and v, € C,
and set 1) = (—A)~19. Then

T(t — (s + W) (J(h)v — J(h)o) =T(t — s)(v — 8) + KT (t — s)(Bv — B?)

h
FT(t— (54 h)) /O (T(€) — T(R))(Bv — Bo) d
and an application of (7.2) yields that

IT(t = s)(Bv — Bo)|| < K(t — )"V (0 = 0) Ve + (Ve — V)|l + [[v — ],
< K(t— )" (Jolly + 6]l + Do~ oll,

for s+ h <t < 7. Here we have used the Holder inequality and Lemma 7.2 with
(r,s) = (p,q) to obtain the last inequality, since p, q,p" satisfy 1/p’ = 1/p + 1/q and
1/¢g=1/p—1/N. Since V(s,s,v,0) = ||v — 9||,, we have

(V(t, s+ h, J(hyo, J(R)8) — V (£, 5,0,0))/h
< K(t— )" (Joll, + [[o]l, + D)V (s, 5,0, 0)

h
Lt / |(T(€) — T(h)(Bo — Bi)| de

for s + h <t < 7. Since ||v|[, < ro and ||9]|, < 7, the inequality above shows that
condition (ii-2) is satisfied with g = N/(2p). Since (ii-3) follows from Lemma 7.4, we
apply Theorem 2.3 to obtain a semigroup {Sy(t);¢ > 0} of Lipschitz operators on D
such that for each ug € D, Sy(t)up is a global mild solution to (SP; ug), where D is the

set defined by (7.5).
In the case of (I), Theorem 7.1 is a direct consequence of the following theorem.

Theorem 7.5.  There exists a semigroup {S(t);t > 0} on L% satisfying the fol-
lowing conditions:

(i) For each T,r > 0 there exists M(7,7) > 0 such that |S(t)ug — S(t)voll, <
M (7,7)||uo — vollp fort € [0,7] and ug, vo € LY. with |lugll, <7, [lvollp < r.

(i) [|S()uollp < |luollp fort >0 and ug € L*.

(iii) For each ug € L%, the (DD) has a unique global C*-solution u given by u(t) =
S(t)ug fort > 0, where by a C-solution is meant a solution in the class C([0,00); LP)N
C1((0,00); LP) N C((0, 00); D(Ap)).

Proof. To prove the existence of a semigroup {S(t);t > 0} on L% as required,
let » > 0. Then, by the fact shown above, there exists a semigroup {S,(t);t > 0} of
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Lipschitz operators on D, = {v € LY ;||v|| < r} such that for each ug € D,, S,(t)uo
is a global mild solution to (SP; ug). By the uniqueness of mild solutions (Theorem
3.1), the family {S(¢);t > 0} defined by S(¢t)v := S,(t)v for v € D, and t > 0 forms
a semigroup on L’}r. From Propositions 3.1 and 3.3 (iv) we deduce that the semigroup
{S(t);t > 0} satisfies condition (i) and the condition that for each uy € L%, S(t)uo is a
global C'*-solution of (DD). To prove (ii), let ug € L% and set = ||ug||,. Then we have
S(t)ug = Sy(t)up € D, for t > 0. This implies condition (ii). To show the uniqueness
of C'-solutions, let ug € L% and u be any C'-solution with u(0) = ug. Let 7 > 0.
Then there exists o > 0 such that |u(t)||, < ro for t € [0,7]; namely u(t) € D for
t € [0,7]. Let & > 0. Since the function u.(t) := u(t +¢) is a mild solution of (SP; u(¢))
on [0, 7 — €], Proposition 3.1 asserts that ||u.(t) — S(t + e)ug|| < Mz||u(e) — S(g)uol| for
t € [0,7 —¢]. This implies that u(t) = S(t)u for t > 0. O

Next we shall consider the case (II). In this case the arguments will be divided
into two parts. In fact, a semigroup on Lf/ >N L2V/3 will be constructed in Step 1 and
extended to a semigroup on Li\_[/ % in Step 2.

Step 1. The purpose is to prove the existence of a semigroup {S(t);¢ > 0} on
Lf/ > L2N/3 satisfying the following conditions:

(i) For each 7,7 > 0 there exists M (7,7) > 0 such that

S (t)ug — S(t)vollny2 < M(7,7)|luo — vollny2

for t € [0, 7] and ug, vy € Lfﬂ N L2N/3 satisfying |uo|lonyz < 7 and |[vgllanys < 7.

(ii) [[S()uoll2nss < [luoll2nys for t >0 and ug € Lf/Q N L2N/3,

(iii) For each uy € Li\_’/Q N L?N/3 . S(t)ug is a unique C'-solution satisfying S(t)ug €
C(]0,00); L2N/3),

For this purpose, let X = LN/2 || .|| = | - ||n/2 and define a linear operator
Ao by Agu = Au for u € D(Ap) = D(Apn/2). Then the operator A in X defined by
Au = Agu—u for u € D(A) = D(Ap) generates an analytic (Cp) semigroup {T'(t);t > 0}
on X satisfying || T(t)|] < e™* for t > 0. Let v € D(A) and ¢t > 0. By the identity
v="T()v— fg T(€)Avd¢ and the LN/2-L2N/3 estimate

IT(t)vl|lanys < Kt~ Y4v||  forve LN? and t >0

we have ||v|an/3 < K(t~Y4||v|| + t3/%||Av||). Letting t = ][ n/2/|Av|| n/2 gives the
estimate [|[v]an/3 < K||v||3/4]|Av||/* for v € D(A). Similarly, we obtain [|Vv||any3 <
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K|v||*/*||Av||?>/* for v € D(A). By the two inequalities above and the Gagliardo-
Nirenberg inequality we have D(A) ¢ Wh2N/3 ¢ L2N and

ullony < K|lulyrens < Kl|ju|Y4)[Aul|?/*  for u € D(A).

Let a € (3/4,1) and Y = D((—A)®). Then, by [18, Lemma A.1] we have Y ¢ W12N/3

and

(7.9) lullanys < Klull'/2(|(=A4)2ul|? forue Y,
(7.10) lullan < KJullyrznss < Kluf'=3 0 |[(=A)%u]* @) forue Y.

Let 7o > 0 and set D = {u € LN/?2 0 L2N/3; 4 > 0, |ullon/s < 1o} and C = DNY.
Define a nonlinear operator B from C into X as in the case (I). Then, the definition
of the operator B makes sense because Vu € (L?N/3)N and Vi € (L*N)N for u € C.
The proof of Lemma 7.3 is also valid with L?, L9, W'V and L* replaced by LN/2,
LN WL2N/3 and L2N| respectively. Thus, the operator B satisfies conditions (B1)
and (B2).

To check condition (ii-3), let vy € C' and consider the operators 2 and B in X :=
LN/2 L2N/3 defined by u = Au — u for D() := D(An/2) N D(Aan/3) and Bu =
Vu - Vipg — uvg — u for D(B) := D((—2A)®), where ¢ = (—=A) lvg. Notice that
D((=20)%) C D((—Any2)®) N D((—Aany3)* and (—0)%u = (—Any2)%u = (—Aanyz)*u
for u € D((—20)®). Similarly to the verification of condition (B2) we find

[Bul|n/2 < K1+ [[vollanys)l|(—Any2)“ul|ny2  for u e D((=4)%),
1Bullan/s < K (14 |lvollan/s)||(—A2ny3)*ullanys  for u € D((—=2A));

hence [|[Bul|x < K(1 4 ||vollany3)|[(—=0)*ul|x for v € D((—A4)%). It follows that the
abstract Cauchy problem for 2 + 9B has a solution u € C([0,00);Y) N C*((0,00); X) N
C((0,00); W22N/3y N C1((0, 00); L*N/3)). By using this fact, Lemma 7.4 is also proved
in the present setting.

To check conditions (ii-1) and (ii-2), we employ the nonnegative functional V' on
A XY xY defined by

V(t,s,0,w) = [T(t — 5) (v — w)| + /4Tt — 5)(v — w)llanya

for (t,s,v,w) € A xY x Y. Then, conditions (V1) and (V2) in (ii-1) are satisfied with
By = 1/4. To check condition (V3), let (¢,s,v,w), ({,5,v,w) € A xY x Y. Then we
infer from (7.8) and (7.9) that

\V(t,s,v,w) — V(t 35 v,w)
<T(t =) (v —w) = T(i = §)(v —w)|| +[tY* = /YT (t — 5)(v — w)llany3
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+ (=) (T = 5) (v —w) = T(E = 8) (v —w))|

< Klt—s— (i = 8o~ wlly + K[t —{"*|lo —w]y
+ KTVt — s — (i = 3)|* 72 (v —w))lly

<Ot =t +1s = sD(lvlly + lwly),

where 0(&) = K (€~ + ¢1/* 4 €271/2) This shows that condition (H3) is satisfied.
To verify condition (ii-2), let (¢,s) € A with ¢t # s and v, o € C, and set ¢ =
(—A)~19. For any Banach space (Xo, | - ||x,) we have

[Tt =5 = h)(J(h)v = J(h)0)]|x,
(7.11) <|[T(t = s)(v = 0)l[x, + RIT(t = 5)(Bv = Bo)|[x,

T 5 — B x—x0 / |(T(€) — T(h))(Bv — B)||x dé

for h > 0 such that s+ h <t. Let h > 0 and s + h < t. Considering the cases Xg = X
and Xo = L2N/3 in the above estimate, we obtain

(V(t,s + h, J()v, J(h)D) — V(t,5,0,9))/h
< || T(t = 8)(Bv — Bo)|| + /| T(t — s)(Bv — Bo)|lanys + g(h),

where

h
By =kt / |(T(€) — T(h))(Bo — Bo)|| de
0
h
+ VAR (t—s—h) VAR / (T(&) — T(h))(Bv — B)|| d¢.
0

Hence

(7.12) (t — 8)34(s + W)Y*(V(t,s + b, J(h)v, J(h)D) — V (L, s,v,9))/h
< K (1= )M+ W)Y 40V — 0V + K (= ) (s + 1) o = 0]l
+ KtV (s + B)Y 4oV — 0V | g + KEV4(t — )3/ 4(s + b)Y v — 0l any3
+ (t = 8)/ (s + 1)V g(h).
By the Holder inequality and Lemma 7.2 we find that
(718) oV — Vdlngs < l[v— dlanss| Vibllan + [ollanysl Ve — Vobl| o
< K(||vllanyz + [[9ll2n/3) lv = Dll2ny3-

It follows from (7.12) that

lim inf (¢ — $)¥ 4 (s + W)YV (t, 5+ h, J(h)v, J(h)D) — V(t,s,v,9))/h
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< Kt1/4V(s,s,v,1§),

and so condition (ii-2) is checked to be satisfied. Condition (ii-3) follows from Lemma
7.4. Similarly to the proof in Case (I), Theorem 2.3 guarantees the existence of a desired
semigroup {S(t);¢t > 0} on Lfﬂ N L2N/3_if it is proved that S(t)ug € C([0,00); L2N/3)

for each ug € Li\_r/ >N L2N/3_ This fact will be shown in the following way: We note that

t
(7.14) S(t)vg = U(t)vg + / Ut — s)FS(s)vgds
0
for t > 0 and vy € Lf/z N L2N/3 | where {U(t);t > 0} is the analytic (Cp) semigroup
on X = Lf/ 2 generated by Ag and F' is the operator from Lf/ MY into X defined by
Fv=V.(vVv) for v € Lﬁ/Q NY, where 1 = (—A)~1v. The following LP-L? estimates
will be often used:

(7.15) U (t)v]lanys < Kot *|lv||  for v e LN/,
(7.16) U@V -0)|| < Kit7Y2|v|| for v e (LN/?)N with V- v e LN?,
(7.17) IU#)(V - 0)|anys < Kot =3/4|v]|  for v € (LN*)N with V- v € LN/2.

Hereafter K; stand for constants depending on N. Now, let ug € Lf/ > L2N/3, Then
we have U (t)ug € L*N/3 for ¢ > 0 and lim; o U(t)ug = ug in L?N/3. Since Y C L*N/3,
the last term on the right-hand side of (7.14) converges in L*¥/3 and

/t U(t— s)FS(s)ugds

t
< / K(t — 5)~3/4S(s)uo| 2y s ds
2N/3 0

for t > 0. Here we have used (7.17) and [|V(—A) " ooy < Ks|v||anys for v € L2V/3.
By (ii) of Step 1 we have limy fg Ut — s)FS(s)ugds = 0 in L?N/3. Tt follows that
S(t)ug € C([0, 00); L2NV/3).

i i Aty . N/2
Step 2. The purpose is to exteind the 5em1gr0u][3 gS(t),t >0} on L'°N L2N/3
obtained in Step 1 to a semigroup {S(t);¢ > 0} on L +/ . Our argument is similar to
[3, 4, 7, 8]. To construct a family {D,;r > 0} of subsets of X such that Lf/Q = Up>0Dr,
choose 6p > 0 so that 16 Ko K3B(1/4,1/2)d9 < 1 and put

Ry = (1—+/1—-16K,K3B(1/4,1/2)d0)/(4K>K3B(1/4,1/2)) > 0.
Since Ry satisfies 26p + 2KoK3B(1/4,1/2)R3 = Ry, we observe that

(7.18) 2K, K3B(1/4,1/2)Ry < 1, 200 + KoK3B(1/4,1/2)R% < Ry.

Since t1/4||U(t)v||anys — Oast | 0 for any v € C5° dense in L2N/3 and since t1/4|| U (£)v||2n/3

is bounded as ¢ | 0 by (7.15), we have
(7.19) ltiﬁ)ltl/‘LHU(t)vHLzN/s =0
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for v € LN/2. For each r > 0 set D, = {v € Lf/z;t1/4||U(t)v||2N/3 < §p for t € (0,r]}
and C, = D, NY. Then we observe that Lf/z = Uy>oD, by (7.19) and that C, ¢ L?N/3
and C). is dense in D, for each r > 0.

Let {S(t);t > 0} be the semigroup on Lf/Q N L?N/3 obtained in Step 1. Then we

want to show that for each 7 > 0 and r > 0 there exist K., > 0 and I?T,r > 0 such that

(7.20) 1S(t)vo — S(t)tollanys < Krwt ™ *|vo — o],
(7.21) 15(t)vo — S@)o| < Krr[vo — ol

for t € (0, 7] and vy, 09 € C,.. For this purpose we shall demonstrate that
(7.22) IS(t)v]lanss < (EAT)YA4Ry for t >0 and v € C,.

To do this, let v € C, and define w(t) := tY/4||S(t)v|lan/3 for t > 0. Clearly, w €
C([0,00);Ry) and w(0) = 0. We use (7.15), (7.17) and (7.13) with © = 0 to estimate
(7.14). This yields that

t
(7.23) w(t) < 2dp + K2K3t1/4/ (t —s) "3/ *s71/2w(s)% ds
0

for t > 0. Let t = sup{t € [0,7];w(s) < Ry for s € [0,t]}. To show that ¢ = r, assume
to the contrary that ¢ < r. Then by the definition of ¢ and the continuity of w we see
that w(t) < Ry for ¢t € [0,1] and w(t) = Ry. Setting t =t in (7.23), we have by (7.18)

t
w(t) < 200 + K2K3t_1/4/ (t — ) 3/4s7 12 (s)% ds
0

t
< 260 + K2K3£1/4/ (t—s)"3/47V2R2 ds < Ry.
0

This is a contradiction to the maximality of £. Hence t*/4||S(t)v||any3 < Ro for t € [0, 7).
By condition (i) shown in Step 1 we have ||S(t)v|an/z < [S(r)vllan/s < r~ /4Ry for
t > r. Combining these inequalities we obtain the desired inequality (7.22).

To prove (7.20), let 7 > 0, r > 0 and vy, 09 € C,. Then we use (7.14) to represent
the difference S(t)vg — S(t)vo, and then estimate it by (7.15), (7.17), (7.13) and (7.22).
This yields that

t1/4|S (t)vo — S(t)ooll2ny3
(7.24)

t
S KOHUO — @0” —|— 2K2K3/ t1/4(t — 8)_3/48_1/4R0HS(8)’U0 — S(S)’IA)()HQN/?, dS
0
< Kollvo — oo + 2KoK3RoB(1/4,1/2) S}lp] t/4S (t)vo — S(t)0o |23
te|0,r
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for t € (0,7]. By (7.18) one finds K4 > 0 such that
(7.25) 1S (t)vo — S(t)Dollan/s < Kyt~ Y*|lug — o] for t € (0,7].
Similarly, we deduce from (7.25) that

[S(#)vo — S()oll2nys
S Kot_1/4||’l)0 — ’IA)()H + 2K2K3/ (t — 8)_3/48_1/4R0||S(8)’Uo — S(S)ﬁ0||2N/3 ds
0

+ 2Ky Ky / (= 5) M4V R1S(5)00 — S(5)iollans ds
< Kot_l/‘*Hvor— Bol| + 2K2K3K4RoB(1/4,1/2)t ™ *||lvg — |
+ 21 Ry [ (= 9 IS0 — S($)inlnads
for t > r. Combining these inequalities we have
1S (t)vo — S(t)iollanyz < K5t~ *|jvg — 1o

t
+ 2K2K3r‘1/430/ (t = 5) "4 (s)vo — S(s)voll2nys ds
0

for t € (0,7], where Ky = Ko + K4 + 2K2K3K,4RyB(1/4,1/2). Applying Henry’ in-
equality, we obtain the inequality (7.20). Similarly to the derivation of (7.24) we find
by (7.20) that

15 (t)vo — S()toll

t
< ”’U() — ’lAJ0|| + 2K1K3R0KT’T (/ (t — 3)—1/2(3 N 7“)_1/43_1/4 dS) ||U0 — ’IAJ()”
0

for t € [0, 7]. This implies that the inequality (7.21) holds.

Now, we shall extend the semigroup {S(¢);t > 0} to a semigroup on Lf/ ®. Let
vy € Lf/ > Then there exists r > 0 such that vg € D,. Since C, is dense in D,.,
we find a sequence {vg,} C C, such that |[vg,, — vo|| — 0 as n — oco. Let 7 >
0. Then by (7.20) and (7.21) we observe that the sequence {S(-)vo,} converges in
C(]0,7]; X)NC((0,7]; LEN)/3) as n — o0o. Since the limit function does not depend on
the choice of sequences {vg ,, } by (7.20) and (7.21), we can define a one-parameter family
{g(t);t >0} from Lfﬂ into itself by §(t)v0 = lim,, 00 S(t)vo,, for t > 0. Clearly, the
family {S(¢);¢ > 0} is a semigroup on Lfﬂ such that S(-)vy € C((0,00); L2N/3) for
v € Lf/ * and

1S (t)vo — S(t)bo|| < Krrllvo — 0| for ¢ € [0,7] and vo, 9 € D,..
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Finally, we shall prove that for each ug € Li\_’/ 2, S (t)uop gives a unique global
Cl-solution to (DD). Let ug € Li\_’/z and set u(t) = S(t)uo for t > 0. Since S(e)uy €
Li\_’/QOLQN/?’ and u(t) = S(t—e)S(e)up for any £ > 0 and t > &, u is a global C'-solution
to (DD) by the fact shown in Step 1. To prove the uniqueness of C!-solutions, let v be
any global Cl-solutions to (DD). Since D(Ayy) C L*N/3, v(t) is continuous in L2N/?
for ¢ > 0. The uniqueness result in Step 1 assures that v(t 4 ¢) = S(t)v(e) = S(t)v(e)
for e > 0 and ¢ > 0. Thus, Theorem 7.1 for p = N/2 follows from the fact shown in
Step 1. The proof of the case (II) is now complete.
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