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Abstract

The present paper concerns the existence and the asymptotic stability of a stationary
solution to a hydrodynamic model for semiconductors. Moreover, we prove the non‐existence

of the stationary solution. Precisely, the existence and the stability are discussed under the

assumption that the boundary voltage is sufficiently small. On the other hand, unless this

assumption, we are able to construct an example which does not admit the stationary solution

in classical sense.

§1. Hydrodynamic model

To analyze the flow of electrons in semiconductor devices, several kinds of models

are proposed. Especially, a hydrodynamic model, which is derived by Bløtekjaer [2], is

often used in the numerical device simulation and attracts interests of not only engineers
but also mathematicians. The present paper concerns the model and study the existence

and the asymptotic stability of a stationary solution as well as the non‐existence in

classical sense.

For the readers� reference, we refer several mathematical results on this model.

The books [7, 13] give general introduction of semiconductor physics and discuss the

derivation of the model. Degond and Markowich in [3] establish the unique existence of
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the stationary solution over the one‐dimensional bounded domain. Precisely, they show

that for given electric current, there exists a certain value of boundary voltage such that

the stationary solution exists. The engineering experiments, however, aim to measure

electric current for given voltage on the boundary. Therefore, it is desirable to show

the existence of the stationary solution for the given voltage. This problem has been

solved in the authors� previous paper [14]. Namely, it proves the unique existence of the

stationary solution for the given voltage as far as it is sufficiently small. This result is also

discussed in Section 2 with details. On the other hand, due to the hyperbolic property
of the model, we cannot expect the existence of the stationary solution in classical sense

for the large voltage. In fact, we give an example in Section 3. This example shows

the non‐existence of the stationary solution. Here we still have possibilities that the

model admits the stationary solution in weak sense. This problem has been considered

in several papers [1, 4, 9] under settings other than the present paper. The existence of

the weak stationary solution, which satisfies the equation in distribution sense, is shown

for the large voltage by Gamba [4]. Ascher, Markowich, Pietra and Schmeiser in [1] and

Rosini in [9] construct the piece wise smooth stationary solution.

Lastly, we mention several results on the stability analysis on the stationary solu‐

tion. Li, Markowich and Mei in [8] show the stability over the one‐dimensional bounded

domain under the assumption that the doping profile is flat. This assumption is, how‐

ever, too strict to cover the real devices. In fact, the doping profile of n^{+}-n-n^{+} diode

does not satisfy this assumption (see [5]). Guo and Strauss in [6] extend the result in

[8] to cover the non‐flat doping profile. In these researches, it is assumed that the elec‐

tric current in the stationary solution is sufficiently small, although this fact should be

derived from the smallness of voltage from physical point of view. In fact, the authors

in [14] estimate the current with respect to the voltage and show the stability theorem

under the smallness hypotheses on the voltage. This result is briefly discussed in Section

2. Also see [10, 17, 19].

The hydrodynamic model is given by the system of three equations

(l.la) $\rho$_{t}+( $\rho$ u)_{x}=0,

(l.lb) j_{t}+( $\rho$ u^{2}+p( $\rho$))_{x}= $\rho \phi$_{x}- $\rho$ u,
(l.lc) $\phi$_{xx}= $\rho$-D,

where x\in $\Omega$:=(0,1) is a spatial variable and t>0 is a time variable. The unknown

functions  $\rho$, u and  $\phi$ stand for electron density, electron velocity and electrostatic po‐

tential, respectively. Here the product  j:= $\rho$ u means electric current. As we study
isothermal and/or isentropic flow, the pressure p is a function of electron density  $\rho$ :

(1.2)  p=p( $\rho$)=$\rho$^{ $\gamma$},
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where the constant  $\gamma$ is supposed to satisfy  $\gamma$\geq 1 . The doping profile D is a distribution

of density of positively ionized impurities in semiconductor devices, which is not an

unknown function but a given one. We assume it satisfies D\in B^{0}(\overline{ $\Omega$}) and

(1.3) 0<c\leq D(x)

for some c>0 . The initial and the boundary data to (1.1) are imposed as

(1.4) ( $\rho$, u)(0, x)=($\rho$_{0}, u_{0})(x) ,

(1.5)  $\rho$(t, 0)=$\rho$_{l}>0,  $\rho$(t, 1)=$\rho$_{r}>0,

(1.6)  $\phi$(t, 0)=0,  $\phi$(t, 1)=$\phi$_{r}>0,

where $\rho$_{l}, $\rho$_{r} and $\phi$_{r} are positive constants. Here the explicit formula of the potential is

obtained by solving (1. 1\mathrm{c}) with (1.6) as

 $\phi$(t, x)= $\Phi$[ $\rho$](t, x)

(1.7) :=\displaystyle \int_{0}^{x}\int_{0}^{y}( $\rho$-D)(t, z)d\mathrm{z}dy+($\phi$_{r}-\int_{0}^{1}\int_{0}^{y}( $\rho$-D)(t, z)dzdy)x.
This initial boundary value problem is considered in the region where the subsonic

condition (1.8a) and positivity of density (1.8b) hold. Namely,

(1.8a) \displaystyle \inf_{x\in $\Omega$}(p'( $\rho$)-u^{2})>0,
(1.8b) \displaystyle \inf_{x\in $\Omega$} $\rho$>0.
Precisely, assuming the initial data satisfies the conditions

(1.9) \displaystyle \inf_{x\in $\Omega$}(p'($\rho$_{0})-u_{0}^{2})(x)>0, \inf_{x\in $\Omega$}$\rho$_{0}(x)>0,
then we shall construct the solution satisfying (1.8). Note that the subsonic condition

is equivalent to that a characteristic speed $\lambda$_{1} of the hyperbolic equations (l.la), (l.lb)
is negative and another characteristic $\lambda$_{2} is positive, that is,

(1.10) $\lambda$_{1} :=u-\sqrt{p'( $\rho$)}<0, $\lambda$_{2}:=u+\sqrt{p'( $\rho$)}>0.

Hence, the subsonic condition means that two boundary conditions (1.5), (1.6) are

sufficient and necessary for the well‐posedness of this initial boundary value problem.
In Section 2, we introduce the unique existence and the asymptotic stability of the

stationary solution (\tilde{ $\rho$} , ũ, \tilde{ $\phi$}) ,
which are proved in [14]. Here the stationary solution is a

solution to (1.1), independent of time t
, belonging to the function space C(\overline{ $\Omega$})\cap C^{2}() :

(l.lla) (\tilde{ $\rho$}\tilde{u})_{x}=0,

(l.llb) (\tilde{ $\rho$}\tilde{u}^{2}+p(\tilde{ $\rho$}))_{x}=\tilde{ $\rho$}\tilde{ $\phi$}_{x} —  $\rho$\simũ,

(l.llc) \tilde{ $\phi$}_{xx}=\tilde{ $\rho$}-D



182 Shinya Nishibata and Masahiro Suzuki

with the boundary condition

(1.12) \tilde{ $\rho$}(0)=$\rho$_{l}>0, \tilde{ $\rho$}(1)=$\rho$_{r}>0,

(1.13) \tilde{ $\phi$}(0)=0, \tilde{ $\phi$}(1)=$\phi$_{r}>0.

To study its asymptotic stability, it is necessary, from the above observation on the

characteristics, that the stationary solution satisfies (1.8a). In the proof, the strength
of the boundary data

(1.14)  $\delta$:=|$\rho$_{r}-$\rho$_{l}|+|$\phi$_{r}|

plays an essential role.

On the other hand, we do not expect, from the hyperbolicity of the hydrodynamic

model, that the classical stationary solution exists for the large voltage $\phi$_{r} . One of the

main purposes of the present paper is to give an example of the non‐existence. It is

discussed in Section 3.

Notation. For a nonnegative integer l\geq 0, H^{l}() denotes the l‐th order Sobolev space

in the L^{2} sense, equipped with the norm \Vert \Vert_{l} . We note H^{0}=L^{2} and \Vert \Vert :=\Vert \Vert_{0}.
C^{k}([0, T];H^{l} denotes the space of the k‐times continuously differentiable functions

on the interval [0, T] with values in H^{l} Moreover X denotes the function spaces

\displaystyle \mathrm{X}_{i}^{j}([0, T]):=\bigcap_{k=0}^{i}C^{k}([0, T];H^{j+i-k}( $\Omega$)) , \mathrm{X}_{i}([0, T]):=\mathrm{X}_{i}^{0}([0, T])
for nonnegative integers i, j\geq 0 . For a nonnegative integer k\geq 0, \mathcal{B}^{k}() denotes the

space of the functions whose derivatives up to k‐th order are continuous and bounded

over \overline{ $\Omega$}
, equipped with the norm | |_{i}.

§2. Existence and stability of stationary solution

This section is devoted to summarizing the result in [14], that is, the existence and

the stability of stationary solution (\tilde{ $\rho$} , ũ, \tilde{ $\phi$}) to the problem (1.11)(1.13). As we only

give outline of the proofs, the readers are referred to [14] for the details.

The existence of the stationary solution satisfying the conditions (1.8) is stated in

Lemma 2.1. Let the doping profile and the boundary conditions satisfy (1.3),
(1.5) and (1.6). For an arbitrary $\rho$_{l} , there exists a constant $\delta$_{0} such that if  $\delta$\leq$\delta$_{0} , then

stationary problem (1.11)(1.13) has a unique solution (\tilde{ $\rho$} , ũ, \tilde{ $\phi$})\in B^{2}() satisfy ing (1.8).

Proof. The existence of the stationary solution is shown by the Schauder fixed‐

point theorem. On the other hand, the uniqueness is proved by the maximum principle.
For the details, see the authors� paper [14]. \square 
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The above theorem asserts the stationary solution exists as far as  $\delta$ is sufficiently
small. On the contrary, without this assumption, we can construct the example of

non‐existence. It is discussed in Section 3.

The asymptotic stability of the stationary solution is summarized in

Theorem 2.2. Let (\tilde{ $\rho$} , ũ, \tilde{ $\phi$}) be stationary solution of (1.11)(1.13). Suppose the

initial data ($\rho$_{0}, u_{0})\in H^{2}() and the boundary data $\rho$_{l}, $\rho$_{r} and $\phi$_{r} satisfy (1.5), (1.6)
and (1.9). Assume the compatibility condition

$\rho$_{0}(0)=$\rho$_{l}, $\rho$_{0}(1)=$\rho$_{r}, ($\rho$_{0}u_{0})_{x}(0)=($\rho$_{0}u_{0})_{x}(1)=0

holds. Then there exists a constant $\delta$_{0} such that if  $\delta$+\Vert ( $\rho$_{0}-\tilde{ $\rho$} , u0‐ũ) || 2 \leq$\delta$_{0} , the initial

boundary value problem (1.1) and (1.4)(1.6) has a unique solution ( $\rho$, u,  $\phi$) satisfy ing

( $\rho$-\tilde{ $\rho$}, u-\~{u},  $\phi$-\tilde{ $\phi$})\in \mathrm{X}_{2}([0, \infty))\times \mathrm{X}_{2}([0, \infty))\times \mathrm{X}_{2}^{2}([0, \infty)) . Moreover, it verifies the

decay estimate

(2.1) \Vert( $\rho$-\tilde{ $\rho$}, u -\~{u})(t)\Vert_{2}+\Vert( $\phi$-\tilde{ $\phi$})(t)\Vert_{4}\leq C\Vert($\rho$_{0}-\tilde{ $\rho$}, u_{0}-\tilde{u})\Vert_{2}e^{- $\alpha$ t},

where C and  $\alpha$ are certain positive constants, independent of time  t.

Proof. We establish the unique existence of the time local solution by using an

iteration method similarly as in [11, 12]. In order to construct the time global solution,
it is sufficient to derive an a‐priori estimate

(2.2) \displaystyle \Vert( $\psi$,  $\eta$)(t)\Vert_{2}^{2}+\Vert $\omega$(t)\Vert_{4}^{2}+\int_{0}^{t}\Vert( $\psi$,  $\eta$)( $\tau$)\Vert_{2}^{2}+\Vert $\omega$( $\tau$)\Vert_{4}^{2}d $\tau$\leq C\Vert($\psi$_{0}, $\eta$_{0})\Vert_{2}^{2},
 $\psi$:= $\rho$-\tilde{ $\rho$},  $\eta$:=u-\~{u},  $\omega$:= $\phi$-\tilde{ $\phi$}.

Here we give a brief sketch of the derivation of (2.2). To this end, we employ an energy

form

(2.3) \displaystyle \mathcal{E} :=\frac{1}{2} $\rho$(u-\tilde{u})^{2}+ $\Psi$( $\rho$,\tilde{ $\rho$})+\frac{1}{2}\{( $\phi$-\tilde{ $\phi$})_{x}\}^{2},

 $\Psi$( $\rho$,\displaystyle \tilde{ $\rho$}):=\int_{\tilde{ $\rho$}}^{ $\rho$}h( $\xi$)-h(\tilde{ $\rho$})d $\xi$, h( $\xi$):=\int_{1}^{ $\xi$}\frac{p'( $\zeta$)}{ $\zeta$}d $\zeta$.
It follows from the equations (1.1) and (1.11) that the energy form (2.3) verifies

(2.4) \mathcal{E}_{t}+\tilde{ $\rho$}$\eta$^{2}=R_{1x}+R_{2},

R_{1}:= $\omega \omega$_{xt}+ $\omega$( $\rho \phi$-\tilde{ $\rho$}\tilde{ $\phi$})-\{h( $\rho$)-h(\tilde{ $\rho$})\} (  $\rho$u— \tilde{}ũ) + {h (  $\rho$)—h  $\psi$ ũ,

 R_{2} :=-\displaystyle \{\frac{1}{2}(u^{2}-\tilde{u}^{2})( $\rho$ u-\tilde{ $\rho$}\tilde{u})\}_{x}- $\psi \eta$ u+( $\rho$ u-\tilde{ $\rho$}\tilde{u})_{x} $\eta$\tilde{u}
+\displaystyle \{\frac{1}{2}(u^{2}-\tilde{u}^{2})_{x}-$\omega$_{x}+ $\eta$\}  $\psi$ũ—{  h (  $\rho$)—  h ( \tilde{})} (  $\psi$ ũ).
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Integrating (2.4) yields the basic estimate. Moreover, we derive the higher order esti‐

mates by applying the energy method to the system of the equations for the perturbation

( $\psi$,  $\eta$,  $\omega$) . Then the a‐priori estimate (2.2) is obtained by combining the basic and the

higher order estimates. Hence, the continuation argument combining the time local

existence and the a‐priori estimate yields the existence of the time global solution in

Theorem 2.2. Lastly, applying the Gronwall inequality, we have the decay estimate

(2.1). \square 

§3. Non‐existence of stationary solution

In this section, it is shown that the boundary value problem (1.11)(1.13) does not

have any stationary solutions (\tilde{ $\rho$} , ũ, \tilde{ $\phi$}) belonging to C(\overline{ $\Omega$})\cap C^{2}() unless the boundary

voltage $\phi$_{r} is sufficiently small. As far as we know, it is the first example of the non‐

existence. Hereafter we study the isothermal flow, that is,

(3.1)  $\gamma$=1, p(\tilde{ $\rho$})=\tilde{ $\rho$}.

We begin the detailed discussion with proving

Lemma 3.1. Let (\tilde{ $\rho$} , ũ, \tilde{ $\phi$})\in C(\overline{ $\Omega$})\cap C^{2}() be a classical solution to the boundary
value problem (1.11)(1.13). Then the function \tilde{ $\rho$} satisfies the positivity (1.8b).

Proof. We show \tilde{ $\rho$}>0 by contradiction. Suppose that there exists a point  x_{0}\in

[0 ,
1 ] such that \tilde{ $\rho$}(x_{0})\leq 0 . Let x_{*}:=\displaystyle \inf\{x>0;\tilde{ $\rho$}(x)=0\} . It is apparent that 0<x_{*}<1

and \tilde{ $\rho$}(x_{*})=0 due to the boundary condition (1.12). Notice that \tilde{}ũ(x) =0 holds for

an arbitrary x\in[0 ,
1 ] owing to (l.lla). Then substituting \tilde{}ũ = 0 in (l.llb), dividing

the result by \tilde{ $\rho$} and integrating the resulting equation over the domain (0, x_{*}) ,
we reach

a contradiction

-\infty=\log\tilde{ $\rho$}(x_{*})-\log$\rho$_{l}=\tilde{ $\phi$}(x_{*}) .

Hence the positivity (1.8b) holds. \square 

Letting \tilde{j} : =\tilde{}ũ, we rewrite the system (1.11) with (3.1) as

(3.2a) \tilde{j}_{x}=0,

(3.2b) (1-\displaystyle \frac{\tilde{j}^{2}}{\tilde{ $\rho$}^{2}})\tilde{ $\rho$}_{x}=\tilde{ $\rho$}\tilde{ $\phi$}_{x}-\tilde{j},
(3.2c) \tilde{ $\phi$}_{xx}=\tilde{ $\rho$}-D.

Once we show the non‐existence of the classical solution to (1.12), (1.13) and (3.2), the

non‐existence of the classical solution to (1.11)(1.13) immediately follows.
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Divide the equation (3\{( by \tilde{ $\rho$} and differentiate the result to get

(3.3) \displaystyle \{(\frac{1}{\tilde{ $\rho$}}-\frac{\tilde{j}^{2}}{\tilde{ $\rho$}^{3}})\tilde{ $\rho$}_{x}+\frac{\tilde{j}}{\tilde{ $\rho$}}\}_{x}=\tilde{ $\rho$}-D,
where we have also used (3.2c).

In Section 2, we have shown the existence of the stationary solution under assuming
the smallness  $\delta$=|$\rho$_{l}-$\rho$_{r}|+|$\phi$_{r}|\ll 1 . Without this assumption, the stationary solution

does not exist in general. In the next theorem showing non‐existence, we do not suppose

$\phi$_{r} is so small. Precisely, we take $\phi$_{r}=1 and $\rho$_{l}=$\rho$_{r}.

Theorem 3.2. Let doping profile D be a constant. Assume that $\rho$_{l}=$\rho$_{r}\neq D
and $\phi$_{r}=1 . Then the boundary value problem (1.12), (1.13) and (3.2) does not admit

any classical solutions (\tilde{ $\rho$},\tilde{j},\tilde{ $\phi$})\in C(\overline{ $\Omega$})\cap C^{2}() .

Proof. We show, by contradiction, the case D<$\rho$_{l} only since another case is

proved more easily. Suppose that the problem (1.12), (1.13) and (3.2) has a classical

solution (\tilde{ $\rho$},\tilde{j},\tilde{ $\phi$}) . Dividing the equation (3.2b) by \tilde{ $\rho$} and integrating the result over the

domain (0,1) ,
we have

(3.4) \displaystyle \int_{0}^{1}\frac{\tilde{j}}{\tilde{ $\rho$}}dx=1
as \tilde{j} is a constant. It together with the mean value theorem implies that there exists

a certain point x_{0} such that \tilde{j}/\tilde{ $\rho$}(x_{0})=1 . Notice that \tilde{ $\rho$} is not constant. In fact, if so,

(3.3) means \tilde{ $\rho$}=D ,
which violates the assumption $\rho$_{l}=$\rho$_{r}\neq D . Hence, we can find

certain points x_{1}, x_{2}\in(0,1) such that

(3.5) \displaystyle \frac{\tilde{j}}{\tilde{ $\rho$}}(x_{1})<1, \frac{\tilde{j}}{\tilde{ $\rho$}}(x_{2})>1.
These inequalities mean the classical solution (\tilde{ $\rho$},\tilde{j},\tilde{ $\phi$}) has to traverse from the subsonic

region to the supersonic region.
Now we claim that \tilde{ $\rho$} attains its maximum at the boundary x=0 ,

1. In fact, if \tilde{ $\rho$}
attains the maximum at a certain point y_{1}\in(0,1) ,

it follows that

\displaystyle \tilde{ $\rho$}(y_{1})>$\rho$_{l}>D, \tilde{ $\rho$}_{x}(y_{1})=0, \tilde{ $\rho$}_{xx}(y_{1})\leq 0, (1-\frac{j^{2}}{\tilde{ $\rho$}^{2}})(y_{1})>0.
Evaluating (3.3) at x=y_{1} and substituting the above inequalities yield

(3.6) 0\displaystyle \geq\{(\frac{1}{\tilde{ $\rho$}}-\frac{\tilde{j}^{2}}{\tilde{ $\rho$}^{3}})\tilde{ $\rho$}_{x}+\frac{\tilde{j}}{\tilde{ $\rho$}}\}_{x}(y_{1})=(\tilde{ $\rho$}-D)(y_{1})>0,
which is a contradiction.
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As \tilde{ $\rho$} takes the maximum on the boundary, we see that \tilde{j}/\tilde{ $\rho$}(x)>\tilde{j}/$\rho$_{l} holds for an

arbitrary x\in(0,1) . Hence, if \tilde{j}/$\rho$_{l}\geq 1 ,
then \tilde{j}/\tilde{ $\rho$}(x)>1 for an arbitrary x\in(0,1) . It

apparently contradicts (3.5). Consequently, we have shown

(3.7) \tilde{j}<$\rho$_{l}.

Owing to (3.7) together with (3.4), we can find certain points z_{1}, z_{2}\in(0,1) such that

z_{1}<z_{2},

(3.8) \displaystyle \frac{\tilde{j}}{\tilde{ $\rho$}}(z_{1})=\frac{\tilde{j}}{\tilde{ $\rho$}}(z_{2})=1
and \tilde{j}/\tilde{ $\rho$}(z)>1 holds for an arbitrary z\in(z_{1}, z_{2}) since the solution traverses from the

subsonic region to the supersonic region.

Hereafter, we divide the proof into the two cases, \tilde{j}\leq D and D<\tilde{j}.

Case: \tilde{j}\leq D . Evaluate (3.2b) at x=z_{1} and x=z_{2} ,
take a difference between these

two results and then use (3.8) to get

0=\displaystyle \tilde{ $\phi$}_{x}(z_{1})-\tilde{ $\phi$}_{x}(z_{2})=\int_{z_{2}}^{z_{1}}\tilde{ $\rho$}-Ddx<0,
where we have also used the formula (1.7), and \tilde{ $\rho$}<\tilde{j}\leq D in deriving the last inequality.
It is a contradiction.

Case: D<\tilde{j} . We define, for a constant \tilde{j} ,
the Lyapunov function

(3.9) L(\displaystyle \tilde{ $\rho$},\tilde{ $\phi$}_{x}):=\frac{1}{2}(\tilde{ $\phi$}_{x}-\frac{\tilde{j}}{\tilde{ $\rho$}})^{2}+\frac{(D-\tilde{ $\rho$})^{2}\tilde{j}^{2}}{2\tilde{ $\rho$}^{2}D}-\tilde{ $\rho$}+D\log\tilde{ $\rho$}+D-D\log D,
which is a slight modification of the Lyapunov function in [9] (also see [1]). By differ‐

entiating L(\tilde{ $\rho$}(x),\tilde{ $\phi$}_{x}(x)) with respect to x
,

we have

\displaystyle \frac{dL}{dx}(\tilde{ $\rho$}(x),\tilde{ $\phi$}_{x}(x))=\frac{\tilde{j}(\tilde{ $\rho$}_{x})^{2}}{\tilde{ $\rho$}^{3}}(1-\frac{\tilde{j}^{2}}{\tilde{ $\rho$}^{2}})(x)<0
for an arbitrary x\in(z_{1}, z_{2}) . Then integration of this inequality over the interval (z_{1}, z_{2})
yields a contradiction,

0=L(\tilde{j}, 1)-L(\tilde{j}, 1)=L(\tilde{ $\rho$}(z_{2}),\tilde{ $\phi$}_{x}(z_{2}))-L(\tilde{ $\rho$}(z_{1}),\tilde{ $\phi$}_{x}(z_{1}))<0.

Here we have also used the identity $\phi$_{x}(z_{1})=$\phi$_{x}(z_{2})=1 ,
which follows from (3.2b)

together with (3.8).

Consequently, the boundary value problem (1.12), (1.13) and (3.2) does not admit

any classical solutions (\tilde{ $\rho$},\tilde{j},\tilde{ $\phi$}) in C(\overline{ $\Omega$})\cap C^{2} \square 
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Remark. Note that the function L
,

defined in (3.9), is non‐negative in the su‐

personic region where \tilde{j}^{2}/\tilde{ $\rho$}^{2}>1 holds. Moreover L(\tilde{ $\rho$},\tilde{ $\phi$}_{x})=0 if and only if (\tilde{ $\rho$},\tilde{ $\phi$}_{x})=
(D,\tilde{j}/D) .
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